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Abstract—To precisely estimate blur kernels (BKs) and obtain
high-quality latent images (LIs), we present an efficient blind
image deblurring (BID) algorithm via a gradient prior and
an enhanced sparse prior. The proposed algorithm decomposes
BID into two phases: multiscale blur estimation (MSBE) and
image deconvolution (ID). The former focuses on precise BKs,
whereas the latter focuses on high-quality LIs. In the MSBE
phase, significant image gradients and an enhanced sparse
prior are used to estimate BKs. To this end, we build an
MSBE model using a hyper-Laplacian gradient (HLG) prior
and sparsity-inducing l2,1-regularization. l2,1-regularization im-
poses enhanced sparsity on the BKs to be estimated, and
the HLG prior characterizes the true distribution of image
gradients. We use a method derived from half-quadratic split-
ting (HQS) to handle the built MSBE model by decoupling it
into simpler subproblems. Subsequently, these subproblems are
solved by efficient and concise methods. In the MSBE phase,
we also adopt a multiscale process to avoid local optima of
the estimated BKs and adaptively update a penalty parameter
to accelerate the iteration. In the ID phase, SotA restoration
algorithms are employed by the proposed BID algorithm to
obtain competitive final LIs. The experiments are conducted on
several baseline datasets to evaluate our BID algorithm. Under
the evaluation criteria of success-rate (SR), SSDE, PSNR, SSIM,
vision effect, and running time (RT), our study shows apparent
advantages compared with some SotA BID algorithms. These
advantages include but are not limited to reducing the RT;
obtaining higher PSNRs, SSIMs, and SRs; decreasing SSDEs;
and obtaining high-quality LIs without artifacts.

Index Terms—BID, blur estimation, image deconvolution,
sparse priors, gradient priors, HQS.

I. INTRODUCTION

IN daily life, exciting scenes and moments are often en-
countered, and the failure to capture clear images of these

scenes is undoubtedly regrettable. With the popularization
of digital imaging devices, opportunities to experience this
regret have increased. To compensate for this, researchers
have taken several remedial measures, among which BID
is the most effective and economical. BID aims to estimate
BKs and obtain LIs from given degraded images and selected
priors. For an extended period, the consensus of researchers
in this field has been that the true and effective statistical
characteristics of images and blur are the foundation for
solving BID problems. Therefore, in the following review
of related works, we mainly focus on the priors of BKs and
LIs used by SotA BID algorithms.

Because the priors of LIs and BKs are statistical concepts,
BID algorithms were first proposed based on the MAP or
Bayesian frameworks. Fergus et al. [1] reported that image
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gradients follow heavy-tailed distributions and that BKs are
sparse; therefore, they used a Gaussian mixture model and a
sparse prior to characterize them. Dong et al. [2] applied a
hyper-Laplacian prior and l1-regularization to LIs and BKs,
respectively. To eliminate outliers, they presented a new data-
fidelity to replace the l2-norm-based one. Under the MAP
framework, Javaran et al. [3] used first-order and second-
order gradient priors to estimate LIs and a l1-regularization
model to estimate sparse BKs. To avoid MRF defects, Liu
et al. [4] developed an SGF prior for characterizing the
statistical distribution of images.

Due to the drawbacks of the MAP and Bayesian frame-
works, optimization-based algorithms have become dominant
candidates in this field. Pan et al. [5] presented a BID
algorithm using an HL prior of LIs and l1-sparsity of BKs
to eliminate outliers. Yan et al. [6] presented an EC prior de-
rived from BC and DC priors and used it with a gradient prior
for BID. Zhang et al. [7] utilized a gradient prior and a sparse
prior on BKs to achieve good sparseness and remove noise.
When modeling the BID problem, Jin et al. [8] employed
the lp-norm to normalize sparse BKs and adopted a gradient
prior for LIs. To accurately estimate Bks, Bai et al. [9] first
constructed skeleton images with bimodal distributions and
subsequently designed a gradient prior based on the graph for
these images. Yang et al. [10] presented a new BID algorithm
based on edge selection by embedding a gradient prior into
a VEM method. Because the maximum gradient of an image
patch decreases after being blurred, Chen et al. [11] presented
an LMG prior for LIs to boost BID. In the frequency domain,
Anwar et al. [12] presented a CS prior that regards LIs as
sparse bandpass components of similar clear images. Liu
et al. [13] imposed an SA prior and a Gaussian prior on
LIs and BKs to reduce artifacts. Sheng et al. [14] associated
BID with depth images represented by the MRF prior and
estimated LIs by alternating between deblurring and depth
filling. In the spatial domain, Pan et al. [15] constructed
a phase-only image prior for directly estimating spatially
sparse BKs. Peng et al. [16] used a sparse prior of features
to restore clear images and BKs to eliminate the influence
of image blur. When handling minimization problems, these
optimization-based BID algorithms primarily adopt methods
such as PALM [17], HQS [18], and ADMM [19].

Recently, BID algorithms that use various deep neural
networks (DNNs) have attracted much attention. DNNs were
initially used to estimate BKs [20] and subsequently used
for image-to-image restoration [21]. Because clear images
and BKs generally do not exist, DNN-based BID algorithms
are heavily dependent on training datasets. This dependency
may introduce uncertainty to BID (as satisfactory results
are not guaranteed) and restrict the generality of these BID
algorithms. For example, Fig. 1 shows a DNN-based BID
algorithm that fails to process degraded images from the
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Fig. 1: Results of Processing the Levin Dataset Using a
DNN-based BID Algorithm

Levin dataset [22].
Currently, typical issues in BID include but are not limited

to the following: the priors adopted are not consistent with
the true gradient distribution of LIs; the noise and adverse
details are not effectively handled, resulting in the failure
of image priors; and the priors sometimes fail to promote
blur sparsity and cause computing difficulties. To address
these existing issues, we focus on optimization-based BID
and propose a novel and efficient algorithm. The proposed
algorithm divides BID into MSBE and ID phases. In the
MSBE phase, an HLG prior and a sparse prior are used to
characterize LIs and BKs, respectively. BKs are robustly es-
timated by effective methods and strategies. In the ID phase,
the estimated BKs and SotA ID algorithms are employed
to obtain the final high-quality LIs. The remaining sections
are described as below. Section II overviews the skeleton
of our work and summarizes its contributions. Section III
builds an MSBE model and presents its solution. Section IV
discusses methods for obtaining final LIs. Section V presents
comprehensive BID experiments on different benchmark
datasets. The final section provides a summary and outlook
for this study.

II. FRAMEWORK OF OUR STUDY

The skeleton of our study is illustrated in Fig. 2. Because
intermediate LIs are prone to detail loss, the proposed algo-
rithm divides BID into two phases, MSBE and ID, to mitigate
unpleasant restoration results. In the MSBE phase, sparse
BKs are robustly estimated by a multiscale process [1].
Specifically, image pyramids are first constructed for blur
estimation, and BKs are subsequently estimated layer-by-
layer, moving from the coarsest one to the finest one, until
full-size BKs are generated. In the ID phase, estimated BKs
are used to obtain the final LIs. Levin et al. [2] noted that
two-phase BID is more effective than estimating BKs and
restoring LIs simultaneously.

The contributions of our BID algorithm are summarized
below.

• We use a precise HLG prior to characterize the LIs and
use a sparse l2,1-regularization to enhance and promote
the sparsity of BKs, generating high-quality BID results.

• The built MSBE model is decoupled into simpler sub-
problems by a method derived from HQS, and the
generated subproblems are efficiently solved using fast

Fourier transforms (FFTs), the GSTq algorithm [23],
and soft-thresholding [24].

• To enhance the robustness of the MSBE phase, we
apply a l0-smoothing algorithm [25] to the gradients of
intermediate LIs to remove adverse details and sharpen
salient edges. We then use refined gradients to estimate
BKs.

• Iterations are accelerated by automatic parameter up-
dates, and a multiscale process is used to avoid local
optimal solutions.

• Robust MSBE results and SotA ID algorithms ensure
high-quality LIs.

III. MSBE PHASE

Supposing that D, b, L, and n are degraded images, BKs,
LIs, and noise, respectively, image degradation is expressed
as

D = b⊗ L+ n, (1)

where ⊗ represents the convolution operation. In practical
applications, D is known, while b and L are unknown.
We cannot obtain ideal BKs or LIs by directly solving (1),
because it is ill-posed. A well-posed BID is expressed as a
minimization problem

(Lk+1, bk+1) = argmin
L,b

1

2
∥b⊗ L−D∥22 +Φ1(L) + Φ2(b),

(2)
where 1

2∥b⊗L-D∥22 ensures that the LIs are consistent with
the corresponding degraded images, and Φ1 and Φ2 are regu-
larizers that enforce priors on LIs and BKs, respectively. For
a vector z=[z1, z2, ..., zm]T , its lp-norm is ∥z∥p=(

∑
i|zi|p)

1
p .

At present, existing SotA BID algorithms adopt statistical
priors, as well as effective optimization schemes, for natural
images and BKs. Therefore, in the following sections, we
elaborate on these key research topics.

A. Built MSBE model

The statistical analysis revealed that the gradient dis-
tribution of the images was heavy-tailed [26]. Although
some novel image priors have been newly presented in
recent years, simple heavy-tailed priors still demonstrate
competitive advantages in artifact removal and computational
efficiency. To precisely model the gradient distribution of LIs,
we impose an HLG prior [27] on the distribution to yield

(Lk+1, bk+1) = argmin
L,b

1

2
∥b⊗L−D∥22+α∥∇L∥ 2

3
+Φ2(b),

(3)
where ∇ is the gradient operator generated by the filters
∇1=[1,-1] and ∇2=[1,-1]T ; ∇L=[∇1L, ∇2L]T is the gra-
dient image of L; and α>0 is a constant that adjusts the
regularization on LIs.

The sparsity of BKs is a simple but dominant prior that
is almost the only reliable and effective prior for complex
MSBE problems in various situations. The sparsity of BKs
can also be exemplified by statistical results on some bench-
mark datasets. For example, as shown in Fig. 3, the statistical
results of 2700 BKs from the Sun dataset [28] support the
sparsity of BKs.
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Fig. 2: Skeleton of Our Study

Fig. 3: Statistics on the BKs from the Sun Dataset. 85%
indicates that the BKs with zero elements no less than 85%,
and 90% and 95% are similar.

To induce the sparsity of BKs, most optimization-based
BID algorithms employ the quadratic l2-norm, l1-norm, and
l0-norm as regularizers. l2-regularization assumes that BKs
satisfy the Gaussian distribution; however, this assumption
is not statistically supported and tends to generate dense
kernels. l0-regularization results in an NP-hard problem
and generates unnatural LIs. To robustly estimate BKs, we
use the l2,1-norm as the regularizer. As an enhanced l1-
regularization, l2,1-regularization not only results in sparser
solutions but also promotes group sparsity to effectively
suppress noise in BKs.

Our MSBE model is ultimately formulated as

(Lk+1, bk+1) = argmin
L,b

1

2
∥b⊗L−D∥22+α∥∇L∥ 2

3
+β∥b∥2,1,

(4)
where β>0 is a constant that adjusts the regularization on
BKs. For a matrix A= [aT1 , aT2 , ... , aTm]T , its l2,1-norm is∑m

1 ∥ai∥2, and ai is a row of A.

B. Solving the Built MSBE Model

Due to the properties of the l 2
3

-norm, (4) is a nonconvex
and nondifferentiable problem, making it challenging to

solve. Considering that HQS exhibits high efficiency and
precision when handling such minimization problems [29],
we derive an efficient method from HQS to solve (4).

Before presenting our method, we first recall the standard
HQS method. Given a minimization problem

min
u

f(u) + g(Gu) (5)

with quadratic f(u), nonquadratic g(Gu), and an operator
G, HQS first converts problem (5) into

min
u,z

{
J(u, z) = f(u) + g(z) +

ρ

2
∥Gu− z∥22

}
(6)

with an auxiliary variable z, and then decomposes prob-
lem (6) into alternating subproblems

min
u

f(u) +
ρ

2
∥Gu− ẑ∥22 (7)

and
min
z

g(z) +
ρ

2
∥Gû− z∥22. (8)

Finally, the generated subproblems are independently han-
dled to obtain solutions to the original problem (5). Accord-
ing to REMARK 2 in [30], { ... , J(uk, zk), J(uk, zk+1),
J(uk+1, zk+1), ... } converges after sufficient iterations. Due
to their good adaptability and performance, HQS and its vari-
ants have also been adopted in many other applications [29],
[31], [32].

Since (4) is a half-quadratic problem, we apply the HQS
strategy, yielding

Lk+1 = argmin
L

∥bk ⊗ L−D∥22 + γ∥∇L−W k∥22, (9)

bk+1 = argmin
b
∥b⊗ Lk+1 −D∥22 + µ∥b− V k∥22, (10)

W k+1 = argmin
W

α∥W∥ 2
3
+

γ

2
∥∇Lk+1 −W∥22, (11)

and

V k+1 = argmin
V

β∥V ∥2,1 +
µ

2
∥V − bk+1∥22, (12)

where the parameters γ and µ are greater than zero.
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C. Solving Subproblems (9) to (12)

For the robustness of MSBE, some simple but efficient
methods are employed by our framework to solve sub-
problems (9) to (12) independently and obtain closed-form
solutions.

1) Obtaining Intermediate LIs: By FFTs [33], the solution
of quadratic (9) is

Lk+1 = F−1

(
F (bk) ◦ F (D) + γF (∇) ◦ F (W k)

F (bk) ◦ F (bk) + γF (∇) ◦ F (∇)

)
, (13)

where F (·) is an FFT operation; F−1(·) and F (·) are its
inversion and conjugate, respectively; and “◦” is the dot
product.

2) Estimating Final BKs: Because the intensity of LIs is
not beneficial for robust blur estimation, we estimate BKs
in a more favorable gradient domain. To eliminate adverse
gradients, we first apply a smoothing algorithm [25] to
the gradients of intermediate LIs and then use the refined
gradients to estimate BKs. Therefore, problem (10) is refor-
mulated as

bk+1 = argmin
b

1

2
∥b⊗∇Lk+1

s −∇D∥22+
µ

2
∥b−V k∥22, (14)

where ∇Lk+1
s is the refined ∇Lk+1 generated by the algo-

rithm of [25]. By FFTs, the solution of quadratic (14) is

bk+1 = F−1

(
F (∇Lk+1

s ) ◦ F (∇D) + µF (V k)

F (∇Lk+1
s ) ◦ F (∇Lk+1

s ) + µ

)
. (15)

To prevent the estimation of BKs, especially large BKs,
from converging to local optimal solutions, we estimate BKs
using (15) in the multiscale process mentioned in Section 2.

3) Updating W and V : To efficiently obtain closed-form
solutions, we apply the pointwise GSTq algorithm [23] to
problem (11), that is,

(W k+1)i = GSTq

(
(∇Lk+1

s )i,
α

γ

)
, (16)

where p= 2
3 and (W k+1)i and (∇Lk+1

s )i are the points of
W k+1 and ∇Lk+1

s , respectively. The GSTq is described in
Algorithm 1.

Algorithm 1 GSTq

Input: z = (∇Lk+1
s )i, λ = α

γ , q = 2
3 and J

δGST
q (λ)←

(
2λ(1− q)

) 1
2−q , θGST

q (λ)←λq
(
2λ(1− q)

) q−1
2−q

βGST
q (λ)←δGST

q (λ)+θGST
q (λ)

If |y| ≤ βGST
q (λ)

GSTq(y, λ)←0
Else Iterate from j = 0 to J

j = 0 and xj = |y|
xj+1←|y| − λq(xj)q−1

GSTq(y, λ)←sgn(y)xj

EndIf
Output: GSTq(y, λ)

The objective function of subproblem (12) is

β

µ

m∑
i=1

∥vi∥2 +
1

2

m∑
i=1

∥vi − bk+1
i ∥22, (17)

where vi and bk+1
i are the i-th rows; thus, solving (12) yields

vk+1
i = argmin

vi

β

µ

m∑
i=1

∥vi∥2 +
1

2

m∑
i=1

∥vi − bk+1
i ∥22. (18)

Obviously, problem (18) is soft-thresholding, so its closed-
form solution [24] is

vk+1
i =
∥bk+1

i ∥2 − β
µ

∥bk+1
i ∥2

bk+1
i ∥bk+1

i ∥2 >
β

µ

0 ∥bk+1
i ∥2 ≤

β

µ

, i = 1, 2, ...,m.
(19)

D. Proposed MSBE framework

According to Subsection 3.3, we summarize the proposed
MSBE scheme as Algorithm 2 and Algorithm 3. In Al-
gorithm 3, the number of layers in an image pyramid is
determined by its kernel size, where i is the layer label
of the image pyramid. Considering the nature of real BKs,
we impose the constraints b≥0 and ∥b∥1=1 on b after each
iteration. These constraints amount to setting the harmful
components of the estimated b to zero and normalizing the
estimated b.

Algorithm 2 Restoring Intermediate LIs

Input: D, bk, and parameters α and β
Initialize: L0 = D and W 0 = ∇L0

For k = 0 to K
Compute Lk+1 using (13)
Update W k+1 using Algorithm 1

EndFor
Apply the l0-smoothing algorithm [25] to∇Lk+1 to obtain
∇Lk+1

s

Output: ∇Lk+1
s

Algorithm 3 Robust Blur Estimation

Input: D and parameters β and (µ, µmax)
Initialize: coarsest b0,1 = 0, V 0,1 = b0,1 and V 0,1 = b0,1

Repeat in a coarse-to-fine mode (i = 1, 2, ..., I)
While µ < µmax Do

Compute Lk+1,i
s using Algorithm 2

Compute bk+1,i using (15)
Update V k+1,i using (19)
µ←µ×2

EndWhile
Upscale image ∇Lk+1,i

s to next finer layer
Until the estimation of the finest layer is finished
Output: bk+1 (Finest BKs)

IV. ID PHASE

Once the MSBE is finished, we use the estimated BKs
as the input of the ID phase. To generate high-quality ID
results for non-low-light degraded images, we use the EPLL
algorithm [34] to restore the final LIs. Given degraded images
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TABLE I: Average SSDEs of the LIs Corresponding to the
Degraded im01 and Average RT (Levin Dataset)

Algorithms Average SSDEs Average RT
Pan 36.0057 2 min 59 sec

Yan 35.1840 3 min 33 sec

Jin 48.4888 1 min 55 sec

Bai 59.3848 60 sec

Chen 33.1646 2 min 3 sec

Proposed 29.8616 43 sec

TABLE II: Average SSDEs of the LIs Corresponding to the
Degraded im02 and Average RT (Levin Dataset)

Algorithms Average SSDEs Average RT
Pan 36.2418 2 min 57 sec

Yan 39.8594 3 min 27 sec

Jin 64.8607 2 min 7 sec

Bai 94.8294 58 sec

Chen 40.5545 2 min 2 sec

Proposed 31.3482 42 sec

TABLE III: Average SSDEs of the LIs Corresponding to the
Degraded im03 and Average RT (Levin Dataset)

Algorithms Average SSDEs Average RT
Pan 23.4432 2 min 56 sec

Yan 25.6223 3 min 24 sec

Jin 69.0822 2 min 9 sec

Bai 53.6291 58 sec

Chen 22.7214 1 min 50 sec

Proposed 22.8917 41 sec

and estimated BKs, the EPLL algorithm computes the final
LIs by

ô =
(
λ1B

TB + λ2

∑
j

QT
j Qj

)−1(
λ2B

T d+ λ2

∑
j

QT
j cj

)
,

(20)
where B is a BCCB convolutional matrix generated by b; ô
and d denote the final LIs and degraded images, respectively;
matrix Qj is used to select patches from ô; cj is an auxiliary
variable that satisfies ĉj=Qj ô; and λ1>0 and λ2>0 are model
parameters.

Although we use the EPLL algorithm to solve ID prob-
lems, other SotA restoration algorithms [35] are also appli-
cable in this phase. For low-light degraded images, we turn
to the SotA deconvolution approach of Whyte et al. [36] to
obtain the final LIs.

V. EXPERIMENTAL RESULTS

Comprehensive BID experiments are implemented on the
publicly available Levin [22], Kohler [37], Sun [28] and Lai
datasets [38]. The experimental results are assessed based
on the SR, SSDE [22], PSNR, SSIM [39], vision effect and
RT. Our BID algorithm competes with several SotA BID
algorithms to evaluate its performance.

A. Experiments on Levin

As illustrated in Fig. 4, the synthetic Levin dataset has four
clear images, eight uniform BKs, and 32 generated degraded

(a) (b)

(c) (d)

(e)

(f) (g)

(h) (i)

Fig. 4: Image Instances and BKs in Levin Dataset. (a)-
(d) Clear images, (e) BKs (Kernel1 to Kernel8), and (f)-(i)
degraded images.

images. The Levin dataset is an authoritative dataset with a
long history and is used in many BID studies. In this dataset,
the SR, SSDE, and vision effect are utilized to assess the
generated results. To obtain SRs, the SSDEs of LIs are first
divided by standard SSDEs, resulting in an error-ratio (ER)
matrix, and the proportion of matrix components that are not
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Fig. 5: SRs of the BID Algorithms

(a) (b) (c)

(d) (e) (f)

Fig. 6: LIs Corresponding to Degraded Image im01 ker06 (Levin Dataset). (a) Pan, SSDE = 38.0779; (b) Yan, SSDE
= 21.6973; (c) Jin, SSDE = 39.0838; (d) Bai, SSDE = 61.7870; (e) Chen, SSDE = 20.7844; and (f) Proposed, SSDE =
17.6711.

greater than a fixed ER is subsequently computed. Like in
most BID algorithms, we adopt integers from 1 to 5 as fixed
ERs. The BID algorithms evaluated in this experiment are the
proposed, Pan [5], Yan [6], Jin [8], Bai [9], and Chen [11]
algorithms. For precision and efficiency, the parameters of
our BID algorithm are α=1.5e-3, β=5e-2, γ=1e-3, and (µ0,
µmax)=(5e-3, 1e10). The other BID algorithms adopt the
recommended configurations and default settings.

The experimental results obtained after handling the Levin
dataset are reported in TABLEs I to V and Figs. 5 and 6,
where TABLEs I to V record the average SSDE values and
average RT; Fig. 5 depicts the SRs of all BID algorithms;
and Fig. 6 shows the vision effects of LIs.

In TABLEs I to V, the average SSDEs obtained by the
proposed BID algorithm all rank highest except for the SSDE
in TABLE III, which ranks second. Therefore, the proposed
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TABLE IV: Average SSDEs of the LIs Corresponding to the
Degraded im04 and Average RT (Levin Dataset)

Algorithms Average SSDEs Average RT
Pan 100.6482 2 min 56 sec

Yan 118.8942 3 min 24 sec

Jin 164.2414 1 min 56 sec

Bai 117.1542 59 sec

Chen 43.5844 1 min 50 sec

Proposed 32.2169 42 sec

TABLE V: Average SSDEs of All LIs and Average RT
(Levin Dataset)

Algorithms Average SSDEs Average RT
Pan 49.0847 2 min 57 sec

Yan 54.8900 3 min 27 sec

Jin 86.6683 2 min 2 sec

Bai 81.2494 59 sec

Chen 35.0062 1 min 56 sec

Proposed 29.0796 42 sec

TABLE VI: Average PSNRs (dB) and SSIMs of the LIs
Corresponding to the Degraded Church and Average RT
(Kohler Dataset)

Algorithms Avg. PSNRs Avg. SSIMs Avg. RT
Pan 31.3052 0.8072 3 h 53 min 1 sec

Yan 31.3597 0.8106 2 h 47 min 21 sec

Jin 31.2399 0.8190 1 h 44 min 9 sec

Bai 30.8642 0.7444 31 min 51 sec

Chen 31.3320 0.8117 2 h 7 min 52 sec

Proposed 31.5116 0.8415 7 min 46 sec

BID algorithm has an overall advantage over the other BID
algorithms in terms of SSDE.

As shown in Fig. 5, all the BID algorithms except for the
proposed and Chen algorithms fail to achieve a 100% SR
given an ER≤5. Compared to the Chen algorithm, our BID
algorithm achieves higher SRs in the cases of ER=1 and
ER=2. Therefore, the proposed BID algorithm has higher
SRs than do the other BID algorithms.

As illustrated in Fig. 6, the salient features of LIs are
successfully reconstructed. Our BID algorithm obtains finer
LIs with more details and fewer artifacts, while the LIs
generated by the other BID algorithms are either smoother
or have apparent artifacts.

As reported by TABLEs I to V, our BID algorithm needs
the least average RT to handle the degraded images in the
Levin dataset, which is 29% less than that of the second-
ranked algorithm. The RT advantages of our BID algorithm
and the results in the tables and figures demonstrate that it
obtains better BID results at faster speeds when handling the
Levin dataset.

B. Experiments on Kohler

The synthetic Kohler dataset has four clear images, 12
nonuniform BKs, and 48 generated degraded images, as
shown in Fig. 7. The PSNR, SSIM, and vision effect are
employed to assess the results obtained on the Kohler dataset.
Each degraded image corresponds to 199 clear images, so

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 7: Image Instances in Kohler Dataset. (a)-(d) Clear
images, and (e)-(h) degraded images

each of the generated LIs can obtain 199 PSNRs and 199
SSIMs. We adopted the average PSNRs and SSIMs as the fi-
nal scores. The BID algorithms considered in this experiment
are the proposed, Pan, Yan, Jin, Bai, and Chen algorithms.
To balance precision and efficiency, the parameters of our
BID algorithm are α=4.5e-3, β=0.5, γ=1.5e-2, and (µ0,
µmax)=(8e-3, 1e10). The other BID algorithms adopt the
recommended configurations and default settings.

The experimental results obtained after the Kohler dataset
was processed are reported in TABLEs VI to X and Fig. 8,
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(a) (b) (c)

(d) (e) (f)

Fig. 8: LIs Corresponding to the Degraded Image Blurry3 1 (Kohler Dataset). (a) Pan, P = 33.0534 dB, S = 0.8474; (b)
Yan, P = 32.9545 dB, S = 0.8488; (c) Jin, P = 32.5276 dB, S = 0.8342; (d) Bai, P = 32.8319 dB, S = 0.8528; (e) Chen, P
= 32.9809 dB, S = 0.8474; and (f) Proposed, P = 33.3032 dB, S = 0.8759. The letters P and S stand for PSNR and SSIM,
respectively.

TABLE VII: Average PSNRs (dB) and SSIMs of the LIs
Corresponding to the Degraded Clock and Average RT
(Kohler Dataset)

Algorithms Avg. PSNRs Avg. SSIMs Avg. RT
Pan 30.7652 0.6494 3 h 51 min 42 sec

Yan 30.7931 0.6522 3 h 1 min 53 sec

Jin 30.4372 0.6729 1 h 48 min 20 sec

Bai 30.4303 0.6194 31 min 20 sec

Chen 30.7698 0.6420 2 h 20 min 31 sec

Proposed 30.7824 0.6919 8 min 2 sec

TABLE VIII: Average PSNRs (dB) and SSIMs of the LIs
Corresponding to the Degraded Backyard and Average RT
(Kohler Dataset)

Algorithms Avg. PSNRs Avg. SSIMs Avg. RT
Pan 31.9411 0.8395 3 h 52 min 17 sec

Yan 31.9036 0.8435 3 h 1 min 13 sec

Jin 31.5405 0.8350 1 h 42 min 30 sec

Bai 31.6772 0.8271 31 min 41 sec

Chen 31.8755 0.8416 2 h 4 min

Proposed 32.0918 0.8674 7 min 55 sec

TABLE IX: Average PSNRs (dB) and SSIMs of the LIs Cor-
responding to the Degraded Roof and Average RT (Kohler
Dataset)

Algorithms Avg. PSNRs Avg. SSIMs Avg. RT
Pan 30.4078 0.7235 3 h 58 min 43 sec

Yan 30.3675 0.7153 3 h 3 min 34 sec

Jin 30.3843 0.7412 1 h 49 min 1 sec

Bai 30.2264 0.7112 33 min 4 sec

Chen 30.3809 0.7163 2 h 4 min 30 sec

Proposed 30.6210 0.7615 7 min 52 sec

TABLE X: Average PSNR Scores (dB) and Average SSIM
Scores of All LIs and Average RT of BID Algorithms (Kohler
Dataset)

Algorithms Avg. PSNRs Avg. SSIMs Avg. RT
Pan 31.1048 0.7549 3 h 53 min 56 sec

Yan 31.1060 0.7554 2 h 58 min 30 sec

Jin 30.9005 0.7670 1 h 46 min

Bai 30.7995 0.7255 31 min 59 sec

Chen 31.0895 0.7529 2 h 9 min 13 sec

Proposed 31.2517 0.7906 7 min 54 sec
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(a)

(b)

Fig. 9: Image Instances in Sun Dataset. (a) A clear image,
and (b) a degraded image corresponding to (a).

where TABLEs VI to X record the average PSNRs and
SSIMs of the generated LIs and the average RT of the
BID algorithms; and Fig. 8 shows the vision effects of the
generated LIs.

For TABLEs VI to X, the average PSNRs and SSIMs
obtained by our BID algorithm all rank highest except for
the average PSNR in TABLE VII, which ranks second
by 0.0107 dB. Therefore, the proposed BID algorithm has
overall advantages over the other BID algorithms regarding
the PSNR and SSIM.

As illustrated in Fig. 8, the prominent features of the
generated LIs are successfully reconstructed. The LIs ob-
tained by the proposed BID algorithm look clearer with more
features, while the LIs generated by the other BID algorithms
are either smoother or have apparent artifacts.

As shown in TABLEs VI to X, the proposed BID algorithm
requires the least average RT to handle the degraded images
in the Kohler dataset, whereas the RT required by the other
BID algorithms varies from 4 to 30 times that of our
BID algorithm. The significant RT advantages of our BID
algorithm when combined with the data from TABLEs VI
to X and Fig. 8 demonstrate that it obtains better BID results
at faster speeds on the Kohler dataset than do the other BID
algorithms.

C. Experiments on Sun

The synthetic Sun dataset has 80 clear images, 8 uniform
BKs from the Levin Dataset, and 640 generated degraded
images, as shown in Fig. 9. The PSNR and SSIM are used
to comprehensively assess the quality of the generated LIs

TABLE XI: Average PSNRs (dB) and SSIMs of All LIs (Sun
Dataset)

Algorithms Average PSNRs Average SSIMs
Pan 33.2080 0.6695

Yan 33.2118 0.6816

Jin 32.3686 0.5948

Bai 32.7381 0.6601

Chen 33.2414 0.6850

Proposed 33.3414 0.6919

TABLE XII: Average PSNRs (dB) and SSIMs of All Esti-
mated Blur Kernels (Sun Dataset)

Algorithms Average PSNRs Average SSIMs
Pan 38.8058 0.5316

Yan 39.0148 0.5309

Jin 35.5939 0.4308

Bai 35.5212 0.5376

Chen 39.1981 0.5338

Proposed 39.8330 0.6060

TABLE XIII: Average PSNRs (dB) of the Estimated Kernel1
to Kernel4 (Sun Dataset)

Algorithms Kernel1 Kernel2 Kernel3 Kernel4
Pan 43.9324 47.8211 36.3888 37.3750

Yan 43.5245 48.3420 36.2877 37.3282

Jin 38.7068 37.3822 34.5098 36.3750

Bai 38.4519 37.4016 35.2302 36.2824

Chen 43.5461 49.4996 36.5919 37.6840

Proposed 44.2457 49.5937 37.2826 38.1886

TABLE XIV: Average PSNRs (dB) of the Estimated Kernel5
to Kernel8 (Sun Dataset)

Algorithms Kernel5 Kernel6 Kernel7 Kernel8
Pan 36.5921 36.0360 34.9935 37.3079

Yan 37.7309 36.0906 35.4331 37.3817

Jin 32.8804 35.5425 34.6377 34.7166

Bai 32.7377 35.1907 34.4177 34.4578

Chen 36.7071 36.2483 35.4797 37.8282

Proposed 37.9909 36.9401 36.3353 38.0870

TABLE XV: Average SSIMs of the Estimated Kernel1 to
Kernel4 (Sun Dataset)

Algorithms Kernel1 Kernel2 Kernel3 Kernel4
Pan 0.5912 0.5695 0.4750 0.5012
Yan 0.6135 0.5718 0.4216 0.4928
Jin 0.5744 0.4022 0.3573 0.4774
Bai 0.6128 0.5011 0.5309 0.5780

Chen 0.5920 0.5715 0.4810 0.4901
Proposed 0.6379 0.5931 0.5368 0.6098

and the precision of the estimated BKs. The BID algorithms
considered in this experiment are the proposed, Pan, Yan,
Jin, Bai, and Chen algorithms. For precision and efficiency,
the parameters of our BID algorithm are α=4.5e-3, β=0.4,
γ=1.2e-3, and (µ0, µmax)=(1e-3, 1e10). The other BID al-
gorithms adopt the recommended configurations and default
settings.

The experimental results obtained after the Sun dataset was
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Fig. 10: LIs Corresponding to Degraded Image 3 5 blurred (Sun Dataset). (a) Pan, P = 32.7885 dB, S = 0.7395; (b) Yan,
P = 33.1063 dB, S = 0.7968; (c) Jin, P = 32.4652 dB, S = 0.6781; (d) Bai, P = 32.5621 dB, S = 0.7158; (e) Chen, P =
32.8095 dB, S = 0.7616; and (f) Proposed, P = 34.5013 dB, S = 0.8774. The letters P and S stand for PSNR and SSIM,
respectively.

TABLE XVI: Average SSIMs of the Estimated Kernel5 to
Kernel8 (Sun Dataset)

Algorithms Kernel5 Kernel6 Kernel7 Kernel8
Pan 0.6795 0.4803 0.3917 0.5641
Yan 0.7068 0.4813 0.4090 0.5506
Jin 0.3686 0.4259 0.4014 0.4391
Bai 0.4476 0.5093 0.5068 0.6143

Chen 0.6717 0.4972 0.4049 0.5620
Proposed 0.7218 0.5787 0.5144 0.6554

processed are reported in TABLEs XI to XVI and Fig. 10,
where TABLEs XI records the average PSNRs and SSIMs of

the generated LIs; TABLEs XII to XVI records the average
PSNRs and SSIMs of the estimated BKs; and Fig. 10 shows
the vision effects of the generated LIs.

Regarding the generated LIs, the proposed BID algorithm
has advantages over the other BID algorithms because the
average PSNRs and SSIMs obtained by our BID algorithm
are both the highest. Regarding the estimation precision of
BKs, the data in TABLE XII also demonstrate the advantages
of the proposed BID algorithm over other BID algorithms.
TABLEs XI to XVI show that the precise estimation of the
BKs is beneficial for obtaining high-quality LIs and that our
approach for kernel estimation is very effective.

As illustrated in Fig. 10, the salient features of the gener-
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(a)

(b)

Fig. 11: Image Instances in the Synthetic Lai Dataset.(a) A
clear image, and (b) a degraded image corresponding to (a).

TABLE XVII: Average PSNRs of Generated LIs (Manmade,
Natural, and People in Synthetic Lai Dataset)

Algorithms Manmade Natural People
Pan 30.1062 dB 31.8391 dB 33.6048 dB

Yan 30.0514 dB 31.6473 dB 33.9924 dB

Jin 29.7702 dB 31.9955 dB 34.4580 dB

Bai 29.6952 dB 31.7172 dB 34.0229 dB

Chen 29.7536 dB 31.9730 dB 34.1742 dB

Proposed 31.8167 dB 33.6403 dB 35.5937 dB

TABLE XVIII: Average PSNRs of Generated LIs (Saturated,
Text, and All in Synthetic Lai Dataset)

Algorithms Saturated Text All
Pan 33.7426 dB 34.0532 dB 32.6692 dB

Yan 33.5965 dB 32.1979 dB 32.2971 dB

Jin 33.5262 dB 31.2059 dB 32.1912 dB

Bai 33.7680 dB 31.3832 dB 32.1173 dB

Chen 33.5779 dB 33.0309 dB 32.5019 dB

Proposed 34.9755 dB 34.1239 dB 34.0300 dB

ated LIs are successfully reconstructed. The LIs obtained by
the proposed BID algorithm look more natural and sharper
than those generated by the other BID algorithms.

D. Experiments on Synthetic Lai

As shown in Fig. 11, the Lai dataset also includes synthetic
data consisting of 25 clear images, four nonuniform BKs and

TABLE XIX: Average SSIMs of the Generated LIs (Man-
made, Natural, and People in Synthetic Lai Dataset)

Algorithms Manmade Natural People
Pan 0.5760 0.7911 0.8334

Yan 0.5840 0.7721 0.8431

Jin 0.5707 0.7838 0.8241

Bai 0.5964 0.8016 0.8340

Chen 0.5424 0.8008 0.8530

Proposed 0.6371 0.8706 0.9006

TABLE XX: Average SSIMs of the Generated LIs (Saturated,
Text, and All in Synthetic Lai Dataset)

Algorithms Saturated Text All
Pan 0.6733 0.7211 0.7190

Yan 0.6701 0.6775 0.7094

Jin 0.6555 0.6663 0.7001

Bai 0.6891 0.6959 0.7234

Chen 0.6633 0.7347 0.7189

Proposed 0.7389 0.7458 0.7786

TABLE XXI: Average RT of Processing Real-World De-
graded Images

Algorithms Average RT
Pan 1 h 27 min 31 sec

Yan 4 h 33 min 57 sec

Jin 11 h 50 min 31 sec

Bai 54 min 33 sec

Chen 1 h 3 min 2 sec

Proposed 4 min 59 sec

100 degraded images. The degraded images in the dataset
are classified into Manmade images, Natural images, People
images, Saturated images, and Text images. Considering the
speeds of some BID algorithms in this experiment, we select
5 degraded images from each category for testing. We use the
proposed, Pan, Yan, Jin, Bai, and Chen algorithms to process
these degraded images and assess the experimental results
using the PSNR, SSIM, and vision effect. For precision and
efficiency, the parameters of our BID algorithm are α=6e-
3, β=0.3, γ=2e-4, and (µ0, µmax)=(5e-4, 1e10). The other
BID algorithms adopt the recommended configurations and
default settings.

The results are reported in Fig. 12 and TABLEs XVII
to XX, where Fig. 12 demonstrates the vision effects of
the generated LIs, and TABLEs XVII to XX record the
PSNR scores and SSIM scores of the generated LIs. With
regard to the definition of the generated LIs, the proposed
BID algorithm has advantages over the other BID algorithms
because the average PSNRs and average SSIMs obtained
by the proposed BID algorithm are both the highest. As
illustrated in Fig. 12, the salient features of the generated
LIs are successfully reconstructed. The LIs obtained by the
proposed BID algorithm look more natural and sharper than
those generated by the other BID algorithms.

E. Experiments on the Real-World Dataset

The experimental data are also from the famous Lai dataset
and include degraded images of different sizes, contents, and
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(e) (f)

Fig. 12: LIs Corresponding to Degraded Image Manmade 02 kernel 01. (a) Pan, (b) Yan, (c) Jin, (d) Bai, (e) Chen, and
(f) Proposed.

blur types. Due to the absence of clear images and true
BKs, the vision effect is used to assess the restored results
of the BID algorithms. The BID algorithms evaluated in
this experiment are the proposed, Pan, Yan, Jin, Bai, and
Chen algorithms. For ideal vision effects, the parameters
of our BID algorithm are α=8e-4, β=5e-2, γ=1.5e-3, and
(µ0, µmax)=(3.5e-3, 1e10). The other BID algorithms adopt
recommended configurations and default settings.

The experimental results obtained after handling the real-
world degraded images are reported in Figs. 13 to 16 and
TABLE XXI, where Figs. 13 to 16 demonstrate the vision
effects of the generated LIs and TABLE XXI records the
average RT. The results in the figures cover all types of
images commonly found in daily life and scientific research,

thus truly and fully demonstrating the performances of the
BID algorithms.

Regarding the vision effect, as shown in Figs. 13 to 16, the
prominent features of the LIs are successfully reconstructed.
Our BID algorithm obtains finer LIs with more details and
fewer artifacts, while the LIs generated by other BID algo-
rithms are either overly smooth or have apparent artifacts.

As reported in TABLE XXI, the proposed BID algorithm
requires the least average RT to handle real-world degraded
images in the Lai dataset, whereas the RT required by the
other BID algorithms varies from 11 to 143 times that of our
BID algorithm. The significant RT advantages of our BID
algorithm and the results in TABLE XXI and Figs. 13 to 16
demonstrate that it obtains better BID results at faster speeds
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(a) (b) (c)

(d) (e) (f)

Fig. 13: LIs Corresponding to Degraded Lyndsey. (a) Pan, (b) Yan, (c) Jin, (d) Bai, (e) Chen, and (f) Proposed.

(a) (b) (c)

(d) (e) (f)

Fig. 14: LIs Corresponding to Degraded Car. (a) Pan, (b) Yan, (c) Jin, (d) Bai, (e) Chen, and (f) Proposed.
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(a) (b) (c)

(d) (e) (f)

Fig. 15: LIs Corresponding to Degraded Building. (a) Pan, (b) Yan, (c) Jin, (d) Bai, (e) Chen, and (f) Proposed.

(a) (b) (c)

(d) (e) (f)

Fig. 16: LIs Corresponding to Degraded Text. (a) Pan, (b) Yan, (c) Jin, (d) Bai, (e) Chen, and (f) Proposed.

than do the other BID algorithms when handling real-world
degraded images.

F. Convergence and Performance

In this subsection, the performances of the BID algorithms
and the convergence of our BID algorithm are analyzed.

TABLE XXII lists the objective results of the BID algo-
rithm in above experiments, where the first data represents
PNSR score, the second data represents SSIM score, and the

third data represents SSDE score. The data in TABLE XXII
indicate that our BID algorithm performs better than the other
BID algorithms on mainstream datasets under various ob-
jective criteria. The other BID algorithms exhibit significant
fluctuations in their performance when processing different
datasets, which also reveals that our BID algorithm has more
stable performance and better adaptability.

The RT performance is also an important consideration
for practical applications. The Pan, Yan, Jin, Bai, and Chen
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TABLE XXII: Quantitative Results of All BID Algorithms

Algorithms Levin Dataset Kohler Dataset Sun Dataset Synthetic Lai Dataset
Pan — / — / 49.0847 31.1048 dB / 0.7549 / — 33.2080 dB / 0.6695 / — 32.6692 dB / 0.7190 / —

Yan — / — / 54.8900 31.1060 dB / 0.7554 / — 33.2118 dB / 0.6816 / — 32.2971 dB / 0.7094 / —

Jin — / — / 86.6683 30.9005 dB / 0.7670 / — 32.3686 dB / 0.5948 / — 32.1912 dB / 0.7001 / —

Bai — / — / 81.2494 30.7995 dB / 0.7255 / — 32.7381 dB / 0.6601 / — 32.1173 dB / 0.7234 / —

Chen — / — / 35.0062 31.0895 dB / 0.7529 / — 33.2414 dB / 0.6850 / — 32.5019 dB / 0.7189 / —

Proposed — / — / 29.0796 31.2517 dB / 0.7906 / — 33.3414 dB / 0.6919 / — 34.0300 dB / 0.7786 / —

(a)

(b)

(c)

(d)

Fig. 17: Value Changes of (4). (a) Lyndsey, (b) Car, (c)
Building, and (d) Text.

algorithms spend much time computing the weights, EC,
scaled lp-norm, RGTV, and LMG, respectively, whereas
the proposed BID algorithm avoids costly computations.
Therefore, the our BID algorithm will be more favorable
than the other BID algorithms in applications.

We have observed the fast convergence of our BID al-
gorithm in previous experiments. We also demonstrate its

convergence through the value changes of (4) shown in
Fig. 17. The changes in the figure occur when iteratively
estimating the final BKs. The trends show that the values
of (4) decrease continuously during the iteration; that is, our
BID algorithm converges.

VI. CONCLUSIONS

In this study, a novel BID model is established using an
HLG prior and sparse l2,1-regularization and is solved by a
method derived from the HSQ. The generated subproblems
are independently solved by FFTs, GSTq , and iterative soft-
thresholding to obtain precise BKs. To obtain high-quality
LIs, the EPLL algorithm and the algorithm of Whyte et al.
are employed. We conduct comprehensive BID experiments
on multiple datasets, including the Levin, Kohler, Sun, and
Lai datasets, and compare the experimental results obtained
by the participating BID algorithms. The results show the
comprehensive advantages of our BID algorithm regarding
the SR, SSDE, PSNR, SSIM, vision effect, and RT. In the
future, we will extend our research to other related fields.
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