
A Greedy Randomized Block Coordinate Descent
Algorithm with k-means Clustering for Solving

Large Linear Least-squares Problems
Ke Zhang, Chun-Ting Liu and Xiang-Long Jiang

Abstract—By exploiting the column partitioning using the
k-means clustering, we develop a greedy randomized block
coordinate descent algorithm for solving large-scale linear least
squares problems. The proposed method works on submatrices
of the coefficient matrix, which dramatically reduces the com-
putational time and iterations steps. We prove that the new
algorithm converges to the unique solution of the least squares
problem with full-rank overdetermined coefficient matrix. The
numerical performance of the presented method is validated in
comparison with some existing randomized coordinate descent
counterparts.

Index Terms—coordinate descent method, GRCD, linear least
squares problem, randomized iterations.

I. INTRODUCTION

WE consider solving the linear least squares problem
in the form

Ax ≈ b, (1)

or equivalently,
min
x∈Rn

‖b−Ax‖22,

where A ∈ Rm×n, b ∈ Rm and x ∈ Rn. Throughout this
paper, we are concerned with the most commonly occurring
case when m > n and rank(A) = n.

Least squares problems can be found in varying fields,
including statistics, image reconstruction and control [9],
[13], [24], [27]. This has aroused revived interest in de-
veloping efficient numerical methods for solving (1); the
option among them can be problem-dependent and involves
trade-offs among accuracy, efficiency, and stability. The first
class of methods for solving (1) is the direct methods.
For example, the normal equations method which requires
simply the matrix multiplication and Cholesky factorization
is perhaps the simplest to implement. However, the condition
number of the coefficient matrix in the normal equations is
squared. The other well-known direct methods for solving
(1) are the orthogonalization methods. Among them, the
Householder method highlights itself for its efficiency and
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accuracy. For more about direct methods for solving (1), we
refer to the monographs [9], [18] and references therein.

In general, the foregoing direct methods work well for
solving (1) of small-to-medium size. However, when the size
is extremely large, the iterative methods are often preferred
and in many cases become the only choice [8]. Among
them, the randomized extended Kaczmarz (abbreviated to
REK) method [32] and the randomized coordinate descent
(abbreviated to RCD) method [19] have received much
attention over the past decades. The REK method breaks
the barrier of the classical Kaczmarz method [16] and the
randomized variant (abbreviated to RK) [25] in solving (1)
by knitting two stages together; the first stage is a randomized
orthogonal projection aimed for computing the the projection
of b onto the orthogonal complement of the column space of
A, while the second is for approximating the least squares
solution via the RK method. More recent developments on
RK, REK and related topics are available in, to name a few,
[6], [2], [7], [11], [21], [30], [31].

Unlike the REK method, the RCD method [19] projects the
current residual vector onto the the orthogonal complement
of the working column vector of A such that the norm
of the residual vector in the next iteration is minimized,
where the working column vector is chosen as per the impor-
tance sampling of the columns. Ma et al. provide a unified
theoretical finding of RK and RCD and draw connections
between them [22]. In [11], Du presents some tighter bounds
for the convergence of REK and an extended version of
RCD discussed in [22]. In [12], Dumitrescu unravels the
relationship between REK and RCD and concludes that
RCD requires fewer operations for a given residual-based
termination criterion. In [3], Bai et al. come up with an exact
formula for residuals generated by the RCD method, based
on which they estimate an upper bound for the convergence
rate of RCD. To speed up the convergence of RCD, Bai
and Wu incorporate the greedy technique used in [4] into
the framework of RCD and propose a greedy randomized
coordinate descent (GRCD for short) method [5]. Zhang and
Guo [29] present a relaxed variant of GRCD by introducing
a parameter to the index set which adds more flexibility into
the implementation of GRCD. To further exploit information
of the index set in GRCD, Tan and Guo [26] select multiple
columns independently from the index set and cyclically
update the iterate for a user-prescribed number of times.
Following a similar reasoning, Chen and Huang [10] put
forth a block variant of GRCD by using all columns from
the index set in GRCD at each iteration. By exploiting all
coordinates from the index set in GRCD, Li and Zhang
[20] come up with a greedy block Gauss-Seidel (GBGS)
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method. We refer to [28] for more details on coordinate
descent methods and their application in solving optimization
problems.

For linear systems or least squares problems of large scale,
it is inspiring to transform a high-dimensional problem into
a lower one that still preserves the essence of the original
information. This is the main idea of dimension reduction. In
the context of solving consistent linear systems, two authors
of this work [15] have successfully applied the clustering
algorithm [23] to the rows of the original linear system
such that only a much smaller linear system needs to be
handled. Following this philosophy, we propose a novel
greedy randomized block coordinate descent algorithm with
k-means clustering. Instead of applying the k-means method
to rows of the coefficient matrix A as done in [15], we
impose the k-means clustering on columns of A, resulting
in a column partitioning of A. By doing so, the remaining
process of GRCD only needs to be enforced on a smaller
linear least squares problem, which can be very effective
in reducing the number of iterations and CPU time. The
resulting algorithm is called the greedy randomized block
coordinate descent with k-means clustering (GRBCD(k)).

In this paper, we use ‖A‖F to denote the matrix Frobenius
norm and ‖ · ‖2 the 2-norm of a vector. The symbol A†

stands for the Moore-Penrose pseudoinverse. The transpose
of a matrix (or vector) is given by (·)T . The smallest nonzero
singular value and its largest peer of a matrix are represented
by σmin and σmax, respectively. The jth column from a
matrix A is indicated with A(j). The range of a matrix A
is given by R(A). The least-norm least-squares solution of
(1) is represented by x∗. The symbol [n] abbreviates the set
{1, . . . , n}.

This work is organized as follows. In Section II, we review
the randomized coordinate descent method and its greedy
peer. In Section III, we clarify the motivation, algorithmic
details and convergence analysis of the proposed algorithm.
In Section IV, we carry out some numerical experiments to
verify the effectiveness of GRBCD(k) when compared with
some other RCD-type methods. In Section V, we conclude
this paper by discussing some potential future work.

II. THE RANDOMIZED COORDINATE DESCENT METHOD
AND ITS GREEDY VARIANT

In this section, we introduce the randomized coordinate de-
scent (abbreviated to RCD) method [19] and the greedy ran-
domized coordinate descent (abbreviated to GRCD) method
[5]. These two methods allow a better insight into our new
method in Section III.

Let us proceed the discussion with RCD. In its sim-
plest form, the RCD method randomly selects a canonical
coordinate vector as the search direction with probability
proportional to the ratio below

Pr(j = jk) =
‖A(jk)‖2

‖A‖2F
, jk ∈ [n],

where A(jk) is the jkth column of the matrix A and [n] =
{1, . . . , n}. Then the iterate is updated as

xk+1 = xk +
AT(jk)(b−Axk)

‖A(jk)‖22
ejk , k = 0, 1, . . .

Algorithm 1 The GRCD algorithm

Input: A, b, x0 and l
Output: xl

1: for k = 0, 1, . . . , l − 1 do
2: Compute

εk =
1

2‖AT rk‖22
max

1≤j≤n

|AT(j)rk|
2

‖A(j)‖22
+

1

2‖A‖2F
.

3: Define

Vk =
{
j
∣∣|AT(j)rk|2 ≥ εk‖AT rk‖22‖A(j)‖22

}
.

4: Let sk = AT rk and compute the jth entry of the
vector s̃k via

s̃
(j)
k =

{
s

(j)
k , if j ∈ Vk,

0, otherwise.

5: Select jk ∈ Vk as per Pr(j = jk)= |s̃
(jk)

k |2

‖s̃k‖22
.

6: Set xk+1 = xk +
s
(jk)

k

‖A(jk)‖22
ejk .

7: end for

with ejk ∈ Rn the jkth column of the identity matrix. It is
justified that RCD is linearly convergent in expectation to
the unique solution in [19]. Furthermore, the RCD method
can enjoy a fast convergence if A is well conditioned with
all singular values far from zero; see [19] for more details.

In implementing the RCD method, the current iterate xk
is projected onto AT(jk)Ax = AT(jk)b. Intuitively, we attempt
to project rk = b−Axk to the vertical space of the working
column A(jk) where the angle between them is relatively
large. Moreover, if |AT(i)rk| > |A

T
(j)rk| for i, j ∈ [n], then

the ith column should be prioritized with a higher probability
than the jth one. With this insight in hand, Bai and Wu [5]
construct a nonempty index set Vk that captures large entries
of AT rk and selects the working column from Vk according
to certain probability criterion. The resulting procedure is
called the greedy randomized coordinate descent (abbreviat-
ed to GRCD) method. Numerical experiments in [5] justify
the superiority of GRCD over RCD with CPU speed-up as
high as 6.43 for solving inconsistent linear systems. We will
not elaborate on GRCD but refer to Algorithm 2 for more
algorithmic detail.

III. A GREEDY RANDOMIZED BLOCK COORDINATE
DESCENT ALGORITHM WITH k-MEANS CLUSTERING

In this section, we propose a greedy randomized
block coordinate descent algorithm with k-means clustering
(GRBCD(k)). As explained in Section II, the GRCD algo-
rithm often outperforms RCD for solving linear least squares
problems. However, coefficient matrices in the least squares
problems considered in [5] are often of much fewer columns
than rows; see [5, Section 4]. In fact, the effectiveness of
GRCD may decrease as the number of columns increases.
RCD is also afflicted by the same problem. As such, it
motivates us to find an effective way to circumvent it.

In multivariate statistics, the k-means clustering algorithm
is considered to be one of the best algorithms for grouping
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data into different clusters [14], [23]. In [15], two authors of
this work have successfully integrated the k-means clustering
into the greedy randomized Kaczmarz algorithm, yielding an
effective method for solving consistent linear systems. To
improve the numerical efficiency of GRCD, we employ the
k-means clustering to yield a column partitioning (instead of
the row partitioning in [15]) for GRCD such that only a few
columns of A are treated per iteration.

Before diving into GRBCD(k), we shall give a sketch
of the k-means. The k-means clustering is an unsupervised
learning algorithm that exploits data patterns and classifies
the unlabeled data X into different clusters B1, . . . , Bk, i.e.,

k⋃
i=1

Bi = X and Bi ∩Bj = ∅,

where ∅ is an empty set and i 6= j. The number of clusters k
is pre-determined. For each iteration in k-means, we random-
ly initialize k points (a.k.a. means or cluster centroids). Then
each item will be classified according to its nearest mean
and the average of all items in that cluster aggregated so far
shall be selected as a new centroid. The process is repeated
within a user-prescribed maximum number of iterations and
finally yields the required clusters. More details about the
implementation and application of the clustering algorithms
can be found in [1] and references therein.

Having said that, we are ready to introduce a greedy
randomized block coordinate descent algorithm with k-
means clustering (GRBCD(k)) which is given in Algorithm
2. Different from GRCD, a column partitioning {τ1, . . . , τk}
is obtained by employing the k-means at the initial step of
GRBCD(k), where τi ⊆ [n] for i = 1, . . . , k. The cluster
centers of each block Aτi , i.e., Āτi ’s, are allocated into
a condensed matrix Ā = [Āτ1 , . . . , Āτk ] ∈ Rm×k. In the
remaining procedure of GRBCD(k), one only needs to work
on the submatrix Ā or Āτi rather than the whole matrix A,
which presents the major difference between GRBCD(k) and
GRCD. We do not dwell on it but refer to Algorithm 2 for
more algorithmic details.

The following lemma shows that the index set Uj defined
in Algorithm 2 is well-defined.

Lemma 1. The set Uj defined in Algorithm 2 is nonempty.

Proof: The proof is motivated by the analysis in [5]. Let

|ĀTt rt|2

‖Āt‖22
= max

1≤i≤k

|ĀTτirj |
2

‖Āτi‖22
for t ∈ [k].

Since

max
1≤i≤k

|ĀTτirj |
2

‖Āτi‖
2
2

k∑
i=1

‖Āτi‖
2
2

‖Ā‖2F

|ĀTτirj |
2

‖Āτi‖
2
2

≥ 1,

then we have

max
1≤i≤k

|ĀTτirj |
2

‖Āτi‖
2
2

‖ĀT rj‖22
≥ 1

‖Ā‖2F
.

As a result, it holds that

|ĀTt rt|
2

‖Āt‖22
‖ĀT rj‖22

=

max
1≤i≤k

|ĀTτirj |
2

‖Āτi‖
2
2

‖ĀT rj‖22
≥

max
1≤i≤k

|ĀTτirj |
2

‖Āτi‖
2
2

2‖ĀT rj‖22
+

1

2‖Ā‖2F
= εj ,

Algorithm 2 The GRBCD(k) algorithm

Input: A, b, x0, l and k
Output: xl

1: Imposing the k-means clustering on the column set [n]
of A such that a partitioning {τ1, . . . , τk} is obtained,
where the set τi ⊆ [n] for i = 1, . . . , k. The cluster
centers of each block Aτi , i.e., Āτi ’s, are condensed into
an m× k matrix Ā = [Āτ1 , . . . , Āτk ].

2: for j = 0, 1, . . . , l − 1 do
3: Compute

εj =
1

2‖ĀT rj‖22
max

1≤i≤k

|ĀTτirj |
2

‖Āτi‖22
+

1

2‖Ā‖2F
.

4: Define

Uj =
{
τj
∣∣|ĀTτjrj |2/‖ĀT rj‖22 ≥ εj‖Āτj‖22} .

5: Compute the τ th entry s̃(τ)
j of the vector s̃j via

s̃
(τ)
j =

{
ĀTτ rj , if τ ∈ Uj ,
0, otherwise.

6: Select τj ∈ Uj as per Pr(τ=τj)=
|s̃(τ)j |

2

‖s̃j‖22
.

7: Set xj+1 = xj + IτjA
†
τjrj with Iτj ∈ Rn×|τj | a

submatrix of the identity matrix indexed from the set
τj and |τj | the cardinality of τj .

8: end for

where εj is defined at step 3 of Algorithm 2. It follows that

|ĀTt rt|2 ≥ εj‖ĀT rj‖22‖Āt‖22,

that is, there exists at least an entry t ∈ Uj such that Uj is
nonempty.

The following result [4] that characterizes the lower bound
of the norm of a matrix-vector product will be used in the
proof of our main theoretical finding.

Lemma 2. For any vector z ∈ R(AT ), it holds that

‖Az‖22 ≥ σ2
min(A)‖z‖22.

We are now in a position to establish the convergence re-
sult of GRBCD(k) which is precisely stated in the following
theorem.

Theorem 1. For any initial guess x0 ∈ Rn, the iteration
sequence {xj}∞j=0 generated by GRBCD(k) converges to
the unique least-squares solution x∗ of (1) in expectation.
Moreover, for j = 1, 2, . . ., we have

E‖xj − x∗‖2ATA ≤ (1− αη2

β
)j‖x0 − x∗‖2ATA, (2)

where α ≤ σ2
min(A†τ ), σ2

max(A†τ ) ≤ β and η ∈ (0, 1].

Proof: From Algorithm 2, we know that xj+1 = xj +
IτjA

†
τjrj . Thus

A(xj+1 − xj) = AτjA
†
τj (b−Axj)

= AτjA
†
τj (bR(A) + bR(A)⊥ −Axj)

= AτjA
†
τj (bR(A) −Axj)

= AτjA
†
τjA(x∗ − xj), (3)
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where we have used A†τj bR(A)⊥ = 0 and Ax∗ = bR(A).
Hence A(xj+1 − xj) belongs to R(AτjA

†
τj ), the column

space of AτjA
†
τj . On the other hand, since

A(xj+1 − x∗) = A(xj − x∗ + IτjA
†
τj (b−Axj))

= A(xj − x∗) +AτjA
†
τjA(x∗ − xj)

= (I −AτjA†τj )A(xj − x∗),

then multiplying both sides of the above equality with ATτj
yields

ATτjA(xj+1 − x∗) = ATτj (I −AτjA
†
τj )A(xj − x∗)

= ATτjA(xj − x∗)−ATτjAτjA
†
τjA(xj − x∗)

= ATτjA(xj − x∗)−ATτjA(xj − x∗)
= 0.

Thus (A†τj )
TATτjA(xj+1 − x∗) = 0, i.e., A(xj+1 − x∗) is

orthogonal to AτjA
†
τj , which coupled with (3) shows that

A(xj+1−xj) is orthogonal to A(xj+1−x∗). By Pythagorean
theorem, we obtain that

‖A(xj+1−x∗)‖22 = ‖A(xj−x∗)‖22−‖A(xj+1−xj)‖22. (4)

By taking the conditional expectation on both sides of (4),
we obtain that

Ej+1‖A(xj+1 − x∗)‖22
= ‖A(xj − x∗)‖22 − Ej+1‖A(xj+1 − xj)‖22
= ‖A(xj − x∗)‖22 − Ej+1‖(A†τj )

TATτjA(xj − x∗)‖22
= ‖A(xj − x∗)‖22 −∑

τj∈Uj

|ĀTτjrj |
2∑

τ∈Uj
|ĀTτ rj |2

‖(A†τj )
TATτjA(xj − x∗)‖22, (5)

where in the second equality we have used the property
(AτjA

†
τj )

T = AτjA
†
τj . Since A†τj = (ATτjAτj )

−1ATτj , then

ATτjA(xj − x∗) ∈ R(ATτj ) = R(A†τj ). (6)

It follows from Lemma 2 and (6) that the equation (5) renders
the inequality

Ej+1‖A(xj+1 − x∗)‖22
≤ ‖A(xj − x∗)‖22 −∑

τj∈Uj

|ĀTτjrj |
2∑

τ∈Uj
|ĀTτ rj |2

σ2
min(A†τj )‖A

T
τjA(xj − x∗)‖22.(7)

Denote by r̃j = A(x∗ − xj) with r̃j = r̃j1 + r̃j2 , where
r̃j1 ∈ R(Aτj ) and r̃j2 ⊥ R(Aτj ). Then ATτj r̃j2 = 0. Let
‖r̃j1‖ = ηj‖r̃j‖ with ηj ∈ (0, 1]. Thus

‖ATτjA(xj − x∗)‖22
= ‖ATτj r̃j1‖

2
2

≥ σ2
min(Aτj )‖r̃j1‖22

= η2
jσ

2
min(Aτj )‖A(xj − x∗)‖22. (8)

Combining (7) and (8) gives

Ej+1‖A(xj+1 − x∗)‖22
≤ ‖A(xj − x∗)‖22 −∑

τj∈Uj

|ĀTτjrj |
2∑

τ∈Uj
|ĀTτ rj |2

σ2
min(A†τj )σ

2
min(Aτi)η

2
j ‖A(xj−x∗)‖22

≤ (1−
αη2

j

β
)‖A(xj−x∗)‖22,

where α ≤ σ2
min(A†τ ), σ−2

min(Aτ ) = σ2
max(A†τ ) ≤ β and

ηj ∈ (0, 1]. Taking expectations on both sides gives

E‖xj+1 − x∗‖2ATA ≤ (1−
αη2

j

β
)‖xj − x∗‖2ATA.

Let η = min
1≤i≤j

{ηi} ∈ (0, 1]. Then the inequality (2) follows

by induction on j.

Remark 1. In Algorithm 2, if k = n, then GRBCD(k)
reduces to GRCD. However, we stress that the column
partitioning used in GRBCD(k) is effective in reducing the
computing time and number of iterations. In fact, numerical
examples in the next section show that GRBCD(k) often
outperforms GRCD even for relatively small values of k,
say k ≤ 10; see Section IV for more numerical evidence.

IV. NUMERICAL EXPERIMENTS

In this section, we compare GRBCD(k) with the ran-
domized coordinate descent (RCD) [19], greedy randomized
coordinate descent (GRCD) [5], and greedy block Gauss-
Seidel (GBGS) [20] methods to illustrate its efficiency. All
experiments were done on a laptop with AMD Ryzen 7
4800U Radeon Graphics @1.80 GHZ 16.0 GB RAM using
MATLAB(R2022a). Numerical performance of the four al-
gorithms is appraised regarding CPU time in seconds (CPU)
and the number of iteration steps (IT). Specifically, CPU
and IT denote the average quantities by running each of the
four algorithms for five times. To delineate the advantage
of GRBCD(k) over its counterparts, we consider the CPU
speed-up, viz.,

speed− upRCD = CPU of RCD
CPU of GRBCD(k) ,

speed− upGRCD = CPU of GRCD
CPU of GRBCD(k) ,

speed− upGBGS = CPU of GBGS
CPU of GRBCD(k) .

The initial guess is set as x0 = 0. For a fair comparison,
we follow the practice adopted in [20] by setting the param-
eter θ in the GBGS method to be 0.5. All experiments are
terminated when the squared relative solution error (RSE) at
the jth iteration is RSE < 10−6 or when IT exceeds the
maximum 200000 steps, where

RSE =
‖xj − x∗‖22
‖x∗‖22

.

A symbol “–” is used to indicate that the underlying algo-
rithm fails to reach the required accuracy within the above-
mentioned conditions. For the linear least squares problem
(1), the right-hand side vector b is defined as b = Ax∗ + r,
where the solution x∗ is generated by the MATLAB function
rand and the nonzero vector r ∈ null(AT ) with null(AT )
being figured out by invoking the MATLAB function null.
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Fig. 1: CPU and IT against k for randn matrices.

The coefficient matrix A in (1) is either given by the
MATLAB built-in function randn or from some real-world
problems [17]; see Table I for the matrix size, density and
condition number of the test matrices.

This section is divided into two subsections. Each subsec-
tion serves a specific purpose. In Section IV-A, we investigate
the impact of k on the performance of GRBCD(k) and come
up with some practical choices of k. In Section IV-B, we
validate the effectiveness of GRBCD(k) in comparison with
RCD, GRCD and GBGS.

A. Choices of k for GRBCD(k)

In this subsection, we look at how the parameter k affects
the performance of GRBCD(k) in terms of CPU and IT. Test
problems with coefficient matrices generated by randn or
from the SuiteSparse Matrix Collection [17] are employed
to track suitable choices of k.

For least squares (1) with coefficient matrices given by
randn, as illustrated in Figure 1, the CPU time often
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Fig. 2: CPU and IT against k for real-world problems.

TABLE I: Properties of the test matrices.

Matrix Size Density cond(A)

abtaha1 14956× 209 1.68% 12.23
ash608 608× 188 1.06% 3.3729
ash958 958× 292 0.68% 3.2014

well1033 1033× 320 1.43% 166.1333
cariT 1200× 400 31.83% 3.1292

rosen10T 6152× 2056 0.51% 194.0816
lp_maros_r7T 9408× 3136 0.49% 2.3231

exhibits a V -shaped curve; It initially decreases as the value
of k increases and then rises as k goes up. Nevertheless, the
number of iteration steps generally increases as k grows. A
similar observation is also witnessed for linear least squares
problem (1) with the coefficient matrices from real-world
applications; see Figure 2. It can be explained as follows. If k
is small, or equivalently, the number of blocks obtained from
the column partitioning is small, then one needs to deal with
pseudoinverses of some large blocks at step 7 of Algorithm
2, which can be rather time-consuming. Conversely, if k is
chosen to be large, then more iterations are demanded which
in turn may increase the total CPU time. As noted in Remark
1, GRBCD(k) is mathematically equivalent to GRCD when
k = n, which implies the former can converge much faster
than the latter in terms of CPU and IT; see Section IV-B.

From Figures 1-2, we conclude that a moderate value of
k suffices to yield fast convergence; for instance, choices
with k ≤ 10 often result in sound numerical performance
regarding CPU. In light of this, we use k ≤ 10 for
GRBCD(k), say k = 4, 6, 8 and 10, when compared with
other RCD-type algorithms in the following examples.

B. Numerical comparison of four algorithms
In this subsection, we compare GRBCD(k) with RCD,

GRCD and GBGS in terms of CPU and IT.
The first example involves test problems (1) with coeffi-

cient matrices generated by the MATLAB function randn.
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TABLE II: Numerical results for randn(10000, n) with various values of n.

m× n 10000× 500 10000× 1000 10000× 2000 10000× 3000 10000× 4000

RCD IT 6592.80 14902.00 37753.00 77381.00 144700.00
CPU 21.1567 91.1659 457.3488 1390.4000 3461.0000

GRCD IT 1339.80 3396.00 9821.40 22907.00 43129.00
CPU 4.3390 21.9101 130.7259 422.0608 1047.8000

GBGS IT 36.00 55.00 107.00 187.00 324.00
CPU 0.5134 1.5442 4.3328 10.1941 21.8677

GRBCD(4) IT 16.40 19.60 28.80 41.00 59.80
CPU 0.3178 0.7797 2.4660 4.4643 7.6850

GRBCD(6) IT 26.00 31.40 47.80 71.80 102.00
CPU 0.3669 0.8221 2.0009 4.1355 6.9736

GRBCD(8) IT 34.40 43.60 76.40 98.60 142.60
CPU 0.3971 0.8760 2.1894 3.9186 6.9888

GRBCD(10) IT 48.40 72.60 99.80 140.80 191.60
CPU 0.4632 1.0874 2.4064 4.4296 7.4184

speed− upRCD 66.5724 116.9243 228.5715 354.8206 496.3003

speed− upGRCD 13.6532 28.1007 65.3335 107.7070 150.2523

speed− upGBGS 1.6155 1.9805 2.1654 2.6015 3.1358

TABLE III: Numerical results for randn(m, 2000) with various values of m.

m× n 5000× 2000 10000× 2000 20000× 2000 30000× 2000 40000× 2000

RCD IT 74444.00 37778.00 29528.00 26103.00 25513.00
CPU 456.6743 442.5031 731.1411 963.3075 1241.4000

GRCD IT 22230.00 10109.00 6768.60 5809.60 5349.00
CPU 138.2274 122.5926 179.1934 214.7894 255.7404

GBGS IT 294.00 105.00 59.00 46.00 41.00
CPU 5.4427 4.3901 5.6978 8.0676 10.2764

GRBCD(4) IT 60.00 30.00 20.40 17.40 16.60
CPU 1.53 2.2198 4.4185 6.2648 9.2155

GRBCD(6) IT 98.20 48.60 33.00 26.60 23.80
CPU 1.5425 2.0189 4.1049 5.6995 8.3161

GRBCD(8) IT 160.80 65.60 45.00 39.80 34.60
CPU 1.7328 2.1024 3.8251 5.8199 9.4648

GRBCD(10) IT 244.20 90.80 53.60 52.00 49.00
CPU 2.1400 2.3280 4.0465 6.4192 9.8974

speed− upRCD 298.4799 219.1803 191.1430 169.0161 149.2767

speed− upGRCD 90.3447 60.7225 46.8467 37.6857 30.7524

speed− upGBGS 3.5573 2.1745 1.4896 1.4155 1.2357

Iteration steps and CPU time for varying values of n or
m are tabulated in Tables II-III. In Table II, we run these
four algorithms for different randn matrices with changing
number of columns. As suggested in Section IV-A, the values
k = 4, 6, 8 and 10 are picked for GRBCD(k). We are
ready to give some remarks. Both GBGS and GRBCD(k)
outperform RCD and GRCD regarding CPU and IT. More-
over, GRBCD(k) outstrips the others when k is chosen
properly. Take the case 10000 × 4000 for example. The
speed-up of GRBCD(6) over RCD is up to 496.3003. It
should be noted that the speed-up in Table II is computed
by the ratio of CPU time by the corresponding algorithm
to that of shortest CPU time by GRBCD(k); for instance,
in the case 10000 × 4000, the speed-up 3.1358 is figured
out by the ratio of 21.8677 (CPU time GBGS) to 6.9736
(the shortest CPU by GRBCD(k)). Such advantage offered
by GRBCD(k) becomes more pronounced as n grows. In
Table III, we test these four algorithms for different randn

matrices with varying number of rows. As reported in Table
III, it is evident that the column partitioning brought by k-
means clustering works well in reducing CPU and IT; for
example, the speed-ups of GRBCD(4) over RCD, GRCD
and GBGS are respectively 298.4799, 90.3447 and 3.5573
for the 5000× 2000 case.

In the second example, we compare GRBCD(k) with
RCD, GRCD and GBGS for test matrices from real-world
problems, as shown in Table IV. Note that the superscript
“T ” in Table IV denotes the transpose of the associated
matrix; for example, cariT stands for the transpose of the
matrix cari. In Table IV, analogous to the previous example
for randn matrices, GRBCD(k) exceeds its counterparts
for all test matrices in terms of CPU time. Furthermore,
GRBCD(k) and GBGS succeed even when RCD or GRCD
fail to converge within the maximum number of iterations;
see, for instance, the cases well1033 and rosen10T in
Table IV.
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TABLE IV: Numerical results for test matrices from real-world problems.

name abtaha1 ash608 ash958 well1033 cariT lp_maros_r7T rosen10T

RCD IT 92385.00 3520.40 5930.80 – 5198.40 45077.00 –
CPU 191.6012 0.1488 0.5942 – 0.9304 806.6439 –

GRCD IT 13655.00 666.40 1004.40 – 1203.20 10565.00 30053.00
CPU 28.6108 0.0424 0.1249 – 0.3536 196.2309 250.3977

GBGS IT 974.00 54.00 55.00 97634.00 70.00 92.00 806.00
CPU 8.2779 0.0154 0.0429 37.0455 0.1083 5.7758 13.4299

GRBCD(2) IT 139.40 6.92 6.90 9288.80 14.00 7.80 69.40
CPU 0.5147 0.0154 0.0410 3.2717 0.0529 12.3468 3.9513

GRBCD(4) IT 453.30 14.42 13.80 8472.20 34.00 17.40 159.80
CPU 1.0618 0.0138 0.0382 2.2444 0.0482 7.7849 3.9387

GRBCD(6) IT 726.40 22.86 21.30 30673.80 50.00 26.00 218.20
CPU 1.3493 0.0123 0.0395 6.1613 0.0547 6.8316 4.2800

GRBCD(8) IT 1306.30 30.78 28.90 46686.20 70.30 38.60 259.00
CPU 2.1397 0.0129 0.0389 8.9176 0.0579 5.6665 4.1988

GRBCD(10) IT 1637.90 39.98 37.20 76588.20 80.40 44.80 309.00
CPU 2.5633 0.0122 0.0408 14.1778 0.0618 5.7824 4.5684

speed− upRCD 372.2580 12.1967 15.555 – 19.3029 142.3531 –

speed− upGRCD 55.5873 3.4754 3.2696 – 7.3361 34.6300 63.5736

speed− upGBGS 16.0830 1.2623 1.1230 16.5057 2.2469 1.0193 3.4097

We wrap up this section by concluding that GRBCD(k)
can be very competitive and is suitable for solving large
linear least squares problem with large number of columns.

V. CONCLUSIONS

We present a greedy randomized block coordinate descent
algorithm for solving large linear least squares problems.
The k-means clustering algorithm is used to extract column
blocks from the coefficient matrix. We establish the con-
vergence result for the proposed approach and demonstrate
that it is very promising in comparison with some other
randomized coordinate descent methods. Such advantage
becomes more pronounced when the number of columns in
the coefficient matrix is relatively large.

Finally, we stress that the selection of k in GRBCD(k)
merits further investigation, despite the fact that automati-
cally determining the number of clusters has been one of the
most difficult problems in cluster analysis. In fact, as already
stated in [15], more sophisticated statistical techniques [1],
[14] can be exploited to yield sound choices of k.
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