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Abstract—Rough Set (RS) is a relatively new technique for
making imprecise and uncertain decisions. It is an emerging
area of ambiguous mathematics associated with fuzzy set theory.
In comparison with fuzzy sets and other theories, RS has
more advantages. Unlike statistics, evidence theory, and fuzzy
set theory, RS theory does not require any additional or
preliminary information about data. RS theory deals with
approximating arbitrary subsets of the universe using two
subsets namely lower and upper approximation. The advantage
of RS is that rough approximations can be expanded into fuzzy
environments which aids in solving a wide variety of real-
time problems. The goal of this study is to focus on Rough
Fuzzy Prime Ideals (RFPI) in ring structure and explain specific
aspects of its upper and lower approximations. Furthermore,
Rough Fuzzy Ideal (RFI) and RFPI notions and characteristics
are described.

Index Terms—Γ Ring, rough set, rough fuzzy set, rough fuzzy
ideals, rough fuzzy prime ideal.

I. INTRODUCTION

IN 1965 Zadeh introduced a fuzzy set theory to address
uncertainty [1]. This theory proves effective in solving

problems involving ambiguous, subjective, and incorrect
assessments. It aids in describing the data using the fuzzy set
theory. Numerous researchers have explored fuzzy versions
of algebraic structures. In algebra, there are several types of
structures, including gamma rings. Nobusawa invented the
idea of the gamma ring [2]. This is rather prevalent com-
pared to a ring. Barnes reduced the demands of Nobusawa’s
concept of gamma ring theory [3]. These two articles offered
curious findings regarding gamma rings and were widely
read by mathematicians after being released. In continuation
of these studies, the researchers are interested in gamma
rings with uniqueness. In 1992, Jun et al. applied the fuzzy
set concept in the theory of gamma ring [4], [5]. Many
significant conclusions about rings have been extended by
using gamma rings. The gamma ring structure was used to
examine the number of generalizations that are identical to
their corresponding parts in ring theory [6]. Fuzzy primeness
has received significant attention due to its significance
in classical ring theory. Jun and Dutta discussed several
characteristics of the fuzzy prime ideal [7], [8]. In 2019
Ardakari examined prime and semi prime gamma rings [9]
and Kavikumar et al. primarily focused on fuzzy ideals in
ring semirings [10]. To solve the issue of the non membership
function in the fuzzy set, Atanassov invented the Intuition-
istic Fuzzy Set (IFS). IFS are useful models for analyzing
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uncertainty and vagueness. Palaniappan et al. conducted a
study on fuzzy prime ideals in gamma near ring structure
[11], [12], [13]. Ezhilmaran et al. investigated artinian and
notherian near-rings, and studied some of their properties
[14]. Takallo et al. investigated the implicative MBJ- MBJ-
neutrosophic ideal and proved its properties[15]. Pawlak
proposed the RS theory to address vague and ambiguous
knowledge [16]. Moreover, RS compared to a fuzzy set,
employs ideas like approximation, dependence, reduction
of attributes, etc. RS and fuzzy sets can be applied to all
situations, however, RS remains superior to fuzzy sets. RS
does not require assumptions about membership functions,
but fuzzy sets do require an a priori membership function. Ali
discussed about generalized rough sets [17]. Several new re-
sults of the rough algebraic structure were studied by Davvaz
[18]. Kachanci et al. illustrated the rough prime (primary)
ideals [19]. Davvaz discussed RS with algebraic structure
[20]. The different algebraic structures are explained through
RS by many researchers. In fuzzy environments, RS has
been extended to Rough Fuzzy Sets (RFS) and fuzzy rough
sets. RFS refers to a pair of fuzzy sets that are formed by
approximating a fuzzy set in a crisp approximation space.
RFS has recently gained popularity among researchers and
has been used to study algebraic structures namely groups,
rings, and near rings. The present study discusses RFPI in
gamma rings. The RFS which utilized in many disciplines
and it can help both with classification and improbability
particularly when there is ambiguity. The various structures
of algebra are explained through RS by many researchers
[21] [22], [23]. The difference between a fuzzy rough set
and an RFS is discussed by Dubois and Prade[24]. Many
researchers have explored soft sets [25], [26]. Subha et al.
and Bagirmaz stated rough prime ideals in semigroups [27],
[28], [29] and Zhan and Marynirmala analyzed Rough Fuzzy
Ideal (RFI) in hemirings and gamma rings [30], [31], [32].
Recently some researchers discussed RFI in gamma ring
structure [33]. The aim of the present work is to discuss
the RFPI in the gamma ring structure. In addition to these,
we analyze some theorems related to RFI and RFPI.

II. PRELIMINARIES

Definition II.1. [3] Let (M,+) and (Γ,+) be additive
abelian groups. If there exists a mapping M × Γ × M →
M [the image of x1, x2, x3∈M is denoted by x1αx2 for
x1, x2 ∈ M , α ∈ Γ] satisfying the following identities:

(1) x1αx2 ∈ M ,
(2) (x1 + x2)αx3 = x1αx3 + x2αx3,

x1(α+ β)x2 = x1αx2 + x1βx2,
x1α(x2 + x3) = x1αx2 + x1αx3,

(3) (x1αx2)βx3 = x1(αx2β)x3 = x1α(x2βx3),
for all x1, x2, x3∈M implies α, β ∈ Γ, then M is called a Γ
Ring. If these axioms are strengthened to
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(1’) x1αx2 ∈ M , αx1β ∈ Γ
(2’) (x1 + x2)αx3 = x1αx3 + x2αx3,

x1(α+ β)x2 = x1αx2 + x1βx2,
x1α(x2 + x3) = x1αx2 + x1αx3,

(3’) (x1αx2)βx3 = x1(αx2β)x3 = x1α(x2βx3),
(4’) x1αx2 = 0 for all x1, x2∈M implies α = 0.

we then have a Γ Ring in the sense of Nobusawa.
Note that, it follows from (1) - (3) that 0αx2 = x10x2 =
x1α0 = 0 for all x1, x2 ∈ M and α ∈ Γ.

Definition II.2. [16] Suppose the knowledge base K =
(U,R) with each subset X ⊆ U and an equivalence relation
R ∈ IND(K) we associate two subsets
apr(X) =

⋃
{Y ∈U/R : Y⊆X} and

apr(X) =
⋃
{Y ∈U/R : Y ∩X ̸=ϕ},

called the apr-lower and apr-upper approximations of X
respectivelty.

Definition II.3. [24] Let X ⊆ U be a set, R be an
equivalence relation on U and λ be a fuzzy set in U. Then
upper and lower approximation of apr(λ) and apr(λ) of a
fuzzy set λ by R are the fuzzy set of U/R with membership
function is
µapr(λ)(Xi) = sup{µλ(x)/w(Xi) = [x]R}
µapr(λ)(Xi) = inf{µλ(x)/w(Xi) = [x]R}
where µapr(λ)(Xi) (resp.µapr(λ)(Xi) is the membership of
Xi in apr(λ)(resp. apr(λ)). (apr(λ), apr(λ)) is called a
RFS.

III. ROUGH FUZZY IDEAL IN Γ RINGS

Throughout the section M denotes Γ Ring.

Definition III.1. [33] An upper (resp. lower) RFS λ =
⟨aprλ, aprλ⟩ in M is said to be a Rough Fuzzy Left Ideal
(RFLI) (resp. Rough Fuzzy Right Ideal (RFRI)) of a Γ Ring
M if
(i) aprλ(x1 − x2)≥{aprλ(x1)∧aprλ(x2)} and
aprλ(x1αx2)≥aprλ(x2) [resp. aprλ(x1αx2)≥aprλ(x1)]
(ii) apr

λ
(x1 − x2)≤{apr

λ
(x1)∨aprλ(x2)} and

apr
λ
(x1αx2)≤apr

λ
(x2) [resp. apr

λ
(x1αx2)≤apr

λ
(x1) ]

for all x1, x2 ∈ M and α ∈ Γ.

Example III.2. [33] Let M = {a, b, c, d} and α = {e, f, g,
h} defined M and α as

- a b c d
a a b c d
b b b d c
c c d d d
d d c c c

α e f g h
e e f g h
f f f h g
g g h h g
h h g g g

aprλ(x) =


0.5, if x = a, e

0.6, if x = b, f

0.6, if x = c, d, g, h.

and

apr
λ
(x) =


0.5, if x = a, e

0.3, if x = b, f

0.2, if x = c, d, g, h.
By routine calculation, clearly M is a RFI.

Theorem III.3. Let λ (̸= 0) be a subset of M. If the RFS λ̃
= ⟨aprχλ

, apr
χλ̄

⟩ is a RFLI (resp. RFRI) of M, then λ is a
ideal of M.

Proof: Assume λ̃ = ⟨aprχλ
, apr

χλ̄

⟩ be a RFLI (resp.
RFRI) of M and let x1, x2 ∈ λ. Now aprχλ

(x1 − x2) ≥
{aprχλ

(x1)∧ aprχλ
(x2)}={1∧ 1} = 1, so that aprχλ

(x1 −
x2) = 1. Hence x1 − x2 ∈ λ. Also aprχλ

(x1αx2) ≥
aprχλ

(x2) = 1 and so aprχλ
(x1αx2) = 1, that is x1αx2 ∈ λ.

And apr
χλ̄

(x1 − x2) ≤ {apr
χλ̄

(x1) ∨ apr
χλ̄

(x2)}={(1 −
aprχλ

(x1))∨ (1−aprχλ
(x2))} {0∨0} = 0, apr

χλ̄

(x1−x2)

= 1 − aprχλ
(x1 − x2) = 0 implies that aprχλ

(x1 − x2) =
1. Hence x1 − x2 ∈ λ. Also apr

χλ̄

(x1αx2) ≤ apr
χλ̄

(x2) =
0 and so apr

χλ̄

(x1αx2) = 0. Hence aprχλ
(x1αx2) = 1 and

so x1αx2 ∈ λ. Therefore λ is an ideal of M.

Theorem III.4. If the RFS λ = ⟨aprλ, aprλ⟩ is a RFLI
(resp. RFRI) of M, then we have aprλ(0) ≥ aprλ(x) and
apr

λ
(0) ≤ apr

λ
(x), for all x ∈ M .

Proof: Let λ be a RFLI (resp. RFRI) of M and for
all x ∈ M . Now aprλ(0) = aprλ(x − x) ≥ {aprλ(x)∧
aprλ(x)} = aprλ(x) and apr

λ
(0) = apr

λ
(x−x) ≤ {apr

λ
(x)

∨ apr
λ
(x)} = apr

λ
(x).

Definition III.5. If λ = ⟨aprλ, aprλ⟩ be a RFS in M and
t ∈ [0,1]. Then U (aprλ; t) = {x ∈ M : aprλ(x) ≥ t}
and L(apr

λ
; t) = {x ∈ M : apr

λ
(x) ≤ t} are said to be

Upper Level Set (ULS) and Lower Level Set (LLS) of λ
respectively.

Theorem III.6. Consider λ = ⟨aprλ, aprλ⟩ is a RFLI (resp.
RFRI) of M and t ∈ [0,1], then
(i) If t = 1, then the ULS U(aprλ; t) = 0 or λ of M.
(ii) If t = 0, then the LLS L (aprλ; t) = 0 or λ of M.

Proof: (i) Let t = 1 and let x1, x2 ∈ U(aprλ; t) Then
aprλ(x1) ≥ t = 1 and aprλ(x2) ≥ t = 1. Accordingly
aprλ(x1−x2) ≥ {aprλ(x1) ∧ {aprλ(x2)} ={1∧1} = 1 So
that x1 − x2 ∈ U (aprλ; t). Now let x1 ∈ M , α ∈ Γ and
x2 ∈ U(aprλ; t). Then aprλ(x1αx2) ≥ aprλ(x2) ≥ t = 1
[resp. aprλ(x1αx2) ≥ aprλ(x1) ≥ t = 1] and so x1αx2 ∈
U(aprλ ; t). Consequently U(aprλ ; t) is an ideal of M.
(ii) Suppose that t = 0 and let x1, x2 ∈ L(apr

λ
; t) Then

apr
λ
(x1) ≤ t = 0 and apr

λ
(x2) ≤ t = 0. Thus apr

λ
(x1−x2)

≤ {apr
λ
(x1) ∨ apr

λ
(x2)} = {0 ∨ 0} = 0. So that x1−x2 ∈

L(apr
λ

; t). Now let x1 ∈ M , α ∈ Γ and x2 ∈ L(apr
λ

; t).
Then apr

λ
(x1αx2) ≤ apr

λ
(x2) ≤ t = 0. [resp.apr

λ
(x1αx2)

≤ apr
λ
(x1) ≤ t = 0]. So x1αx2 ∈ L(apr

λ
; t). Therefore

L(apr
λ

; t) is an ideal of M.

Theorem III.7. If the RFS λ=⟨aprλ, apr
λ
⟩ is a RFLI (resp.

RFRI) of M, then B = ⟨aprλ, 0⟩ and C = ⟨ 0, 1 - aprλ⟩ are
RFLI (resp. RFRI) Γ Ring M .

Proof: Let λ be a RFLI (resp. RFRI) of M.
Then aprλ(x1 − x2) ≥ {aprλ(x1) ∧ aprλ(x2)} and
aprλ(x1αx2) ≥ aprλ(x2) [resp. aprλ(x1αx2) ≥ aprλ(x1)]
and apr

λ
(x1 − x2) ≤ {apr

λ
(x1) ∨ apr

λ
(x2)} and

apr
λ
(x1αx2) ≤ apr

λ
(x2) [resp.apr

λ
(x1αx2) ≤ apr

λ
(x1)],

for all x1, x2 ∈ M and α ∈ Γ.
(i) Let B = ⟨aprλ, 0⟩ then aprB = aprλ and apr

B
= 0.

Therefore aprB(x1 − x2) = aprλ(x1 − x2) ≥ {aprλ(x1) ∧
aprλ(x2)} = {aprB(x1) ∧ aprB(x2)} and aprB(x1αx2) =
aprλ(x1αx2) ≥ aprλ(x2) = aprB(x2) [resp. aprB(x1αx2)
≥ aprλ(x1) = aprB(x1)]. Also apr

B
(x1 − x2) = 0 ≤

{0 ∨ 0} = { apr
B
(x1) ∨ apr

B
(x2)} and apr

B
(x1αx2) = 0

≤ apr
B
(x2) [resp. apr

B
(x1αx2) = 0 ≤ apr

B
(x1)]. Hence
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B = ⟨aprλ, 0⟩ is a RFLI (resp. RFRI) of M.
(ii) Let C = ⟨ 0, 1 − aprλ⟩ Then aprc = 0 and apr

c
=

1−aprλ. Therefore aprc(x1−x2) ≥ {aprc(x1) ∧ aprc(x2}
and aprc(x1 α x2) = 0 ≥ aprc(x2)[resp. aprc(x1αx2) = 0
≥ aprc(x1)]. Also apr

c
(x1αx2) = 1- aprλ(x1αx2) ≤ 1-

aprλ(x2) = apr
c
(x2) [resp. apr

c
(x1αx2) = 1 -aprλ(x1αx2)

≤ 1- aprλ(x1) = apr
c
(x1)]. Therefore C = ⟨ 0, 1 − aprλ⟩

is a RFLI (resp. RFRI) of M.

Definition III.8. Let {λi}i∈J be family of RFSs in X, where
λi =

〈
∧aprλi

,∨apr
λi

〉
for each i ∈ J .

(i) ∩λi =
〈
∧aprλi

,∨ apr
λi
⟩, (ii) ∪λi =

〈
∨aprλi

,∧apr
λi

〉
.

Theorem III.9. If {λi}i∈J is a family of RFLI (resp. RERI)
of M, then λi=⟨∨aprλi

,∧apr
λi
⟩ is a RFLI (resp. RFRI) of

M.

Proof: Let x1, x2 ∈ M and α ∈ Γ. Then (
⋃
i∈J

aprλi
)(x1 − x2) = ∨

i∈J
aprλi

(x1 − x2) ≥ ∨
i∈J

(aprλi
(x1)

∧ aprλi
(x2))= ( ∨

i∈J
aprλi

(x1)) ∧ ( ∨
i∈J

aprλi
(x2))=(

⋃
i∈J

aprλi
)(x1) ∧ (

⋃
i∈J

aprλi
)(x2) and (

⋃
i∈J

apr
λi
)(x1 − x2)=

∧
i∈J

apr
λi
(x1 − x2) ≤ ∧

i∈J
(apr

λi
(x1) ∨ apr

λi
(x2))= ( ∧

i∈J

apr
λi
(x1)) ∨ ( ∧

i∈J
aprλi

(x2)) = (
⋃
i∈J

apr
λi
)(x1) ∨ (

⋃
i∈J

aprλi
)(x2). Also (

⋃
i∈J

aprλi
)(x1αx2)= ∨

i∈J
aprλi

(x1αx2) ≥

∨
i∈J

aprλi
(x2) = (

⋃
i∈J

aprλi
)(x2) and (

⋃
i∈J

apr
λi
)(x1αx2)=

∧
i∈J

apr
λi
(x1αx2) ≤ ∧

i∈J
apr

λi
(x2) =(

⋃
i∈J

apr
λi
)(x2). Same

for right ideals, (
⋃
i∈J

aprλi
)(x1αx2) = ∨

i∈J
aprλi

(x1αx2)

≥ ∨
i∈J

aprλi
(x1) = (

⋃
i∈J

aprλi
)(x1), (

⋃
i∈J

apr
λi
)(x1αx2)

= ∧
i∈J

apr
λi
(x1αx2) ≤ ∧

i∈J
apr

λi
(x1) = (

⋃
i∈J

apr
λi
)(x1).

Therefore (
⋃
i∈J

λi) is a RFLI(resp. RFRI) of M.

Definition III.10. Consider A = ⟨aprA, aprA⟩ and B =
⟨aprB , aprB⟩ be rough fuzzy subsets M, then AΓB is defined
by

aprAΓB(x1) =


∨

x1=x2αx3

{aprA(x2) ∧ aprB(x3)},

if x1 = x2αx3

0 otherwise

apr
AΓB

(x1) =


∧

x1=x2αx3

{apr
A
(x2) ∨ apr

B
(x3)},

if x1 = x2αx3

1 otherwise

Theorem III.11. If A=⟨aprA, aprA⟩ and B=⟨aprB , aprB⟩
be two RFLI (resp. RFRI) ideals of M, then A ∩ B is a RFLI
(resp. RFRI) of M. If A is a RFRI and B is a RFLI A Γ B
⊆ A ∩ B.

Proof: Consider A and B are RFLI (resp. RFRI) of
M. Let x1, x2 ∈ M and α ∈ Γ. Then aprA∩B(x1 − x2)
= aprA(x1 − x2)∧aprB(x1 − x2)≥[aprA(x1)∧aprA(x2)]
∧ [aprB(x1) ∧ aprB(x2)] = [aprA(x1) ∧ aprB(x1)] ∧
[aprA(x2) ∧ aprB(x2)] = [aprA∩B(x1) ∧ aprA∩B(x2)],
apr

A∩B
(x1 − x2) = apr

A
(x1 − x2) ∨ apr

B
(x1 − x2)

≤ [apr
A
(x1) ∨ apr

A
(x2)] ∨ [apr

B
(x1) ∨ apr

B
(x2)]

= [apr
A
(x1) ∨ apr

B
(x1)] ∨ [apr

A
(x2) ∨ apr

B
(x2)].

=[apr
A∩B

(x1) ∨ apr
A∩B

(x2)]

Also aprA(x1αx2) ≥ aprA(x2) and apr
A
(x1αx2) ≤

apr
A
(x2), aprB(x1αx2) ≥ aprB(x2) and apr

B
(x1αx2)

≤ apr
B
(x2) [resp. aprA(x1αx2) ≥ aprA(x1) and

apr
A
(x1αx2) ≤ apr

A
(x1), aprB(x1αx2) ≥ aprB(x1)

and apr
B
(x1αx2) ≤ apr

B
(x1)]. Now aprA∩B(x1αx2) =

aprA(x1αx2) ∧ aprB(x1αx2) ≥ [aprA(x2) ∧ aprB(x2)]
= aprA∩B(x2). apr

A∩B
(x1αx2) = apr

A
(x1αx2) ∨

apr
B
(x1αx2) ≤ [apr

A
(x2) ∨ apr

A
(x2)] = apr

A∩B
(x2).

Hence A ∩ B is a RFLI (resp. RFRI) of M. To prove
second part, if aprAΓB(x) = 0 and apr

AΓB
(x) = 1.

Suppose that AΓB ̸= (0,1). By the definition of AΓB,
aprA(x1) = aprA(x2αx3) ≥ aprA(x2) and apr

A
(x1) =

apr
A
(x2αx3) ≤ apr

A
(x2), aprB(x1) = aprB(x2αx3) ≥

aprB(x3) and apr
B
(x1) = apr

B
(x2αx3) ≤ apr

B
(x3). Since

A is a RFRI and B is a RFLI, we have aprA(x1) =
aprA(x2αx3) ≥ aprA(x2) and apr

A
(x1) = apr

A
(x2αx3)

≤ apr
A
(x2), aprB(x) = aprB(x2αx3) ≥ aprB(x3) and

apr
B
(x1) = apr

B
(x2αx3) ≤ apr

B
(x3). Hence by definition

III.10., aprAΓB(x1) =
∨

x1=x2αx3

{aprA(x2) ∧ aprB(x3)} ≤

aprA(x1) ∧ aprB(x1) = aprA∩B (x1), apr
AΓB

(x1) =∧
x1=x2αx3

{apr
A
(x2)∨ apr

B
(x3)} ≥ apr

A
(x1) ∨ apr

B
(x1)

= apr
A∩B

(x1). Hence AΓB ⊆ A∩B.

Corollary III.12. If A = ⟨ aprA, aprA⟩ and B=⟨
aprB , aprB⟩ are two RFLI (resp. RFRI) of M, then A∪B
is a RFLI (resp. RFRI) of M.

Definition III.13. Suppose M is called regular if for each
a ∈ M there exists x1 ∈ M and α, β ∈ Γ such that a =
aαx1βa.

Result III.14. A Γ Ring M is called regular iff IΓJ = I∩J ,
for each right ideal I and for each left ideal J of M.

Theorem III.15. If M is regular if for each RFRI A and for
each RFLI B of M, AΓB = A∩B.

Proof: Let M is regular. By Theorem III.11., AΓB ⊆
A ∩ B. To prove A ∩B ⊆ AΓB. Let a ∈ M
and α, β ∈ Γ. Then, by the definition there exists
x1 ∈ M such that a = aαx1βa. Thus aprA(a) =
aprA(aαx1βa) ≥ aprA(aαx1) ≥ apr(a), apr

A
(a) =

apr
A
(aαx1βa) ≤ apr

A
(aαx1) ≤ apr(a). So aprA(aαx1)

≥ aprA(a) and apr
A
(aαx1) ≤ apr

A
(a). On the other

hand, aprAΓB(a) = ∨
a=aαx1βa

{aprA(aαx1) ∧ aprB(a)} ≥
{aprA(a)∧ aprB(a)} = aprA∩B(a), aprAΓB

(a) = ∧
a=aαx1βa

{apr
A
(aαx1) ∨ apr

B
(a)} ≤ {apr

A
(a) ∨ aprB(a)} =

apr
A∩B

(a). Thus A∩B ⊆ AΓB. Hence AΓB = A∩B.

Definition III.16. [3] An ideal P of the Γ Ring M is called
prime if any ideals A and B of M, AΓB ⊆ P implies A⊆P
or B⊆P.

Definition III.17. If P be a RFI of M. Then P is said to be
prime if P is not a constant mapping and for any RFIs A, B
of a Γ Ring M, AΓB ⊆ P ⇒ A⊆ P or B⊆P.

Example III.18. Let M = {e, f, g, h} and α ∈ Γ. Let us
defined the Cayley table using the binary operations of a Γ
Ring as follows
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- e f g h
e e f g h
f f g h e
g g g e g
h h e f g

α e f g h
e e e e e
f e g e g
g e e e e
h e g e g

Then aprλ(x) and apr
λ
(x) as stated below

aprλ(x) =

{
0.5, if x = e, g

0.3, if otherwise
and

apr
λ
(x) =

{
0.2, if x = e, g

0.7, if otherwise

Clearly (M, Γ) is a RFI.
Consider the subsets of M are {{e}, {f, g, h}} and
λ = {e, g} ⊆ M.
By the Cayley table aprλ(x)={e, f, g, h}, and
apr

λ
(x)={e} are RFPI of M.

But λ is not a RFPI of M.
Since hΓf = g ⊆ λ then h ⊈ λ and f ⊈ λ.

Theorem III.19. Let J be an ideal of M such that J ̸= M ,
Then J is a prime ideal of M iff (χJ , χJ) is a RFPI of M.

Proof: Necessary Part: If J is a prime ideal of M and
let P = (χJ , χJ). Since J ̸= M. P is not a constant mapping
on M. Let A and B be two RFI of M such that AΓB ⊆P
and A ̸⊂ P or B ̸⊂ P there exists x1, x2 ∈ M such that
aprA(x1) > aprP (x1) = χJ(x1), aprA(x1) < apr

P
(x1) =

χJ(x1) and aprB(x2) > aprP (x2) = χJ(x2), aprB(x2) <
apr

P
(x2) = χJ(x2). So aprA(x1) ̸= 0, apr

A
(x1) ̸= 1 and

aprB(x2) ̸= 0, apr
B
(x2) ̸= 1. But χJ(x1) = 0 and χJ(x2)

= 0. So x1 /∈ J, x2 /∈ J . Since J is a prime ideal of M, by
theorem 5[3] that there exist x3 ∈ M and α, β ∈ Γ such
that x1αx3βx2 /∈ J. Let a = x1αx3 β x2. Then χJ(a)
= 0 and χJ (a)=1. Thus AΓB(a) = (0,1). But aprAΓB(a)
= ∨

a=cγd
[aprA(c) ∧ aprB(d)] ≥ aprA(x1αx3) ∧ aprB(x2)

(since a = x1αx3βx2) ≥ aprA(x1) ∧ aprB(x2) > 0 (Since
aprA(x1) ̸= 0 and aprB(x2) ̸= 0 ) and apr

AΓB
(a) =

∧
a=cγd

[apr
A
(c) ∨ apr

B
(d)] ≤ apr

A
(x1αx3) ∨ apr

B
(x2)

≤ apr
A
(x1) ∨ aprB(x2) < 1. (Since apr

A
(x1) ̸= 1 and

apr
B
(x1) ̸= 1 ) Then AΓB(a) ̸= (0,1). This is a contradic-

tion. Hence for any RFI A and B, AΓB ⊆ P implies A⊆P
or B⊆P. Hence P is a RFPI of M.
Sufficient Part:
Suppose P = (χJ , χJ) is a RFPI of M. Since P is not a
constant mapping on M, J ̸= M. Let A, B be two ideals of
M such that AΓB ⊆ J. Let A = (χA, χA) and B=(χB , χB)
be two RFI of M. Consider the product AΓB. Let x1 ∈ M.
If AΓB(x) = (0,1). Clearly AΓB⊆ P. Suppose AΓB(x) ̸=
(0,1) Then aprĀΓB̄(x1) = ∨

x1=x2αx3

[χA(x2) ∧ χB(x3)] ̸=
0. apr

ĀΓB̄
(x1) = ∧

x1=x2αx3

[χB(x2) ∨ χB(x3)] ̸= 1. Thus

there exist x2, x3 ∈ M with x1 = x2αx3 such that χA(x2) ̸=
0, χJ(x2) ̸= 1 and χB(x3) ̸= 0, χB(x3) ̸= 1. So χA(x2)=1,
χA(x2)=0 and χB(x3) = 1, χA(x3) = 0. This implies x2 ∈ A
and x3 ∈ B. Thus x1 = x2αx3 ∈ AΓB ⊆ J , so χJ(x1) = 1,
χJ(x1) = 0. It follows that ĀΓB̄(x) ⊆P. Since P is a RFPI
of M either Ā ⊆ P or B̄ ⊆ P either A ⊆ J or B ⊆ J. Hence
J is a prime ideal of M.

Theorem III.20. Let P be a RFPI of M and let MP = {x1 ∈
M : P (x1) = p(0)}. Then MP is a prime ideal of M.

Proof: Let x1, x2 ∈ MP . Then P (x1) = P(0) and p(x2)
= P(0). Thus aprP (x1 − x2) ≥ aprP (x1) ∧ aprP (x2) =
aprP (0) and apr

P
(x1 − x2) ≤ apr

P
(x1)∨ apr

P
(x2) =

apr
P

(0). Since P is a RFI, aprP (0) = aprP (0α(x1 − x2)
≥ aprp(x1 − x2) and apr

P
(0) = apr

p
(0α(x1 − x2) ≤

apr
P
(x1 − x2). x1 − x2 ∈ Mp and let x2 ∈ M and let

x1 ∈ MP . Then aprp(x2αx1) ≥ aprp(x1) = aprp (0) and
apr

P
(x2αx1) ≤ apr

P
(x1) = apr

P
(0). Therefore x2αx1 ∈

MP Hence MP is an ideal of M. Let J and K are ideals of
M such that JΓK ⊆ MP .
Define A = P (0)(χJ , χJ) and B=P (0)(χK , χK), Where
P (0)(χJ , χJ) = (aprp(0) χJ , apr

p
(0) χJ) and P(0)(χK ,

χK) = (aprP (0) χK , apr
P
(0) χK). Then to prove

A and B are RFI of M. Let x1 ∈ M, Suppose that
AΓB (x) = (0,1) then AΓB ⊆ P. Also let AΓB (x) ̸=
(0,1) aprAΓB(x) = ∨

x1=x2αx3

[aprA(x2) ∧ aprB(x3)]

= ∨
x1=x2αx3

[aprP (0)χJ(x2) ∧ aprP (0) χK(x3)] ̸= 0

and apr
AΓB

(x) = ∧
x1=x2αx3

[ apr
A
(x2) ∨ apr

B
(x3)] =

∧
x1=x2αx3

[apr
P
(0)χJ(x2) ∨ apr

P
(0) χK(x3)] ̸= 1. Thus

there exist x2, x3 ∈ M with x1 = x2αx3 such that aprp(0)
χJ(x2) ∧ aprp(0) χK(x3) ̸= 0 and apr

P
(0) χJ(x2) ∨

apr
P
(0) χK(x3) ̸= 1. Thus x2 ∈ J and x3 ∈ K, that is,

x1 = x2αx3 ∈ JK ⊆ MP . So P(x) = P(0) that is, AΓB ⊆
P. Since P is a RFPI and A, B are RFI, either A ⊆ P or B
⊆ P. Suppose A ⊆ P. Then P (0)(χJ , χJ ) ⊆ P. Assume J⊆
MP . Then there exists a ∈ J such that a /∈ MP . Thus P(a)
̸= P(0) and aprp(a) < aprp(0) and apr

p
(a) > apr

p
(0).

Then aprA(a) = aprp(0)χJ(a)= aprp(0) > aprp(a) and
apr

A
(a) = apr

p
(0)χJ = 0 ≤ apr

p
(0) < apr

p
(a). This

is the contradict the assumption A ⊆ P. So J ⊆ MP . By
similarly to show if B ⊆P then K ⊆ MP . Hence MP is a
prime ideal.

IV. CONCLUSION

RS theory has a wide range of application potential.
Designed with an innovative approach RS theory is a useful
information-processing tool that has found extensive appli-
cations in various fields. In addition to addressing new un-
certain information systems, RS is also useful in optimizing
many existing soft computing techniques. Various structures
are being visualized in a new way by researchers. In this
article, we discussed the RFPI in the Γ Ring structure. In
the future, rough fuzzy concepts can be applied to various
algebraic structures like Γ semirings, Γ modules, Γ fields,
etc.
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