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Abstract—Both constrained state estimation and constrained
reference tracking could be formulated as optimization prob-
lems, and the symmetry between these two problems could be
shown. As variables in the stochastic model, both the mean of
process noise and the mean of measurement noise do not have to
be zero. The main contributions of this paper are that we take
the mean of process noise and the mean of measurement noise,
which do not have to be zero, and show the symmetry between
constrained state estimation and constrained reference tracking
for this case. In other words, we study the symmetry between
state estimation and reference tracking with an additional
constraint on the measurement noise and the process noise. By
this symmetric relationship, the constrained state estimation
problem can be solved as a constrained reference tracking
problem, and vice versa, despite the presence of more general
process and measurement noise.

Index Terms—estimation, optimal control, constraints, track-
ing systems, noise.

I. INTRODUCTION

CONTROL and estimation theories can be applied in
many fields, along with the development of science

and technology with an increasing variety and complexity
of problems. Estimation problems occur in many fields,
including chemistry, physics, geology, mining, and trans-
portation, to name a few. Some applications of estimation are
the estimation of malaria mortality in a developing country
[1], the estimation for a Dothan model [2] and hyperbolic
model [3], the estimation of a regression curve [4], and
applications to hydrology assessment [5]. In these fields,
optimal control can also be applied to solve several problems,
such as applications of tracking control for mobile robots
[6], agricultural vehicles [7], and vehicle slip ratio based on
speed tracking [8]. Tracking control can also be applied for
magnetic levitation systems [9], intelligent tracing cars [10],
six-rotor UAVs [11], and moving ground targets [12].

Some research has been conducted on the relationship of
these two problems, control and estimation problems. For
linear systems and problems without constraints, Kailath et
al. investigated the relationship between these problems [13].
A problem without constraints here means that there is no
limit value for every variable in the problem.

Control and estimation problems are generally problems
with constraints on the variables with respect to particular
regions. The relationship between constrained estimation and
control problems was investigated by Goodwin et al. in
[14], [15], [16], in which each of the control and estimation
problems is formulated as an optimization problem.
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In [14] and [15], both means of measurement noise and
process noise are zero, while in [16], they do not have to be
zero on each time step. Moreover, in [14] and [16], they
assumed that the process noise is limited in a particular
region. Meanwhile, in [15], the limitation value is applied
not only in the process noise but also in the initial state and
the measurement noise. Using the Lagrangian duality theory
[17], estimation problems can also result in control problems.
In this case, the estimation problem is a constrained problem,
whereas the control problem is unconstrained.

In [16], state estimation problem as a primal problem,
while control problem as a dual problem. Then, it was shown
that a duality relation between these two problems is written
in a theorem. In [16], the symmetry between these two
problems was also discussed, known as a connection of the
LQR (linear quadratic regulator) and linear quadratic state
estimation problems. The symmetry in [16] was illustrated
in primal and dual problem configurations.

The duality between these problems (estimation and con-
trol) allows that if we have a control problem, we can solve
that problem by solving a particular estimation problem with
a duality relationship with that control problem, and vice
versa. Moreover, the formulation of this duality results in the
optimizers of both problems being the same, as mentioned in
[14] and [15]. Furthermore, a constrained estimation problem
is symmetric to an unconstrained control problem in which
constraints are not preserved.

The existence of constraints on these problems was further
investigated by Mare and Dona [18], who discussed reference
tracking problems as control problems, which differs from
the discussions by Goodwin et al. in [14], [15], [16], who
considered them as linear quadratic regulator (LQR) prob-
lems. The constrained reference tracking problem discussed
by Mare and Dona [18] is symmetric with the constrained
estimation problem. The symmetry property in this problem
preserves the existence of constraints.

By the symmetric relationship of both constrained refer-
ence tracking and constrained state estimation, solving one
problem can also solve the other. If there is a constrained
estimation problem, then the reference tracking problem that
is symmetric with the constrained estimation problem can
be solved, and vice versa. In addition, we can solve a
constrained estimation problem by solving the constrained
reference tracking problem that is symmetric with the origi-
nal problem.

Furthermore, the symmetry between these problems (con-
strained reference tracking and constrained estimation) al-
lows the algorithms and methods that apply to one problem
to be used for other problems. It becomes interesting in terms
of the development of control and estimation theories.

The duality between estimation and control problems and
the symmetry between estimation and reference tracking
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problems is an introduction to further study of the theory,
as reported in [19], [20], [21], [22]. Muller et al. in [19]
investigated the duality and symmetry between constrained
estimation and control problems with more general con-
straints on the initial state, process noise, and measurement
noise. In [20], Zhang and Song proposed a new estimator
for multiplicative noise systems and the duality of control
for it. They then applied this theory to package throwing
and multiple input delay systems. Song et al. in [21] studied
the optimal linear estimation and its duality for multiplica-
tive noise with time-delay systems. In [22], Song and Yan
investigated the duality between state estimation and linear
quadratic tracking for time-delay systems. Then, in 2018,
using duality between estimation and control, Semushin et
al. in [23] constructed further array designs of controller
re-optimization algorithms. Gutierrez-Pachas and Costa in
[24] studied the linear quadratic problem for time-reversed
Markov jump parameters in the systems. The duality in this
problem is with the filtering of Markov jump linear sys-
tems. A review of duality between linear quadratic regulator
and linear estimation problems is well-written in [25], for
discrete-time models.

Furthermore, this duality develops the similarity between
model predictive control (MPC) and moving horizon estima-
tion (MHE). One application of MHE is temperature distri-
bution problems for fluid catalytic cracking units (See [26]).
MHE and nonlinear MPC can also be applied in autonomous
agricultural vehicles [27]. One application of optimal control
and state estimation is in the periodic epidemic model as in
[28] and in population dynamics as in [29], respectively. In
[30], the combination of MHE and MPC can be applied to
indoor air grade and power control in construction.

The primary contributions of this article are that we take
both the mean of process noise and mean of measurement
noise, which do not have to be zero, and we show the sym-
metry between constrained state estimation and constrained
reference tracking for this case. In other words, we study the
symmetry between state estimation and reference tracking
with an additional constraint on the measurement and process
noise. In this paper, we generalized results in [18] that take
both the mean of process noise and the mean of measurement
noise as zero.

Symmetry relation in this paper can help solve a problem
with the existence of disturbances. It is essential to investi-
gate because, as mentioned in [31], for many applications,
the system is not only with zero mean Gaussian disturbances
but also with non-zero mean non-Gaussian disturbances.
An example of a system with these disturbances is the
aerodynamic parameters measurement of aerial automobile
problem [31].

We arrange the structure of the paper as follows. In the
second and third sections, we present state estimation and ref-
erence tracking along with formulations of their optimization
problems. In the fourth section, we discuss the symmetry
between state estimation and reference tracking with the
presence of a more general process and measurement noise.
We present numerical examples in the fifth section. Finally,
we draw our conclusions in the sixth section.

II. STATE ESTIMATION

An estimation problem is a problem of estimating an
unknown value based on available data. Estimation prob-
lems for deterministic systems are found in [32] and [33].
Estimation problems for stochastic systems can be done
using the Kalman filter by minimizing the covariance of
the estimation error [34]. This paper discusses an estimation
problem for stochastic systems that contain process noise and
measurement noise variables.

For a detailed explanation of the original constrained state
estimation, we refer to the work of Mare and Dona [18] for
the discrete linear state space equation given by:

x(k + 1) = Aex(k) +Bew(k) (1)
y(k) = Cex(k) (2)

v(k) = y(k)(d) − Cex(k) (3)

where x(k) ∈ Rnx is the state variable, w(k) ∈ Rnw is the
process noise, y(k) ∈ Rny is the true output, y(k)(d) ∈ Rny

is the measured output, and v(k) ∈ Rny is the measurement
noise. Here Ae, Be, and Ce are the constant matrixes with
the sizes nx × nx, nx × nw, and ny × nx, respectively.

In the Model (1)-(3), x(0), w(k), and v(k) have probabil-
ity density functions in Equation (4)-(6), respectively. They
are independent and identically distributed with a truncated
Gaussian distribution (See [35] for a detailed explanation of
truncated Gaussian distribution).

pW (w(k)) =
exp{− 1

2
(w(k)− µw)TQ−1

e (w(k)− µw)}∫
Ωw

exp{− 1
2
(α− µw)TQ−1

e (α− µw)}dα
, w(k) ∈ Ωw

0, others,
(4)

pV (v(k)) =
exp{− 1

2
(v(k)− µv)TR−1

e (v(k)− µv)}∫
Ωv

exp{− 1
2
(α− µv)TR−1

e (α− µv)}dα
, v(k) ∈ Ωv

0, others,
(5)

pX0(x(0)) =
exp{− 1

2
(x(0)− µ(e)

0 )TP−1
e(0)(x(0)− µ(e)

0 )}∫
Ωx(0)

exp{− 1
2
(α− µ(e)

0 )TP−1
e(0)(α− µ

(e)
0 )}dα

, x(0) ∈ Ωx(0)

0, others.
(6)

Here, Qe, Re, and Pe(0) are a positive definite matrix or
positive constants; Ωw ⊆ Rnw , Ωv ⊆ Rnv , and Ωx(0) ⊆ Rnx

are nonempty sets. Parameters µw, µv , and µ
(e)
0 above are

the mean of process noise, measurement noise, and initial
state, respectively.

Then, some vectors are defined by:

x =


x(1)
x(2)

...
x(N)

 , x̂ =


x̂(1)
x̂(2)

...
x̂(N)

 , w =


w(0)
w(1)

...
w(N − 1)

 ,

ŵ =


ŵ(0)
ŵ(1)

...
ŵ(N − 1)

 , v =

 v(1)

v(2)
...

v(N)

 , v̂ =


v̂(1)
v̂(2)

...
v̂(N)

 ,
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y =


y(1)
y(2)

...
y(N)

 , y(d) =


y(1)(d)

y(2)(d)

...
y(N)(d)

 ,
where x̂, ŵ, and v̂, respectively, are vector estimations x, w,
and v.

Following the work presented in [14], [15], and [16], the
state estimation problem can be written as the following
minimization problem, as reported in [18]. Given the data
y(d), µ(e)

0 , µw, and µv , solve the following problem:

Pe′

N :V OPT
N (µ

(e)
0 , µw, µv, y(d))

= min
x̂(N)

V ∗N (x̂(N), µ
(e)
0 , µw, µv, y(d)) (7)

V ∗N (x̂(N), µ
(e)
0 , µw, µv, y(d))

= min
ŵ

VN (x̂(N), µ
(e)
0 , µw, µv, y(d), ŵ) (8)

such that:

x̂(k) = A−1e x̂(k + 1)−A−1e Beŵ(k)

for k = 0, 1, 2, . . . , N − 1, (9)
ŵ(k) ∈ Ωw for k = 0, 1, 2, . . . , N − 1, (10)

v̂(k) = ydk − Cex̂(k) ∈ Ωv for k = 1, . . . , N, (11)
x̂0 ∈ Ωx(0), (12)

where

VN (x̂(N), µ
(e)
0 , µw, µv, y(d), ŵ)

=
1

2

∑N−1
k=0 ‖ŵ(k)− µw‖2Q−1

e

+
1

2

∑N
k=1 ‖v̂(k)− µv‖2R−1

e
+

1

2
‖x̂(0)− µ(e)

0 ‖2P−1
e(0)

.

(13)
In Objective Function (13), there are some additional terms

(µw and µv as the mean of process noises and mean of
measurement noises, respectively) that do not have to be
zero. Meanwhile, in [18], both the mean of process and
measurement noises are zero.

III. REFERENCE TRACKING

A reference tracking problem is a control problem that
brings the system output to a reference path. Reference
tracking for a discrete system is discussed in [36]. This paper
discusses constrained reference tracking from [18].

For a detailed explanation of the original constrained
reference tracking, we refer to [18] for the following discrete
linear state space model:

x(k + 1) = Acx(k) +Bcu(k) (14)
y(k) = Ccx(k) (15)

e(k) = y(k)(r) − Ccx(k), (16)

where x(k) ∈ Rnx is the state variable, u(k) ∈ Rnu is the
control input, and y(k) ∈ Rny is the system output at time k.
Here, y(k)(r) ∈ Rny is the reference trajectory for the output
and e(k) is the tracking error. Matrixes Ac, Bc, and Cc are a
constant matrixes with the sizes nx×nx, nx×nu, and ny×
nx, repectively. In this problem, the initial state x(0) is given,
and the assumption that the system is stabilizable is required
[18]. To solve the constrained reference tracking problem,
we must find the control input sequence that minimizes the

objective function for the N ∈ {1, 2, 3, . . . } horizon such
that:

u(k) ∈ Ωu ⊆ Rnu , for k = 0, 1, 2, . . . , N − 1,

e(k) ∈ Ωe ⊆ Rny , for k = 0, 1, 2, . . . , N − 1,

x(N) ∈ Ωx(N),

where Ωu,Ωe, and Ωx(N) are nonempty sets.
Then, define vectors u and y(r) as following:

u =

 u(0)
...

u(N − 1)

 , and y(r) =

 y(0)(r)

...
y(N − 1)(r)

 .
Given the data x(0), µ(c)

N (mean of N-th state), µu (mean
of control inputs), µe (mean of tracking errors) and y(r).
The following Pc′

N optimization problem is optimal control
problem:

Pc′

N :V OPT
0 (x(0), µ

(c)
N , µu, µe, y(r))

= min
u

V0(x(0), µ
(c)
N , µu, µe, y(r),u) (17)

such that:
x(k + 1) = Acx(k) +Bcu(k)

for k = 0, 1, 2, . . . , N − 1, (18)
u(k) ∈ Ωu for k = 0, 1, 2, . . . , N − 1, (19)

e(k) = y(k)(r) − Ccx(k) ∈ Ωe

for k = 0, 1, 2, . . . , N − 1, (20)
x(N) ∈ Ωx(N), (21)

where

V0(x(0), µ
(c)
N , µu, µe, y(r),u)

=
1

2

N−1∑
k=0

{
‖u(k)− µu‖2Rc

+ ‖e(k)− µe‖2Qc

}
+

1

2
‖x(N)− µ(c)

N ‖
2
PcN

. (22)

In Objective Function (22), there are some additional terms
(µu and µe as the mean of control inputs and mean of
tracking errors, respectively) that do not have to be zero.
Meanwhile, in [18], both the mean of control inputs and
tracking errors are zero. An analytical solution to constrained
reference tracking problems can be found using dynamic
programming as in [37] and [38].

IV. ON THE SYMMETRY BETWEEN STATE ESTIMATION
AND REFERENCE TRACKING

Here, we consider the constrained reference tracking prob-
lem Pc′

N given by Equations (17)-(22) and the constrained
state estimation problem given by Equations (7)-(13). The
relations between the variables and parameters in problems
Pc′

N and Pe′

N , taken from [18], are given in Table I and II,
respectively. Table II also lists the additional parameters µw,
µu, µv , and µe used in this paper. Here, µw and µv in
the estimation problem can be translated into µu and µe in
the reference tracking problem, respectively, such that the
symmetry between these two problems can be preserved.

The symmetry between problems Pc′

N and Pe′

N is shown in
Tables I and II. State variables at k = 0, . . . , N in the control
problem are symmetric with state variables in the estimation

IAENG International Journal of Computer Science

Volume 51, Issue 5, May 2024, Pages 489-495

 
______________________________________________________________________________________ 



TABLE I
VARIABLE TRANSLATIONS [18]

Pc′
N Pe′

N
x(0) x̂(N)
x(1) x̂(N − 1)
...

...
x(N) x̂(0)
u(0) ŵ(N − 1)
u(1) ŵ(N − 2)
...

...
u(N − 1) ŵ(0)

y(0)(r) y(N)(d)

y(1)(r) y(N − 1)(d)

...
...

y(N − 1)(r) y(1)(d)

e(0) v̂(N)
e(1) v̂(N − 1)
...

...
e(N − 1) v̂(1)

TABLE II
PARAMETER TRANSLATIONS

Pc′
N Pe′

N

Ac A−1
e

Bc −A−1
e Be

Cc Ce

µ
(c)
N µ

(e)
0

µw µu
µv µe
PcN P−1

e(0)

Rc Q−1
e

Qc R−1
e

Ωu Ωw

Ωe Ωv

Ωx(N) Ωx(0)

problem with reversed time steps, as shown in Table I. So
do control input, reference trajectory, and tracking error in
the control problem. Control input u(k), reference trajectory
y(k)(r), and tracking error e(k) are symmetric with process
noise ŵ(k), data y(k)(d), and measurement noise ŷ(k) in
estimation problem, respectively, with reversed time steps.

Consequently, the parameter translations of both problems
are shown in Table II. Here, parameter µw is symmetric
with µu because process noises are symmetric with control
inputs. Also, parameter µv is symmetric with µe because
measurement noises are symmetric with tracking errors.

Using both tables, the optimization problem in Equations
(8)-(13) can be written as problem Pc′

N , as defined in Equa-
tions (17)-(22). Based on both tables, the state estimation
problem Pe′

N can be solved using the five-step algorithm in
[18] as follows:

1) Translate state estimation problem in Equations (8)-
(13) into a control problem Pc′

N using Table I and II.
2) Solve the new problem Pc′

N such that the optimal con-
trol sequence u(k) for k = 0, 1, 2, . . . , N − 1 and the
optimal value of function V OPT

0 (x(0), µ
(c)
N , µu, µe, y(r))

are found.
3) Solve the following problem:

x(0)OPT = arg min
x(0)

V OPT
0 (x(0), µ

(c)
N , µu, µe, y(r))

(23)

4) Obtain the all state xOPT
k for k = 0, 1, 2, . . . , N , from

Equation (14), the value of x(0)OPT and uk for k =
0, 1, 2, . . . , N − 1.

5) Translate x(k)OPT for k = 0, 1, 2, . . . , N into x̂(k)OPT

for k = 0, 1, 2, . . . , N as the original state estimation
variables.

Based on Tables I and II, we can also solve the reference
tracking problem using a similar algorithm.

V. NUMERICAL EXAMPLES

The following example is taken from [18] with the addi-
tional assumption. Consider the system in Equations (1)-(3)
with the following matrix:

Ae =

[
0 1

−1.4918 2.4428

]
, Be =

[
0

0.3730

]
,

Ce =
[
0.0701 0.0613

]
.

We assume the measured output at k = 1, 2, , 9 is as follows:

y(1)(d)

y(2)(d)

y(3)(d)

y(4)(d)

y(5)(d)

y(6)(d)

y(7)(d)

y(8)(d)

y(9)(d)


=



0,9
2
−1
3
1

0.4
2.2
−5
−2.5


. (24)

We then formulate the constrained state estimation prob-
lem with some assumptions. In the system with Equations
(1)-(3), we assume the measurement noise {vk} is indepen-
dent with a normal distribution, a mean of 2.5 and covariance
of 10. The process noise {wk} is also independent with a
truncated normal distribution in the interval

[
− 1

2 ,
1
2

]
with

a mean of 0.25 and covariance of 5. We assumed that the
initial state is normally distributed with the mean:

µ
(e)
0 =

[
5 1

]T
and covariance matrix:

Pe(0) =

[
110.0753 161.4515
161.4515 257.8613

]
.

In this case, N = 9, Ωw =
[
− 1

2 ,
1
2

]
, µv = 2.5, µw = 0.25,

Qe = 10, and Re = 5. We solve the state estimation problem
by transforming it into a reference tracking problem.

The first step, based on five-steps algorithm in Section IV,
we obtain the following control problem:

Pc′

9 :V OPT
0 (x(0), µ

(c)
9 , µu, µe, y(r))

= min
u

V0(x(0), µ
(c)
9 , µu, µe, y(r),u) (25)

such that:
x(k + 1) = Acx(k) +Bcu(k)

for k = 0, . . . , 8, (26)
u(k) ∈ Ωu for k = 0, 1, . . . , 8, (27)

e(k) = y(k)(r) − Ccx(k) ∈ Ωe

for k = 0, . . . , 8, (28)
x(9) ∈ Ωx(9), (29)
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where

V0(x(0), µ
(c)
9 , µu, µe, y(r),u)

=
1

2

∑8
k=0

{
‖u(k)− µu‖2Rc

+ ‖e(k)− µe‖2Qc

}
+

1

2
‖x(9)− µ(c)

9 ‖2Pc9
,

Ac = A−1e =

[
1,6375 −0,6703

1 0

]
,

Bc = −A−1e Be =

[
0,25

0

]
,

Cc = Ce =
[
0,0701 0,0613

]
,

µ
(c)
9 = µe0 =

[
5 1

]T
,

µe = µv = 2.5,

µu = µw = 0.25,

Pc9 = P−1e0 =

[
0,1113 −0,0697
−0,0697 0,0475

]
,

Rc = Q−1e = 0,1,

Qc = R−1e = 0,2,

Ωu = Ωw = [−1

2
,

1

2
].

Subsequently, we solve the new problem Pc′

9 . We obtain
the optimal control sequence for k = 0, . . . , N − 1 as
follows:

u(k) =


u(0)
u(1)

...
u(8)

 =



0.3005
0.2899
0.2394
0.3138
0.4196
0.5000
0.5000
0.5000
0.5000


.

Hence, the optimal cost function is:

V0(x(0), µ
(c)
9 , µu, µe, y(r)) (30)

=
1

2

∑8
k=0

{
‖u(k)− µu‖2Rc

+ ‖e(k)− µe‖2Qc

}
+

1

2
‖x(9)− µ(c)

9 ‖2Pc9

= 0.1690 +
1

2

∑8
k=0 ‖e(k)− µe‖2Qc

+
1

2
‖x9 − µc9‖2Pc9

.

In the third step, we solve Equation (30) then we obtain
x(0) that minimize Equation (30) as follows:

x(0)OPT =

[
−18.6583
−33.7207

]
.

The fourth step is obtaining all state x(k)OPT for
k = 0, 1, . . . , N . In this case, x(0)OPT was found, such that
we require to find x(k)OPT for k = 1, . . . , N . Based on
Equation (14), the value of x(0)OPT and the optimal u(k) for
k = 0, 1, . . . , N − 1, then {x(0)OPT, x(1)OPT, . . . , x(9)OPT}
is equal to

{[
−18.6583
−33.7207

]
,

[
−7.8735
−18.6583

]
,

[
−0.3130
−7.8735

]
,[

4.8251
−0.3130

]
,

[
8.1894
4.8251

]
,

[
10.2804
8.1894

]
,

[
11.4695
10.2804

]
,[

12.0148
11.4695

]
,

[
12.1107
12.0148

]
,

[
11.9023
12.1107

]}
.

In the last step, we translate x(k)OPT for k = 0, 1, 2, . . . , N
into x̂(k)OPT for k = 0, 1, 2 . . . , N which are the original
state estimation variables. Using Table I, then

{x̂(0)OPT, . . . , x̂(9)OPT} ={x(9)OPT, . . . , x(0)OPT}

=

{[
11.9023
12.1107

]
,

[
12.1107
12.0148

]
,

[
12.0148
11.4695

]
,[

11.4695
10.2804

]
,

[
10.2804
8.1894

]
,

[
8.1894
4.8251

]
,[

4.8251
−0.3130

]
,

[
−0.3130
−7.8735

]
,

[
−7.8735
−18.6583

]
,[

−18.6583
−33.7207

]}
.

Thus, the solution of above estimation problem is found,
i.e. the first until the last state estimation, respectively

are
[
12.1107
12.0148

]
,
[
12.0148
11.4695

]
,
[
11.4695
10.2804

]
,
[
10.2804
8.1894

]
,
[
8.1894
4.8251

]
,[

4.8251
−0.3130

]
,
[
−0.3130
−7.8735

]
,
[
−7.8735
−18.6583

]
,
[
−18.6583
−33.7207

]
.

Fig. 1 shows the simulation results. The data y(k)(d) for
k = 1, 2, , 9 in (24) are merged with y(0)(d) = 0.4118, so
that we obtain the ”O” curve (−O−) in Fig. 1a. Based on
Table I, we obtain data y(k)(r) for k = 0, 1, . . . , 9 and the
”×” curve (−×−) in Fig 1b.
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Fig. 1. Simulation result for µw = 0.25 and µv = 2.5 : (a) y(k) (−o−),
y(k)(d) (−O−), ŷk|N (−×−); (b) y(k)(r) (−×−), ỹk (−o−), y(k)OPT

(−O−); (c) w(k) (−×−), ŵ(k)OPT (−o−); (d) ũ(k) (−×−), u(k)OPT

(−o−)

The true values of the process noise, w(k) for k = 0, 1, , 8,
are shown in the ”×” curve (−×−) in Fig. 1c. These data
are generated based on a normal distribution with a mean
of 0.25 and covariance of Qe, which are truncated in the
interval

[
− 1

2 ,
1
2

]
.

The true value of the output, y(k) for k = 0, 1, , 9, is
depicted in the ”o” curve (−o−) in Fig. 1a. These data are
obtained based on the value of the initial state x(0), process
noise w(k), and Equations (1)-(2). Here, the value of x(0) is
generated based on a normal distribution with a mean µ

(e)
0

and covariance Pe(0).
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The solution to the original state estimation provides the
optimal state and process noise to obtain the optimal output.
The optimal state is x̂(k)OPT, where k = 0, 1, . . . , 9, which
is shown in Fig. 2c, while the process noise is ŵ(k)OPT

where k = 0, 1, . . . , 8, which is depicted in the ”o” curve
(−o−) in Fig. 1c. As shown in Fig. 2c, there are two curves
because each state has two elements. The first element of
x̂(k)OPT is denoted by x̂1(k)OPT, where k = 0, 1, . . . , 9,
depicted in the ”×” curve (−×−). Meanwhile, the second
element is x̂2(k)OPT, where k = 0, 1, . . . , 9, depicted in the
”o” curve (−o−) in Fig. 2c. Then, the output obtained from
the optimization result of the state estimation is ŷk|N , which
is depicted in Fig. 1a in the ”×” curve (−×−). The value
ŷk|N is obtained based on the value of x̂(k)OPT.
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Fig. 2. Simulation result for µw = 0.25 and µv = 2.5 : (a) v̂(k) as
the optimization result (−o−) and the true v̂(k) (− × −) ; (b) e(k) as
the optimization result (−o−) and the true e(k) (− × −); (c) x̂1(k)OPT

(− × −) and x̂2(k)OPT (−o−) as the elements of optimal state x̂(k)OPT

from the original state estimation problem (d) x̃1(k) (− × −) and x̃2(k)
(−o−) as the elements of optimal state x̃(k) from the symmetric control
problem

A reference tracking problem that is symmetric with the
original state estimation results in optimal control and state,
so we obtain the optimal output. Here, optimal control is
denoted by ũ(k) and is depicted in the ”×” curve (− × −)
in Fig 1d. Meanwhile, the optimal state is x̃(k), where k =
0, 1, . . . , 9, which is shown in Fig. 2d. As shown in Fig. 2d,
there are two curves because each state has two elements.
The first element of x̃(k) is denoted by x̃1(k), where k =
0, 1, . . . , 9, depicted in the ”×” curve (−×−). Meanwhile,
the second element is x̃2(k), where k = 0, 1, . . . , 9, depicted
in the ”o” curve (−o−) in Fig. 2d. Then, the outputs ỹ(k) are
obtained based on the value of the state and optimal control.
Output ỹ(k) is depicted by the ”o” curve (−o−) in Fig. 1b.

Now, we explain the optimal control and system output
obtained by giving a certain value for the initial state.
Following [18], we take x(0)∗ = [20, 10]T . At this initial
state, we have another optimization problem. The solution to
this problem results in the optimal control sequence u(k)OPT

depicted in the ”o” curve (−o−) in Fig. 1d. Then, based

on this optimal control, we obtain the output denoted by
y(k)OPT, which is depicted in Fig. 1b as the ”O” curve
(−O−).

Fig. 2a shows two curves of measurement noise (v̂(k)).
The value of v̂(k) obtained by solving the initial problem
(state estimation problem) is given by the ”o” curve (−o−).
The true values of v̂(k), given by ”×” curve (− × −), are
chosen randomly based on their distribution.

Fig. 2b shows two curves of tracking error (e(k)). The
value of e(k) obtained by solving the dual problem (reference
tracking problem) is given by the ”o” curve (−o−). The true
values of e(k), given by ”×” curve (− × −), are chosen
randomly based on their distribution.

In this case, the symmetric relationship between reference
tracking and state estimation can be seen in the following
points:

1) The symmetry between the output curve ŷk|N obtained
by solving the original state estimation problem in Fig
1a and the output curve ỹk obtained by solving the
reference tracking problem that is symmetric with the
original problem in Fig. 1b.

2) The symmetry between the optimal control curve ũ(k)
in Fig. 1d and the process noise curve ŵ(k)OPT in Fig.
1c.

3) The symmetry between the measurement noise curve
v̂(k) in Fig. 2a (”o” curve) and the tracking error curve
e(k) in Fig. 2b (”o” curve). We draw these curves by
solving the minimization problem.

4) The symmetry between the optimal state x̂(k)OPT from
the original state estimation problem in Fig. 2c and
x̃(k) from the symmetric control problem in Fig. 2d.
Here, x̂1(k)OPT curve is symmetric with x̃1(k) curve,
and x̂2(k)OPT curve is symmetric with x̃2(k) curve.

In addition, it is clear that the curve y(k)(d) in Fig. 1a is
also symmetric with the curve y(k)(r) in Fig. 1b because of
the data translation.

The optimal control curve ũ(k) in Fig. 1d and the process
noise curve ŵ(k)OPT in Fig. 1c have the most significant
difference compared with the optimal control and process
noise curves on [18] that uses µw = µv = 0. Other than
that, the output values depicted in Fig. 1a and Fig. 1b are
slightly different from those obtained by [18]. Furthermore,
this paper presents the optimal state (both from the original
state estimation and the symmetric control problems), mea-
surement noise, and tracking error curves in Fig. 2 that are
not presented in [18].

VI. CONCLUSION

In this paper, we demonstrated that the symmetry between
constrained reference tracking and constrained state estima-
tion can be shown in the case of a state estimation problem
where the mean of process noises and mean of measurement
noise do not have to be zero. Both the mean of process
and measurement noise affect the measurement in the state
estimation problem and the optimal control for reference
tracking that is symmetric with the state estimation problem.
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