
 

  

Abstract—Drug-drug interaction (DDI) extraction in 

biomedical literature is a particular entity relation classification 

task, which is significant for biopharmaceutical research. 

Current researchers mainly concentrated on fine-tuning the 

Pre-trained Language Model (PLM) on medical datasets to 

forecast the interactions between target drugs. Despite the 

above approaches having shown positive results, it is still 

confronted with some serious limitations. First of all, ordinary 

fine-tuning makes it difficult to take the best advantage of prior 

knowledge embedded in the PLM, due to the wide gap between 

objective forms of pre-training and downstream tasks. Secondly, 

the issue of limited training data or category imbalance also 

poses a great challenge for real-world DDI extraction tasks. In 

this work, we propose a novel model using Prompt Tuning and 

Data Augmentation (PTDA) to extract the DDI. This method 

can augment training data and alleviate the adverse effects of 

category imbalance by properly utilizing contextual word 

embedding substitution to generate examples for specific 

relation types. Furthermore, we have tried to introduce prompt 

tuning into the DDI extraction process, aiming to narrow the 

gap between pre-training and downstream tasks to leverage the 

prior knowledge in the PLM fully. We conduct a series of 

experiments on diverse biomedical datasets to verify the 

performance of our model. The results show that PTDA hugely 

outperforms existing DDI extraction methods, achieving 

F1-micro of 84.9%, 79.8%, and 73.1% on benchmark datasets, 

DDI 2013, ChemProt, and DTIs, respectively. Therefore, we 

believe that the PTDA model holds considerable potential for 

future practical applications. 

 
Index Terms—drug-drug interaction; relation extraction; 

pre-trained language model; data augmentation; prompt tuning 

 

I. INTRODUCTION 

RUG-DRUG INTERACTION (DDI) describes the 

concurrent or sequential usage of two or more drugs, in 

which the magnitude, duration, or even the nature of one drug 

is significantly altered by the influence of other drugs or 
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chemical substances [1]. Adverse drug-drug interactions can 

diminish the efficacy of drugs or even produce toxic 

substances that cause death in patients. For this reason, 

healthcare professionals must devote a lot of time to studying  

relevant literature and drug databases to comprehend the 

potential interactions between various medications to avoid 

harmful DDI. Currently, it has become a major challenge to 

identify the interaction between two drugs, due to the 

exponential growth of medical literature. 
Initially, researchers relied on manual methods to collect 

DDI from documents to build medical databases [2]. 

However, these approaches rely heavily on manual 

intervention, which results in the creation and maintenance of 

databases that consume significant time and labor resources. 

This is coupled with slow and inefficient knowledge updating, 

as well as limited coverage. The identified flaws make it 

challenging to fulfill the actual requirements of drug-related 

research and clinical applications in the rapidly expanding 

data ecosystem, characterized by a dramatic increase in the 

size and complexity of data. Consequently, the automatic 

extraction of DDI from unstructured biomedical documents 

has emerged as a key research focus. 
In comparison to manually established databases, machine 

learning-based methods can automatically extract DDI from 

large amounts of unstructured literature with high accuracy, 

which alleviates the consumption for manual construction of 

knowledge bases to a certain extent. However, these 

approaches rely heavily on specialized domain knowledge 

during the feature selection phase. Therefore, the automatic 

extraction of DDI using neural networks is becoming 

increasingly popular. Unlike traditional machine learning, 

neural networks can extract DDI between any two drugs from 

unstructured biomedical documents quickly and accurately, 

without the need for complex manual feature selection. This 

approach can substantially save time and labor costs. 

In recent years, fine-tuning has started to be introduced 

into the field of DDI extraction with the rise of Pre-trained 

Language Models (PLMs), such as BERT [3] and GPT-2 [4]. 

Fine-tuning effectively leverages the extensive prior 

knowledge acquired by the model during the pre-training 

phase and has demonstrated excellent performance across 

various domains. Among them, the language models trained 

on the biomedical corpora, such as PubMedBERT [5] and 

BioBERT [6], are outstanding in biomedical-related tasks. 

However, fine-tuning is still confronted with some serious 

limitations. On one hand, recent studies have revealed that 

the wide gap between the objective forms of pre-training and 

the downstream task severely limits the utilization of the 
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Fig. 1.  The conceptual diagram of text augmentation and prompt tuning 

using large-scale language models. 

prior knowledge embedded in PLMs, which in turn degrades 

the model’s performance. On the other hand, most 

biomedical datasets used for training models often suffer 

from the issue of limited data or class imbalance due to the 

extreme amount of redundant information in biomedical 

documents, which causes a serious negative influence on 

model training. 

Recently, it has been suggested by some researchers that 

generative models, such as GPT-2, could be used to generate 

samples to address the issue of limited training data [7]. The 

experimental results have proved that this approach can 

alleviate the negative effects of insufficient data and class 

imbalance to some extent. However, we have observed that 

the low semantic similarity between the generated samples 

and the original samples makes it hard to express the 

classification information clearly. The introduction of a large 

number of generated examples results in massive noise being 

added to the dataset, which can seriously interfere with model 

training. 

To address the above challenges, we propose a novel DDI 

extraction approach based on prompt tuning and data 

augmentation (PTDA). Our approach leverages contextual 

word embedding substitution to generate instances based on 

the original sentences’ contextual information. This approach 

mitigates the adverse effects of insufficient data and class 

imbalance while allowing generated examples to maintain a 

high relevance with the original samples in semantics. 

Simultaneously, we further employ prompt tuning instead of 

fine-tuning to narrow the gap between pre-training and 

downstream tasks. The conceptual diagram of the paper is 

shown in Figure 1. 

The key contributions of our work can be summarized as 

follows: 

(a) This paper proposes a novel data augmentation

technique that leverages contextual word embedding

substitution supported by large-scale language models

to generate realistic text samples from a mixture of real

samples. The approach not only mitigates the adverse

effects of insufficient data and class imbalance but also

ensures that semantic similarity between generated

examples and original samples has existed forever, thus

reducing the information interference in the dataset

caused by introducing generated samples.

(b) We introduce prompt tuning into the domain of DDI

extraction and make the appropriate adjustment to the

relevant datasets and tasks so that the gap between the

pre-training phase and downstream task can be

narrowed to better unlock the potential of large-scale 

language models in the biomedical domain. 

(c) Without using any external resources and manual

annotation, our approach achieves a great improvement

in performance on the benchmark datasets DDI 2013,

ChemProt and DTIs, compared to the baseline models

in the paper.

II. RELATED WORK

The goal of the entity relation extraction task is to identify 

the subject, predicate, and object from the literature to 

construct triples. As a special type in the relation 

classification task, DDI extraction treats target drugs as 

subjects and objects, while the predicate refers to drug-drug 

interactions. Over the past decade, researchers have 

developed many excellent DDI extraction models due to the 

emergence of numerous biomedical datasets. So far, these 

models can be classified into two main categories: traditional 

machine learning-based approaches [8-11] and deep 

learning-based approaches [12-15]. 

Feature-based approaches are the most common among 

traditional machine learning. Typical features in the method 

include but are not limited to, word features, contextual 

features, syntactic features, etc. In 2015, Kim et al [16] first 

proposed an abundant feature-based method for DDI 

extraction, which fused multiple features as a relation 

representation for classification and achieved quite excellent 

success at that time. Later, Huang et al [17] employed a 

feature-based classifier combined with Support Vector 

Machine (SVM) and Long Short-Term Memory (LSTM) to 

extract DDI, reaching the best performance at the time. 

Despite all the approaches mentioned above having made 

significant research contributions, there are still obvious 

limitations: manual feature extraction is inefficient and 

overly dependent on researcher expertise. 

To cope with the challenges of traditional machine 

learning, deep learning techniques utilizing neural networks 

have emerged as a prominent research area in DDI extraction. 

In 2016, Liu et al [18] first achieved DDI extraction using a 

CNN model that transforms words into word vectors and 

combines them with location information as feature inputs, 

breaking the traditional method’s over-reliance on domain 

expertise in the feature selection phase. Subsequently, Liu et 

al. [19] proposed a dependency-based CNN model to extract 

DDI, since the CNN model disregards sentence-level 

syntactic information as well as long-range word dependency. 

The model uses the structure of the Dependency Parsing Tree 

(DPT) that incorporates the syntax dependencies between 

two distant words in the text during model training. In 

addition to syntactic dependencies, the study of DDI 

extraction has gradually been extended to include techniques 

such as attention mechanisms [20-21], text augmentation 

[22-23], and so on. With the support of various deep learning 

techniques, the model performance has become increasingly 

powerful. 

In 2018, Google launched BERT, which is a pre-trained 

language model that achieved the best performance in all 11 

NLP tasks. As PLMs are becoming more prevalent, 

researchers are also focusing on how to extract DDI by 

fine-tuning PLMs. Soon after, specific language models in 

the biomedical domain were presented, such as BioBERT 
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and BioGPT [24], which were trained on biomedical corpora 

and succeeded in DDI extraction tasks. However, with 

further study on the PLMs, researchers have found that there 

is a wide gap between the object form of pre-training and the 

downstream tasks, resulting in the ordinary fine-tuning not 

completely exploiting the power of the prior knowledge in 

the PLMs. 

To address this issue, researchers [25-26] have proposed a 

novel prompt-tuning approach that aims to bridge the gap 

between the pre-training and the downstream tasks. Chapter 

III provides a detailed discussion of the differences between 

ordinary fine-tuning and prompt tuning. 

Initially, many researchers tended to utilize manual 

prompts to direct pre-trained models toward downstream 

applications. Nevertheless, the experimental results have 

demonstrated that handcraft prompts are excessively reliant 

on large validation sets and are also inconsistent in 

performance. Sometimes, a change of a single word may lead 

to a drastic variance. Therefore, later researchers gradually 

started to focus on automatically constructing the prompt by 

employing continuous learnable parameters. On this basis, 

Liu et al. [27] proposed the P-Tuning model which achieved 

excellent outcomes in several natural language understanding 

tasks. Inspired by this, we make improvements to the 

construction of the prompts in P-Tuning. Considering the 

characteristics of the DDI extraction task, we further propose 

a DDI extraction model based on prompt tuning and data 

augmentation using contextual word embedding substitution, 

taking into account the data imbalance in the dataset. 

III. BACKGROUND

The relation classification dataset can be represented as 

{ , }D X Y= , where X is the set of examples and Y  is the 

set of relation labels. For each example 

1 2,{ , ,..., ,..., ,..., }s o nx w w w w w= , the goal of relation 

classification is to predict the relationship y Y between the 

head entity 
sw and the tail entity 

ow . 

A. Ordinary Fine-tuning on PLMs

In the previous fine-tuning process, it is necessary to

convert the given example 
1 2,{ , ,..., }nx w w w= into an input 

sequence 
1 2{[ ], , ,..., ,[ ]}nCLS w w w SEP  with a special 

token. Subsequently, the given PLM M encodes each token 

in the input sequence into corresponding hidden vectors 

[ ] 1 2 [ ]{ , , ,..., , }CLS n SEPh h h h h . For the downstream 

classification task, a special task head “[CLS]” is utilized to 

compute the probability distribution over the class set Y with 

the softmax function 
[ ]( | ) ( )CLSp x Softmax Wh b= + , where

[ ]CLSh  is the hidden vector of “[CLS]”,  W is a learnable 

matrix randomly initialized and b  is a learnable bias vector. 

The aim of fine-tuning PLM M is to optimize the 

cross-entropy loss of the model. 

B. Prompt tuning for PLMs

Prompt tuning aims to bridge the gap between pre-training

and the downstream task. The key is to construct a proper 

template ( )T  and label words V . For an input sequence x , 

we first utilize the template to map x  to the prompt input 

( )promptx T x= . The template must determine the position of 

the x  and the number of special tokens inserted. The V  

denotes the set of label words in the PLM M and the role of 

the mapper :Y V →  is to correspond the class labels in Y  

to the label words in V . In addition to retaining the original 

token in x , we also require at least one “[MASK]” to be 

added to ( )T x  for the M to predict the label word there. 

When PLM M  correctly predicts the masked position, we 

can depict the probability distribution of the masked token in 

V , that is, ([ ] ( ) | )promptp MASK y x= . 

Taking a simple binary sentiment classification task as an 

example, we can define the template 

( ) " [ ]"T It was MASK=  and then map an input sequence 

x to this template ( ) "    [ ]"T x x It was MASK= . Next,

utilizing the PLM M  to encode 
promptx , we can obtain the 

hidden vector of “[MASK]” and then compute a probability 

distribution ([ ] ( ) | )promptp MASK y x= , which captures 

the most appropriate word from the set of label words V to 

replace “[MASK]”. Here, we ignore searching label words 

and just assign positive and negative sentiment labels, such as 

( ) " "positive great →： or ( ) " "negative terrible →： . 

In summary, only depending on the prediction of PLM M  

for the masked word, we can accurately distinguish that the 

emotion expressed by instance x  is either “positive” or 

“negative”. 

Fig. 2.  The difference between the language masked model, ordinary fine-tuning and prompt tuning. 
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IV. METHODOLOGY

In this chapter, we present the details of the PTDA model. 

Sections A and B describe the relevant datasets and the 

corresponding data preprocessing operation. Section C shows 

how to apply contextual word embedding substitution to 

generate samples, mitigating the adverse effects of the data 

imbalance. The specific training program and optimization 

strategy are illustrated in sections D and F. 

A. Related Dataset

1) DDI 2013 Dataset

The DDI 2013 dataset consists of a manually annotated

corpus of single sentences, mainly from 792 texts in 

DrugBank and 233 abstracts in Medline, containing 18,520 

pharmacological substances and 5,028 DDIs [28]. 

Pharmacological substances in the dataset are divided into 

the following four categories: drug (generics), brand (trade 

drug), group (drug classes) and drug-N (unapproved active 

substances for human consumption). The drug-drug 

interactions in each sample are derived from the following 

four types: Advise (describing the DDI by recommendation 

or suggesting), Effect (describing the consequence of the 

pharmacological substance interaction), Mechanism 

(describing the way the interaction occurs), Int (not 

conveying any information about the DDI). In addition to this, 

a fake type “Negative” is also provided for neutral sentences. 

The specific instance of each type is the following: 

⚫ Advise: These increases should be considered when

selecting an oral contraceptive for a woman taking

atorvastatin.

⚫ Effect: Only ibogaine can enhance cocaine-induced

increase in accumulating dopamine.

⚫ Mechanism: Antacids increase the rate of absorption of

pseudoephedrine, while kaolin decreases it.

⚫ Int: Therefore, linezolid has the potential for interaction

with adrenergic and serotonergic agents.

⚫ Negative: Treatment of toxin A with [(14) C]-diethyl

revealed concentration-dependent labeling of histidine 

residues on the toxin molecules. 

The statistical results for the DDI 2013 dataset are 

presented in Table I. As the dataset contains only training and 

test datasets, we will randomly allocate 10% of the data from 

the training data as the validation dataset for model parameter 

adjustment. The statistics of the DDI 2013 dataset reveal a 

serious data imbalance, with a considerably larger number of 

negative examples than positive instances. Therefore, we 

decided to apply down-sampling on negative instances, 

following the previous work of Hong et al. [29] and Sahu et al. 

[30]. The down-sampling eliminates numerous negative 

instances and a few positive examples from the dataset. The 

statistics of the dataset after negative sample filtering are 

shown in Table II. 

2) ChemProt Dataset

The ChemProt dataset comprises PubMed abstracts that

annotate the interactions between chemical and protein 

entities [31]. In this study, we follow recommendations from 

the dataset developers to focus on classifying five high-level 

interactions: UPREGULATOR (CPR-3), 

DOWNREGULATOR (CPR-4), AGONIST (CPR-5), 

ANTAGONIST (CPR-6) and SUBSTRATE (CPR-9). The 

remaining types are marked FALSE and Table III provides 

statistics of the ChemProt dataset. 

The following are the examples of the five types: 

⚫ CPR-3: Mutation of arginine 228 to lysine enhances the

glucosyltransferase activity of bovine 1,4-galactosyl I.

⚫ CPR-4: PKC isoforms did show different sensitivity and

selectivity for down-regulation by I3A and phorbol

12-myristate 13-acetate (PMA) in Colo-205 cells.

⚫ CPR-5: The selective beta1AR antagonists’ atenolol

and metoprolol blocked isoproterenol-induce 

enhancement with apparent K(b) values of 85 +/- 36. 

⚫ CPR-6: Terfenadine and astemizole are chemically

unrelated to histamine H1-receptor antagonists.

⚫ CPR-9: Total vitamin B6 is abnormally high in autism,

consistent with previous reports of an impaired

pyridoxal-kinase for the conversion of pyridoxine and

pyridoxal to PLP.

⚫ FALSE: Discovery and optimization of Fc11a-2 as

inhibitors of NLRP3: a structural basis for the reduction

of albumin binding.

TABLE I 

ORIGINAL STATISTICS OF DDI 2013 DATASET. 

Instances Type #Train #Test 

Positive Advise 826 221 

Effect 1,687 360 

Mechanism 1,319 302 

Int 188 96 

Negative 23,665 4,712 

Total 27,685 5,691 

TABLE II 

STATISTICS OF DDI 2013 DATASET WITH NEGATIVE SAMPLES FILTERING. 

Instances Type #Train #Test 

Positive Advise 814 221 

Effect 1,592 357 

Mechanism 1,260 301 

Int 188 92 

Negative 8,987 2,049 

Total 12,841 3,020 

TABLE III 

STATISTICS OF CHEMPROT DATASET. 

Instances Type #Train #Dev #Test 

TRUE CPR-3 756 546 663 

CPR-4 2,227 1,091 1,655 

CPR-5 173 115 178 

CPR-6 229 199 292 

CPR-9 727 457 642 

FALSE 13,923 8,860 12,315 

Total 18,035 11,268 15,745 
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3) DTIs Dataset

The DTIs dataset was constructed by Hong et al. [29]. It

contains over 480k instances from nearly 20 million PubMed 

abstracts. Sentence labels are selected after aligning 

drug-target pairs based on DTIs facts in DrugBank. Sentence 

labels are divided into six types: substrate (the target acts 

upon the drug), inhibitor (a drug that binds to the target and 

impedes its function), agonist/antagonist (the drug that binds 

to the target and activates or blocks its biological response), 

unknown (the interaction of drug–target pair is exited, but the 

action mechanism is not reported in DrugBank), other (all the 

other types of interactions with fewer occurrences), and the 

fake type “NA”. 

Here are examples of the five types: 

⚫ Substrate: The objective of this study was to investigate

the safety, pharmacokinetics and pharmacodynamics of 

umeclidinium in patients with normal and deficient 

CYP2D6 metabolism. 

⚫ Inhibitor: Furthermore, sulfasalazine was found to be a

potent inhibitor of PCFT, suggesting that it is a risk

factor that would cause malabsorption of folate and also

MTX when co-administered in the treatment of

rheumatoid arthritis.

⚫ Agonist: Bromocriptine was ten times more potent and

pramipexole and ropinirole were ten times less potent at

the dopamine D2 than at the dopamine D3 receptor,

whereas pergolide was equipotent at the two receptors.

⚫ Unknown: Expression of each cDNA individually

yielded no detectable prenyltransferase activity;

however, co-expression of the two together produced

functional geranyl-diphosphate synthase.

⚫ Other: Homeric studies showed that the COOH-terminal

group of transmembrane helices (TMs), especially

TM17, is responsible for the specificity of nicorandil

for channels containing SUR2.

⚫ NA: Surface tension measurements suggest that the

mean time to minimum surface tension and the

minimum surface tension were greater in BAL from

mice exposed to MMC for 4 days.

To compare the performance of PTDA with the existing 

methods, the proportion of data in the training dataset, 

validation dataset, and test dataset is kept constant. Table IV 

shows the statistics of DTIs. 

B. Data Preprocessing

This section illustrates our method for data preprocessing.

The DDI 2013 dataset comprises instances that include a drug 

pair (e1, e2) and the corresponding interaction relation R . 

To collect more accurate information about the location and 

type of the entity, a pair of special tokens “<e1i>” and 

“</e1i>” is inserted around the first entity, where “1” denotes 

the first drug and “i” denotes the index of drug type. The 

correspondence between the index and the type of 

pharmacological substance is {1: drug, 2: brand, 3: group, 4: 

drug-N}. Similarly, a pair of special tokens “<e2i>” and 

“</e2i>” is added at the boundary of the second entity. 

In addition, we further substitute “DRUG1” and 

“DRUG2” for the entities, which can enhance the model’s 

generalization and avoid the influence of various drug word 

embedding. Take “ZEBETA should not be combined with 

other beta-blocking-agents.” as an example, where 

“ZEBETA” and “beta-blocking-agents” are the target entity 

pairs, which after the above data preprocessing will become: 

“<e11> DRUG1 </e11> should not be combined with other 

<e22> DRUG2 </e22>.” 

Since the ChemProt dataset focuses on the interactions 

between drugs and proteins, we replace specific drug and 

protein names with “DRUG” and “PROTEIN” for entity 

substitution. For example: 

“Further, <e1> DRUG </e1> pretreatment blocked <e2> 

PROTEIN </e2>-induced increase in permeability of 

mouse-lung microvessels.” 

C. Text Data Augmentation

When dealing with classification problems, it is common 

to encounter issues with class imbalance and insufficient 

training data in a dataset. Taking the DDI 2013 dataset as an 

instance, we observe that filtering the negative samples in the 

dataset does not eliminate the adverse effects of the above 

challenges. Table II shows that the filtered dataset still 

contains approximately twice as many negative examples as 

positive instances. Simultaneously, a wide gap in numbers 

appears between positive types. As an illustration, the 

number of “Int” types is only 188, substantially less than the 

size of “Effect” and “Mechanisms”, which directly leads to 

the trained model being much more sensitive to other types 

than to “Int” type. In other words, the probability of 

misidentifying “Int” rises dramatically. 

In previous work, Papanikolaou et al [7] proposed utilizing 

GPT-2 to generate samples to address the challenges of class 

imbalance and insufficient training data. The method 

involved fine-tuning the CPT-2 model on a subset of different 

types and then using the fine-tuned model to generate 

numerous examples of that class. Experimental results have 

demonstrated that this approach can partially mitigate the 

negative effects. However, the low quality of the generated 

instances results in a significant amount of noise 

accumulating in the dataset as the number of generated 

samples continuously grows, leading to a sharp decline in 

model performance.  

In this paper, we decided to abandon the generative models 

in favor of a pre-trained PubMedBERT, a language model 

TABLE IV 

STATISTICS OF DTIS DATASET. 

Instances Type #Train #Test 

Positive Substrate 1,810 18 

Inhibitor 2,622 26 

Agonist 925 11 

Unknown 2,835 28 

Other 616 10 

Negative 464K 4,733 

Total 473K 4,826 
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widely used in the biomedical domain, to synthesize the 

samples. All synthetic samples are constructed from the 

original sentences using contextual word embedding 

substitution, and the process is shown in Figure 3. 

The following are the specific steps of text data 

augmentation: 

⚫ Step 1: To synthesize training data, we split the training

dataset D  into n  subsets, where each subset 
nD only 

contains examples belonging to the relation type 
nR . 

⚫ Step 2: After introducing the data augmentation library

“nlpaug” [32], we choose PubMedBERT as the

underlying access model for “nlpaug” to provide

biomedical contextual information.

⚫ Step 3: We select an instance from the subset 
nD  and fix 

the target entity in the original sentence. With the 

support of “nlpaug”, it is easy to synthesize a new 

sample belonging to the relation type 
nR  by substituting 

words besides the fixed target entities based on 

contextual information provided by PubMedBERT. The 

detailed process is shown in Figure 3. 

⚫ Step 4: All generated samples are added to a new dataset

Dsynth , which together with the original dataset D

serves as the training data. 

  The majority of the instances in the DDI 2013, ChemProt, 

and DTIs datasets are sourced from the PubMed corpus. 

Meanwhile, PubMedBERT was pre-trained on the PubMed 

corpus, making it better suited for providing contextual 

information than other pre-trained language models when 

synthesizing samples. 

Table V displays the difference between the old sentence 

and the corresponding generated sample. Despite significant 

changes in words and sentence structures, the two remain 

remarkably similar in terms of semantic expression. This 

demonstrates that the new samples synthesized by using the 

contextual word embedding substitution, are successful in 

accurately conveying the original relational information 

between target entities. 

In addition to the method of synthesizing samples, it is also 

crucial to consider the size of the generated data. 

Papanikolaou et al. [7] argue that the generated number of 

goal relation type 
nR should be equal to the size of the 

corresponding subset 
nD multiplied by the ratio r , i.e.,

| | | |n nDsynth D r=  . From the experimental results, this 

approach can be of some purpose. However, in practice, 

maintaining the same ratio r  for different relation types can 

further worsen the effect of class imbalance, particularly 

when the value r is large, due to the wide gap in the size of 

various relation types. To clarify this issue, we continue to 

treat the DDI 2013 dataset as an example.  
For instance, there are 1,687 examples of the “Effect” type, 

but only 188 instances of the “Int” type. In this case, if we 

simply employ the same ratio (assuming 1.0r = ) to generate 

data, it will further widen the gap between the number of 

“Effect” and “Int”. This could result in the trained model 

being less sensitive to “Int” compared to the other types. 

To address this challenge, we propose to limit the number 

of instances generated from different relation types by 

considering the ratio between the subset 
nD size and the 

smallest subset 
minD  size. To be specific, we take the subset 

| |minD  as the criterion, the generated sample number of one 

relation type is calculated as the product of the size of the 

subset 
nD and ratio r , multiplied by the ratio of the 

Fig. 3.  An illustration of contextual word embedding augmentation. The Large-scale Language Model will replace the non-target entity part of the original 

instance to synthesize a new instance.  
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number
minD  to 

nD . Refer to Equation (1) for the specific 

formula. 

min
min

| |
| | | | | |

| |
n n

n

D
Dsynth D r D r

D
=   =      (1) 

From Equation (1), we can see that the way to calculate the 

number of new instances from each relation type is equal to 

the size of the smallest subset | |minD  multiplied by the ratio 

r . Therefore, the sum of the generated data in a dataset is 

equal to: 

min| | | |Dsynth D r n=    (2) 

Now, we summarize the operational procedure of text data 

augmentation in Algorithm 1 to assist the reader in 

comprehending the entire process more clearly. 

Algorithm 1: Text Data Augmentation 

Input: dataset D , relation set L , ratio r ; 

Output: generated dataset Dsynth  

1: for each DDI type 
nR L do 

2:    subset { | _ ( ) }n nD s RE type s R= = ; 

3:    calculate generated data size | | | |n minDsynth D r=  ; 

4:    set counter 0i = ; 

5:    while | |ni Dsynth do 

6:    Randomly select sentence 
ns D ; 

7:       Use contextual word embedding substitution for s  to generate 's ; 

8:  
nDsynth append 's ; 

9:   i + + ; 

10: end for 

11: Obtain the 
1 ... nDsynth Dsynth Dsynth=   ; 

12: return Dsynth ; 

D. Constructing Prompt Template

In this section, we illustrate how to employ improved

P-tuning in DDI extraction tasks. Given PLM M and a

sequence of discrete input tokens 
1 2,{ , ,..., }nx w w w=  with 

corresponding labels y Y , the role of the prompt P  is to 

organize the text input x , the label y  and itself into a 

template ( )T x . Taking the sentence “<e11> DRUG1 </e11> 

should not be combined with other <e22> DRUG2 </e22>.” 

as the example, a traditional discrete template in the DDI 

classification task is illustrated to: 

0:( ) { ;[ ];[ ]}

"     1  2  [ ]"

nT x x P MASK

x the relation of DRUG and DRUG is MASK

=

=
 (3) 

Where x  is the original input sequence, 
0:[ ]nP  is prompt 

and “[MASK]” is the predicted target. The flexibility of 

prompt structure and location allows us to employ our 

linguistic intuition to design prompts and insert them 

anywhere in the sentence. However, traditional handcrafted 

prompt heavily relies on manual labor and their performance 

is also extremely unstable. Sometimes, a small change in 

word or token’s location for prompt can cause a drastic 

variety in model performance. 

Therefore, we have adopted the idea of P-tuning to design 

the prompts. Compared to traditional discrete prompts, we 

choose vector representations in continuous space as prompts 

and add some task-related anchor tokens (such as “drug1” 

and “drug2” in Figure 4), which convert manual prompt 

construction into continuous parameter optimization. The 

specific flow is shown in Figure 2. To begin with, we design 

the prompt template ( )T x  with the details given in Equation 

(4): 

0: 4:( ) { ;[ ]; 1;[ ]; 2;[ ]}n i nT x x P DRUG MASK DRUG P+= (4) 

Where “drug1” and “drug2” are artificially inserted anchor 

tokens related to the task, facilitating the model to better 

understand the task itself. In contrast to traditional discrete 

prompts, where [ ]iP  is just a static token in V  that refers to 

the vocabulary of a pre-trained language model M , but we 

view [ ]iP  as a pseudo-token and apply the Prompt-Encoder 

to map the template ( )T x  into: 

0 4( ( )) { ( ), ... , ( 1), ([ ]), ( 2), ... }i i ne T x e x h h e DRUG e MASK e DRUG h h+= (5) 

where (0 )ih i n  are trainable embedding tensors. This 

enables us to search for better continuous prompts with the 

assistance of the downstream loss function Loss , which may 

extend beyond the expression in the original vocab V  of the 

PLM M . Equation (6) illustrates the process of optimizing 

the continuous prompts (0 )ih i n  . 

TABLE V 

COMPARISON BETWEEN ORIGINAL SENTENCES AND CORRESPONDING GENERATED INSTANCES. 

Dataset 

(Relation Type) 
Original sentences/Generated sentences 

DDI 2013 

(Advise) 

<e12> DRUG1 </e12> and Vitamin_A are not recommended to the sick person getting the <e22> DRUG2 </e22>. (Original) 

<e12> DRUG1 </e12> and AP could have avoided for adults requiring <e22> DRUG2 </e22>. (New) 

ChemProt 

(CPR-3) 

Mutation of arginine 228 to <e1> DRUG </e1> enhances the <e2> PROTEIN </e2> activity of bovine 

beta-1,4-galactosyltransferase I. (Original) 

Within coding sequence encoding <e1> DRUG </e1> improves its <e2> PROTEIN </e2> performance under 

aether-1,4-galactosyltransferase system. (New) 

DTIs 

(Substrate) 

The objective of this study was to investigate the safety, pharmacokinetics and pharmacodynamics of <e1> DRUG1 </e1> in 

patients with normal and deficient <e2> DRUG2 </e2> metabolism. (Original) 

In order to better study and investigate <e1> DRUG1 </e1> the chemical, physical properties of <e2> DRUG2 </e2> in different 

individuals. (New) 
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0:  ( ( , ))nh argmin Loss M x y


=   (6) 

Additionally, to associate the prompts embeddings 

(0 )ih i n   with each other rather than an independent 

vector, we choose a bidirectional long-short-term memory 

network (Bi-LSTM) with ReLU-activated two-layer 

multilayer perceptron (MLP) to minimize their discreteness. 

Formally, the input embeddings '(0 )ih i n   to the PLM 

M are derived from: 

'

0:= ( ( ))i nh MLP Bi LSTM P−          (7) 

E. Optimization Strategy

The Masked Language Model (MLM) is frequently used

during the pre-training phase. This involves randomly 

masking some tokens in the input sequence and then allowing 

the model to predict the corresponding “[MASK]” section. 

The goal of the training is to enable the model to gradually 

comprehend natural language by repeating the above process. 

Please refer to Figure 1(a) for a detailed description of the 

entire process. 

Prompt tuning shares similarities with MLM, we usually 

employ a mapping function :Y V →  to bridge the set of 

classes and set of label words during the training. In some 

studies, researchers have also called the function   as a 

“verbalizer”. With the mapping function  , we can 

formalize the probability distribution over Y  with the 

probability distribution over V  at the masked position: 

( | ) ( ( ) | ( ))p y x p y T x=         (8) 

The final class label can be determined by predicting the 

masked word and mapping it to the class set using a 

verbalizer  . Subsequently, we choose the Cross-Entropy as 

a loss function to optimize the objective, which is depicted in 

Equation (9): 

[ ]

1
log ( | )

| |
MASK x X

J y p y x
X 

= −    (9) 

V. EXPERIMENTS

In this chapter, we conducted a series of experiments on 

three standard relation extraction datasets. 

A. Metrics

Same as the previous research, we evaluate the model

performance with Precision, Recall and F1-micro. The 

calculations can be obtained from Equations (10) - (12): 

TP
Precision

TP FP
=

+
   (10) 

TP
Recall

TP FN
=

+
 (11) 

2
1

Precision Recall
F micro

Precision Recall

 
− =

+
     (12) 

where TP denotes the number of samples correctly 

predicted in positive cases, FP denotes the number of 

samples incorrectly predicted in negative cases, FN denotes 

the number of samples incorrectly predicted in positive cases 

and F1-micro is used for a comprehensive evaluation of 

Precision and Recall in the classification task. 

B. Experimental Settings

We benchmarked PTDA on three datasets, employing

SciFive-Large [33] as the PLM for prompt tuning. In the 

experiments, the majority of the hyperparameters are kept 

consistent with the previous work. The significant parameter 

values can be obtained in Table VI. 

TABLE VI 

HYPERPARAMETER SETTINGS. 

Parameters DDI 2013 ChemProt DTIs 

Epochs 12 18 25 

Batch size 16 24 32 

Learning rate 3e-5 2e-5 2e-4 

Optimizer Adam Adam Adam 

Dropout 0.3 0.3 0.4 

Generate data ratio 2 3 5 

Max length 256 256 256 

Fig. 4.  The specific processes of predicting the interaction between “DRUG1” and “DRUG2” by prompt tuning. 
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C. Comparison with Baselines

So far, many DDI extraction methods have been proposed.

We selected some classic approaches as the baseline to 

compare with PTDA on both DDI 2013, ChemProt and DTIs 

datasets. 

Table VII-IX presents the performances of PTDA and 

baselines for biomedical relation extraction on various 

datasets. We can observe that on the DDI 2013 dataset, the 

Precision, Recall and F1-micro of PTDA reach 85.7%, 

84.1%, and 84.9% respectively, outperforming all baseline 

methods. Meanwhile, on the ChemProt dataset, the PTDA 

also obtains the best results compared to other baseline 

methods, with Precision, Recall and F1-micro of 82.3%, 

77.4% and 79.8%, respectively. In addition to the DDIs 2013 

and ChemProt dataset, we compared the PTDA with other 

baseline models on the DTIs dataset. Table IX shows the 

performances of PTDA and other baseline models. 

Compared with other exited methods, PTDA achieves the 

highest F1-score and AUPRC. 

D. Effect of Generated Data Size

This section aims to examine how varying amounts of

generated data affect PTDA performance. From our detailed 

description of contextual word embedding substitution in 

Section IV.C, it is clear that all the contextual information 

used to synthesize the examples is derived from a priori 

knowledge that PubMedBERT gained during pre-training. In 

an ideal scenario, we can utilize contextual word embedding 

substitution to continuously generate data and expand the 

training dataset size.  

However, this procedure is not flawless. The prior 

knowledge embedded in PubMedBERT is finite, and as the 

amount of generated data increases, the valuable contextual 

information gradually diminishes. This could result in the 

homogenization of the generated samples or even the 

introduction of noisy data. Consequently, the model may no 

longer be able to learn significant information from the 

training data. 

Therefore, our objective is to determine the number of 

generated samples, in other words, to search for the optimal 

ratio r . In this process, if the value of r  is too small, the 

improvement in model performance will be insignificant. But, 

if the value of r  is excessively large, the model risks being 

affected by noise. To gain empirical insight into the above 

question, we designed a comparative experiment, which 

TABLE VII 

COMPARISON WITH LITERATURE RESULTS ON DDI 2013 DATASET. “-” INDICATES EXPERIMENTAL RESULTS ARE NOT PUBLISHED WITH SOURCE PAPER AND 

THE REST ARE FROM THE ORIGINAL PAPER. THE BEST RESULT ARE BOLD. 

Methods Pre (%) Rec (%) F1 (%) 

Based on CNN/RNN SCNN [34] 69.1 65.1 67.0 

Joint AB-LSTM [30] 73.4 69.7 71.5 

Position-aware LSTM [35] 75.8 70.4 73.0 

Atten Bi-LSTM [36] 78.4 76.2 77.3 

Based on Fine-tuning DARE [7] 82.0 74.0 78.0 

ELECTRA-Med [37] 80.1 78.2 79.1 

Character-BERT [38] - - 80.4 

Multiple-entity-Att-BioBERT [39] 81.0 80.9 80.9 

Based on Prompt tuning PTDA 85.7 84.1 84.9 

TABLE VIII 

COMPARISON WITH LITERATURE RESULTS ON CHEMPROT DATASET. “-” INDICATES EXPERIMENTAL RESULTS ARE NOT PUBLISHED WITH SOURCE PAPER AND 

THE REST ARE FROM THE ORIGINAL PAPER. THE BEST RESULT ARE BOLD. 

Methods Pre (%) Rec (%) F1 (%) 

Based on CNN/RNN SVM + Deep-Learning [40] 72.7 57.4 64.1 

Atten-RNN [41] 65.4 64.8 65.2 

Deep-Word-Representation [42] 67.0 72.0 69.4 

ELECTRA-Med [38] 75.5 70.7 72.9 

Based on Fine-tuning DARE [7] 79.0 68.0 73.0 

NCBI_BERT [43] 73.4 75.5 74.4 

BioBERT [6] 77.0 75.9 76.5 

KeBioLM [44] - - 77.5 

Based on Prompt tuning PTDA 82.3 77.4 79.8 

TABLE IX 

THE RESULTS ON DTIS DATASET. EXPERIMENTAL RESULTS ARE FROM THE 

ORIGINAL PAPER. THE BEST RESULT ARE BOLD. 

Methods F1 (%) AUPRC (%) 

BERE-AVE [29] 46.0 38.4 

BERE-POOL [29] 57.9 51.7 

BERE [29] 62.5 52.4 

EGFI [1] 71.2 58.1 

PTDA 72.1 60.3 
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utilized the training data from the different datasets to 

construct a corresponding size of new samples according to 

different ratios r . 

Figure 5 presents the test results for different ratios. It is 

obvious that the PTDA achieves the best performance on 

both the DDI 2013, ChemProt and DTIs datasets, when 

2013 2DDIr = ,  3ChemProtr = and 5DTIsr = . The experimental 

result supports our assumption that additional data does not 

necessarily enhance the classifier performance, since the 

massive noisy data seems to cause adverse effects on model 

training. 

E. Comparison of Prompt Template

Template construction is the key to prompt tuning. An

appropriate template can make better use of a priori 

knowledge embedded in the pre-trained language model and 

enhance the downstream task’s performance.  

At present, there are three mainstream template types: 

Manual-Template (the prompts are designed entirely by 

handcraft), Soft-Template (the prompts contain only 

continuous learnable parameters) and Mixed-Template (the 

prompts include both handcrafted tokens and continuous 

learnable parameters). To test the performance of different 

templates, we designed six templates based on the 

characteristics of each template type. The PTDA constructs 

input sequences for prompt tuning according to the following 

templates. The test results are listed in Table X. 

We observe that the templates with continuous learnable 

parameters all outperform the handcraft templates. This 

phenomenon implies that the prompts with learnable 

parameters can automatically optimize the training process to 

better match the downstream tasks. Besides, we also find that 

adding a few anchor tokens to the prompt can help the model 

better understand the task. For instance, on the DDI 

extraction task, we add “DRUG1” and “DRUG2” as anchor 

tokens and insert the predicted “[MASK]” in between them. 

These operations make the model more biased to learn the 

association between the two drugs, thus reaching the purpose 

of classifying drug interactions. 

F. Choice of Pre-trained Language Model

Better performance in downstream tasks can be reached by

fully exploiting the prior knowledge in the pre-trained model 

during prompt tuning.  

There are some variations in the prior knowledge 

embedded in pre-trained language models, due to differences 

in the training method and training corpus. In order to seek 

the pre-training model that best meets the task requirements, 

we selected some mainstream pre-trained models in the 

biomedical domain for the experiments, such as SciBERT 

[45], BioBERT, PubMedRoBERTa [46], and SciFive. The 

comparison results are published in Table XI. 

We observe that the “Large” version of each pre-trained 

model outperforms the corresponding “Base” version in 

performance. We believe that it is attributed to the greater 

number of trainable parameters in the “Large” version, which 

embeds more prior knowledge in the model. Secondly, it is 

confirmed that the SciFive exhibits the best overall 

performance among the four biomedical domain-specific 

models. 

TABLE X 

COMPARATIVE RESULTS OF PRECISION, RECALL AND F1-MICRO ON DDI 2013 AND CHEMPROT DATASETS UTILIZING DIFFERENT PROMPT TEMPLATES. “[X]” 

INDICATES THE ORIGINAL INPUT, SUCH AS “<E11> DRUG1 </E11> SHOULD NOT BE COMBINED WITH OTHER <E22> DRUG2 </E22>.”, “[P]” IS A CONTINUOUS 

LEARNABLE PARAMETER AND “[MASK]” REFERS TO THE PREDICTED TARGET. THE BEST RESULTS ARE BOLD AND THE SECOND BEST OVERCOMES ARE 

ADDED UNDERLINES. 

Template 

Type 
Input Example 

DDI 2013 ChemProt DTIs 

Pre (%) Rec (%) F1 (%) Pre (%) Rec (%) F1 (%) Pre (%) Rec (%) F1 (%) 

Manual- 

Template 

[CLS] [X], the relation of DRUG1 

and DRUG2 is [MASK] [SEP]. 
80.2 77.5 78.8 78.4 73.4 75.8 68.7 65.0 66.8 

[CLS] [X], the DRUG1 [MASK] 

the DRUG2 [SEP]. 
78.5 83.5 80.9 76.8 77.4 77.1 70.1 66.4 68.2 

Soft- 

Template 

[CLS] [X], [P] [P] [P] [P] [P] [P] 

[MASK] [SEP]. 
80.4 82.2 81.3 76.1 79.4 77.7 70.2 67.5 68.8 

[CLS] [X], [P] [P] [P] [MASK] 

[P] [P] [P] [SEP].
83.4 81.6 82.5 81.9 74.8 78.2 68.1 70.8 69.4 

Mixed- 

Template 

[CLS] [X], [P] [P] DRUG1 and 

DRUG2 [P] [P] [MASK] [SEP]. 
84.1 83.6 83.8 79.2 77.8 78.5 72.9 70.3 71.6 

[CLS] [X], [P] [P] DRUG1 

[MASK] DRUG2 [P] [P] [SEP]. 
85.7 84.1 84.9 82.3 77.4 79.8 69.8 76.7 73.1 

Fig. 5.  F1-micro of PTDA on the DDI 2013, ChemProt and DTIs datasets 

with different ratios. 

IAENG International Journal of Computer Science

Volume 51, Issue 5, May 2024, Pages 463-476

 
______________________________________________________________________________________ 



G. Ablation Study on Text Data Augmentation

To better understand the specific contribution of

contextual word embedding substitution to generate samples, 

we designed two experiments, single P-Tuning and P-Tuning 

+ GPT-2, to compare with our proposed PTDA. Here, single

P-Tuning means relying only on prompt tuning for the

pre-trained language model to classify biomedical relations

without any text data augmentation operations. The P-Tuning

+ GPT-2 suggests that we first generate massive training data

using the GPT-2 and then classify DDI via prompt tuning.

For generating data with GPT-2, we follow the work

presented by Papanikolaou et al. [7]. We aim to address two

issues through the above experiment. The first issue concerns

the effect of text data augmentation on the model. The second

is to detect the distinction between various approaches to

generate data.

The experimental results are displayed in Figure 6. We 

observe that single P-Tuning performs the worst on both 

datasets, indicating that generated samples can alleviate the 

negative effects of data imbalance and boost model 

performance. Additionally, we notice that PTDA performs 

better than the P-Tuning + GPT-2, which points to the fact 

that generated data using contextual word embedding 

substitution is higher quality and more beneficial for model 

training than data generated using GPT-2. 

In addition to evaluating the overall dataset, we also 

analyzed the alterations from each relation type before and 

after applying text data augmentation, to further explore the 

role of the contextual word embedding substitution. Taking 

the DDI 2013 dataset as an example, we recorded the 

evaluation results of the four positive types under different 

methods, the details are presented in Table XII. 

By comparing these metrics, we observe that each type’s 

score increased to some degree with data augmented 

technique. The “Int” type exhibited the most significant boost 

with a surprising 8.8% growth in F1-micro. The phenomenon 

can be attributed to the fact that the high-quality data 

constructed by employing contextual word embedding 

substitution greatly alleviates the severe lack of the “Int” type 

in the original dataset, thus boosting the model’s ability to 

recognize the “Int” type. Simultaneously, it is also worth 

mentioning that the metric of the other three types displays a 

lesser growth with data augmentation compared to the “Int” 

type. With careful analysis, we concluded that if the size of 

one type in the dataset is relatively adequate, the benefit of 

utilizing data augmentation to generate instances to increase 

their number consistently will gradually diminish. 

TABLE XI 

COMPARISON RESULTS OF PRECISION, RECALL AND F1-MICRO FOR VARIOUS PRE-TRAINED MODELS IN THE BIOMEDICAL DOMAIN ON THE DDI 2013 DATASET 

AND CHEMPROT DATASET. THE BEST RESULTS ARE BOLD AND THE SECOND BEST ARE ADDED UNDERLINE. 

Dataset Metrics 
Base Large 

BioBERT PubMedRoBERTa SciFive SciBERT BioBERT PubMedRoBERTa SciFive 

Pre (%) 80.9 83.9 83.8 81.7 84.3 85.6 85.7 

DDI 2013 Rec (%) 83.5 81.7 84.6 84.5 80.2 81.9 84.1 

F1 (%) 82.2 82.8 84.2 83.1 82.2 83.7 84.9 

Pre (%) 73.3 74.3 80.9 82.5 79.8 76.4 82.3 

ChemProt Rec (%) 77.2 79.0 76.6 74.5 74.8 79.5 77.4 

F1 (%) 75.2 76.6 78.7 78.3 77.2 77.9 79.8 

Pre (%) 69.8 69.2 70.1 68.3 72.6 73.6 69.8 

DTIs Rec (%) 70.4 72.7 69.9 75.1 69.7 70.9 76.7 

F1 (%) 69.2 70.9 72.3 71.5 71.1 72.2 73.1 

Fig. 6.  The performances of different text augmentation methods on three datasets. 
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H. Error Analysis

In this section, we have made a similar effort to Zhu et al.

[39], presenting a normalized confusion matrix to analyze 

classification results. The color density indicates the 

percentage of instances, so that we can see the percentage of 

misclassified instances. Our goal is to summarize the reasons 

for data misclassification by observing the final results. This 

will help us improve the model’s performance in future 

studies. As an example, the DDI 2013 dataset’s test results 

are still referenced, and Figure 7 shows the corresponding 

normalized confusion matrix. 

According to the displayed results, we can roughly group 

the misclassified samples into three categories: 

(1) Some samples in each positive type are incorrectly

predicted as negative type. For this error, we believe that the 

main reason is too many negative samples in the training set. 

In our earlier work, we have utilized data augmentation 

techniques to mitigate the adverse effects of data imbalance 

to some extent. However, there are still substantially more 

negative samples than positive ones, which leads to the 

classifier being less sensitive to the positive samples after 

training, thus causing misclassification. 

(2) A few samples in the negative type are also

misclassified into the positive types. Through examining 

these negative samples, we discovered that they typically 

include one or more relation trigger words, similar to those 

appearing in positive classes. This similarity results in the 

model making incorrect predictions. 

(3) So many “Int” type instances are wrongly classified as

“Effect” type. The normalized confusion matrix shows that 

the PTDA model misclassifies approximately 40% of “Int” 

samples as “Effect” type. Upon careful comparison, we find 

that these examples contain some keywords that are similar to 

the “Effect” type, such as the sentence “conversely, <e10> 

diethylpropion </e10> may interfere with <e22> 

antihypertensive </e22> (i.e., guanethidine, a-methyldopa).”, 

where the word “interfere” serves as a significant relation 

trigger in the “Effect” type. Consequently, the model may 

easily misclassify a similar sentence as the “Effect” type. 

VI. CONCLUSIONS

In this paper, we present a novel approach (PTDA) for 

DDI extraction based on prompt tuning and text data 

augmentation techniques. The method can not only utilize 

contextual word embedding substitution to generate 

high-quality samples to mitigate the adverse effects of 

insufficient data or class imbalance, but also better exploit the 

role of prior knowledge in biomedical pre-trained language 

models. Test results on three relation classification datasets 

demonstrate that PTDA significantly outperforms the 

baselines without manual annotation and the introduction of 

extra knowledge. 

In the future, we plan to introduce some external 

knowledge as a supplement to our current work, such as the 

molecular structure of drugs, artificial annotation of drug 

action, and so on. We hope to further boost the performance 

of the model by incorporating additional knowledge. 
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