
 

 
Abstract—The rapid acceleration of urbanization and 

industrialization has led to a significant increase in PM2.5 
pollution, making it a critical global concern. The accurate 
prediction of PM2.5 concentrations is of utmost importance for 
the effective implementation of protective measures and 
environmental management. This study presents a machine 
learning framework for PM2.5 prediction called 
FC-MIDTR-WCCA. The framework is composed of three main 
components. The first component involves conducting an 
analysis of air quality PM2.5 data to identify features highly 
correlated with PM2.5 and to examine seasonal patterns. This 
approach facilitates feature crossing (FC) by combining 
different relevant features. The second component utilizes a 
feature selection algorithm known as the mutual information 
decision tree regressor (MIDTR) to effectively account for 
correlations and contributions among features. This algorithm 
identifies the optimal feature dataset. The third component 
involves the adoption of a weighted arithmetic mean fusion 
algorithm that combines canonical correlation analysis (WCCA) 
for PM2.5 prediction. This algorithm considers the correlations 
between prediction models and addresses collinearity issues to 
achieve stable model weight vectors. We experimentally 
assessed the performance of four ensemble tree models and the 
stacking algorithm. The results demonstrated that the 
FC-MIDTR-WCCA model outperformed all the other methods 
evaluated in terms of R2 and MAE. 
 

Index Terms—PM2.5, feature cross, feature selection, 
machine learning framework, FC-MIDTR-WCCA 

I. INTRODUCTION 

N recent years, the accelerated process of urbanization and 
advancement of industrialization have led to air quality 

becoming a pressing global concern. Specifically, the 
pollutant PM2.5, which refers to fine particulate matter with a 
diameter equal to or less than 2.5 micrometers, presents 
significant challenges in terms of public health and 
environmental quality [1]-[3]. These particles can remain 
suspended in the air for extended periods and possess high 
levels of toxicity and harm [4]-[6]. In addition to causing 
damage to the respiratory system, various severe diseases, 
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such as cardiovascular diseases and lung cancer, are strongly 
associated with NAFLD [7]-[10]. 

Therefore, accurate prediction and monitoring of PM2.5 
concentration levels have become crucial. Air quality PM2.5 
prediction utilizes modern scientific and technological 
methods to assess and forecast atmospheric PM2.5 
concentrations. This method provides real-time air quality 
information, aiding governments, environmental agencies, 
and the public in promptly understanding and responding to 
environmental pollution issues [11]. Additionally, PM2.5 
prediction plays a crucial guiding role in guiding the 
formulation of reasonable environmental management 
measures and health protection strategies. Therefore, 
research on air quality PM2.5 prediction holds considerable 
significance and has far-reaching implications. 

However, the prediction of air quality PM2.5 is hindered 
by numerous challenges and difficulties. The primary 
challenge to consider is the accuracy of prediction. Ensuring 
the accuracy of the prediction model is crucial because 
multiple influencing factors must be considered and intricate 
nonlinear relationships must be effectively modeled. To 
address this challenge, researchers have continually 
enhanced and optimized prediction models by leveraging 
knowledge from domains such as deep learning and machine 
learning. The objective is to augment the accuracy and 
reliability of PM2.5 prediction. 

Specifically, Teng et al. [12] proposed a novel real-time air 
pollution forecasting model utilizing a graph neural network 
with long short-term memory (GNN_LSTM) to dynamically 
capture the spatiotemporal correlations among neighboring 
monitoring sites. The authors employed a graph structure 
built on features such as angles, wind speed, and wind 
direction to quantify the interactions between nearby 
monitoring locations, thus improving the simulation of the 
physical mechanisms involved in pollutant transmission 
across spaces. Natsagdorj et al. [13] introduced two deep 
learning models, CNN-LSTM and Bayesian Optimization 
LSTM (Bayes-LSTM). Yeo et al. [14] built a deep learning 
model that combines convolutional neural networks and 
gated recurrent units to accurately estimate PM2.5 
concentrations at 25 stations in Seoul, South Korea. Zhou et 
al. [15] integrated the PM2.5 diffusion partial differential 
equation with the recently proposed DPGN model to leverage 
its strong interpretability and feature extraction capabilities. 
The researchers further enhanced the model’s capacity for 
long-term, multistep forecasting by incorporating advection 
and diffusion effects as additional constraints during the 
training of GNNs. Zhou et al. [16] investigated the typical 
issues of error accumulation and propagation in regional 
forecasting and proposed a novel framework called the 
MM-SVM. This framework combines multioutput support 
vector machines (M-SVMs) with a multitask learning (MTL) 
algorithm. The framework substantially enhances the 
precision of regional multistep ahead forecasting. Zhou et al. 
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[17] proposed a hybrid EEMD-GRNN (empirical mode 
decomposition - generalized regression neural network) 
model for one-day-ahead PM2.5 concentration forecasting. 
This model incorporates data preprocessing and analysis. The 
EEMD and GRNN components extracted distinct intrinsic 
mode functions (IMFs) from the initial PM2.5 data. Kow et al. 
[18] developed a hybrid model called CNN-BP, which 
utilizes a combination of a convolutional neural network 
(CNN) and a backpropagation neural network (BPNN) to 
predict PM2.5 levels across multiple locations 
simultaneously. Zhu et al. [19] proposed a hybrid model, 
CEEMD-PSOGSA-SVR-GRNN, to forecast daily PM2.5 
concentrations. This model combines the particle swarm 
optimization and gravitational search algorithm (PSOGSA), 
support vector regression (SVR), gray correlation analysis 
(GCA), and complementary ensemble empirical mode 
decomposition (CEEMD). 

Despite the promising results attained by the 
aforementioned studies, they also exhibit certain limitations. 

1) Poor interpretability of the methods: Deep learning 
models extract and abstract features through multiple layers 
of neural networks, resulting in highly abstract 
representations. Consequently, understanding the 
relationships between these high-level features and specific 
inputs becomes challenging. 

2) These methods require large-scale parameter 
optimization; they often involve a substantial number of 
parameters that necessitate training via optimization 
algorithms. Consequently, increased model complexity poses 
challenges when interpreting decision-making processes 
based on parameters. 

3) The analysis of PM2.5 concentrations and feature 
interactions related to air quality is insufficient. 

To address the aforementioned issues, in this study we 
propose a machine learning framework for the prediction of 
PM2.5, named FC-MIDTR-WCCA. The framework 
comprises three components: 

1) Feature Cross: The feature cross (FC) combines original 
features to capture the nonlinear relationships between them. 
In PM2.5 prediction, air quality is influenced by multiple 
factors that may have complex nonlinear interactions. 
Feature crosses can better capture these nonlinear 
relationships and improve the model's ability to represent 
changes in PM2.5 concentration. Additionally, the feature 
cross generates new features, expanding the dimensions of 
the original feature space. These new features provide 
additional information and expressive power, enabling the 
model to consider the impacts of various factors on PM2.5 
concentrations comprehensively. Introducing contextual 
information through proper feature crosses can improve the 
prediction of PM2.5 concentrations. In this study, we 
analyzed PM2.5 concentrations to investigate the strong 
correlation between pollutant gas factors and PM2.5 
concentrations. We also examined the seasonal trends of 
features that are strongly correlated with PM2.5 for feature 
crossing. We observed strong correlations between PM2.5 
and PM10 and between PM2.5 and the AQI. The seasonal 
distribution pattern is consistent, with high levels in spring 
and winter and low levels in summer and fall, exhibiting 
seasonal troughs; additionally, the magnitude of their content 
increases or decreases tend to be the same. 

2) Feature Selection: Feature selection algorithms help 
identify which features significantly affect PM2.5 
concentrations [20]-[22]; this enables us to understand the 

mechanisms behind the formation of and changes in PM2.5, 
allowing appropriate monitoring and control measures to 
improve and manage air quality. Additionally, redundant and 
irrelevant features can be eliminated, thereby reducing the 
requirements for data processing and storage and thus 
reducing computational and resource costs. This study adopts 
the feature selection algorithm MIDTR, which combines 
mutual information and decision trees. Mutual information is 
a statistical measure used to quantify the dependence 
between two variables [23]-[25]. By using mutual 
information as the selection criterion, the correlation between 
features and the target variable can be considered more 
comprehensively, avoiding the issue of relying solely on 
statistical attributes [26]. Decision trees are machine learning 
algorithms based on feature splits that evaluate the 
contribution of each feature to the model [27]-[30]. The 
combination of mutual information and decision trees in 
feature selection comprehensively considers the correlation 
between features and the target variable, as well as the 
features' contribution to the model, enabling a more accurate 
selection of important features. In summary, the feature 
selection algorithm using mutual information and decision 
trees has advantages in considering feature correlations and 
feature contributions, as well as in making it more effective at 
selecting important features and improving model 
performance and generalization. 

3) Model Fusion Prediction: Single prediction models may 
exhibit instability when facing complex meteorological 
environments and variations in PM2.5 data, resulting in 
unreliable predictions. Model fusion algorithms utilize 
multiple models to address this uncertainty and noise, 
enhancing the robustness of the prediction model and 
improving its predictive capabilities under different 
circumstances. This study adopted a weighted arithmetic 
mean fusion algorithm optimized by canonical correlation 
analysis, called the WCCA. This algorithm effectively 
considers the correlation between each model and 
automatically adjusts the weights assigned to each model in 
the overall evaluation. Consequently, this approach optimizes 
the model ensemble and reduces the risk of overfitting. 
Additionally, this approach addresses issues such as 
numerical instability when solving fusion weighting, reduces 
collinearity between models, and improves the stability of the 
weight vector. 

Figure 1 illustrates the research framework. The 
experiment uses the PM2.5 air quality datasets from Shantou,  
Dongguan and Guangzhou in Guangdong Province. Valuable 
new features are obtained through feature cross-analysis of 
the PM2.5 dataset. Then, the mutual information feature 
selection algorithm (MIR), decision tree feature selection 
algorithm (DTR), and MIDTR algorithm are used for feature 
selection to provide the optimal feature dataset for PM2.5 
modeling and prediction. During the PM2.5 modeling and 
prediction phase, the performances of the random forest (RF), 
XGBoost (XGB), LightGBM (LGBM), gradient boosting 
decision tree (GBDT), stacking algorithm, and WCCA 
algorithm were compared. The evaluation metrics used are 
the R-squared value (R2) and mean absolute error (MAE). 

The proposed machine learning framework for PM2.5 
prediction, FC-MIDTR-WCCA, is as follows: 

1) Capturing the nonlinear relationships between features 
through cross-seasonal feature interactions with strongly 
correlated features of PM2.5. 

2) Effectively considering feature correlation and feature 
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contribution, the MIDTR feature selection algorithm is used 
to obtain the optimal feature dataset. 
3) Considering the correlation between different models, the 
WCCA algorithm is used for PM2.5 prediction, reducing 
multicollinearity among models and improving the stability 
of the weight vector. 
  

 
Fig. 1. Research Framework Diagram 

II. METHOD 

This study presents a machine learning framework, 
FC-MIDTR-WCCA, for PM2.5 prediction. This method 
framework consists of feature cross, MIDTR feature 
selection, and the WCCA model fusion algorithm. A diagram 
of the framework is shown in Figure 2. 

A. FC 

A feature cross is a principle in which different features 
are combined to create new features. The specific principles 
are as follows: 

1) Calculate the correlation between features and the 
target feature (PM2.5), selecting the highly correlated 
features. 

2) The seasonal variations in features strongly correlated 
with PM2.5 were visualized, and their patterns were 
analyzed. 

3) Utilize the identified range of seasonal patterns from 
step ii and assign a value of 1 if it falls within the range or 0 if 
it does not. 

B. MIDTR 

The principle of the feature selection algorithm that 
combines mutual information and a decision tree is as 
follows: 

1) Calculate the mutual information for each feature: First, 
the algorithm computes the mutual information between each 
feature and the target variable to assess the importance of 
each feature. Mutual information measures the relevance of a 
feature to the target variable. Set a threshold value (k1) to 
obtain a subset of features (f). 

2) Decision tree construction: Based on the given feature 
subset (f), a decision tree is constructed as a classification or 
regression model. During the construction, a selected feature 
is used to divide the samples and calculate the reduction in 
impurity at each split. 

3) Evaluate feature contribution: Utilize the reduction in 
impurity at each node of the decision tree as a metric to 
evaluate the contribution of each feature to the model. A 
larger reduction indicates that the feature has better 
classification ability. 

4) Feature selection: Select the optimal subset of features 
based on the evaluation results from mutual information and 
the decision tree. A threshold value (k2) is set, and features 
with an importance higher than this threshold are selected. 

The goal of the MIDTR algorithm is to measure the 
dependency between features and the target variable using 
mutual information and evaluate feature importance through 
the decision tree; this enables the selection of an optimal 
subset of features, increasing the accuracy and reliability of 
feature selection and thus improving the performance of the 
model. The diagram below illustrates the principle of the 
MIDTR algorithm. 

 
Algorithm1 MIDTR 
Input：The feature matrix of the samples X，the target variable y. 
Output：The indices of the optimal feature subset.  
1：k1 ← 15 
2: selector ← SelectKBest(score_func=mutual_info_regression, k1) 
3：X_new ← selector.fit_transform(X, y) 
4：tree ← DecisionTreeRegressor(random_state = 42) 
5：tree.fit(X_new, y) 
6：feature_importances ← tree.feature_importances_ 
7：sorted_indices_mirdtr ← argsort_descending(feature_importances) 
8： k2 ← 10  
9：selected_indices_mirdtr ← get_first_elements(sorted_indices_mirdtr, K2) 
10：return selected_indices_mirdtr 

 
Fig. 2. FC-MIDTR-WCCA Framework 
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C. WCCA 

In the weighted arithmetic mean fusion algorithm, let us 
assume that there are k  models, and each model produces a 

prediction result n
i Ry  , where ki ,...,2,1  and n  

represents the number of samples. We need to calculate the 
weights to combine the prediction results of k  models on the 
same dataset. In this study, we utilize the WCCA algorithm. 
Specifically, the algorithm assumes that the prediction result 

iy  of each model can be linearly represented as the weighted 

sum of an input feature matrix pnRX   and a weight 

vector p
i R , as shown in Formula (1). 

                 ii Xy                                        (1) 

where i  represents the weights learned by the i-th 

model and p  represents the dimensionality of the input 

feature matrix X . 
Assuming that each model can construct a new feature 

space using input features X  and a weight vector i , since 

the variances explained by these new feature spaces have 
certain correlations, we must perform canonical correlation 
analysis (CCA) on them to calculate the weights of the 
models. The following procedure is employed. 

1) The prediction results of all the models are input into 
the CCA model to obtain the canonical correlation 

coefficients between the models, k ,...,, 21  
as well as 

the canonical correlation variables, kuuu ,...,, 21 and 

kvvv ,...,, 21  [31,32]. 

where i  represents the degree of correlation between 

the prediction results of the i-th model and the prediction 

results of all the other models and n
i Ru   and n

i Rv   

represent the values of the canonical correlation variables in 
the i-th model. 

2) According to the canonical correlation 

coefficient k ,...,, 21  and the canonical correlation 

variables kuuu ,...,, 21  and kvvv ,...,, 21 , the feature weight 

vectors and normalized feature weight vectors are calculated 
for each model. Specifically, for the i-th model, we can 
compute the following two vectors separately. 

①For feature weight vector  Tpiiii ,2,1, ,...,,   , 

the calculation is shown in Formula (2). 

          

22

,

ji

j
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ji
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v




                              (2) 

where ji ,  represents the weight of the jth feature in the 

ith model and 
2i  and 

2jv  represent the weight vectors 

i  and 2L , respectively, of the canonical correlation 

variable. 
② The normalized feature weight vector is 

 Tpiiii
*
,

*
2,

*
1,

* ,...,,   , and the calculation is shown in 

Formula (3). 
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where *
, ji  represents the weight of the jth feature after 

normalization in the ith model and liu ,  and jiv ,  represent 

the lth element of the canonical correlation variable iu  and 

the jth element of the canonical correlation variable iv  in the 

ith model, respectively. 

3) Multiply the normalized feature weight vector *
i  with 

the input data X  to obtain the weighted prediction result of 
the i-th model; this is shown in Formula (4). 

          *
i

w
i Xy                                        (4) 

where  w
iy  represents the weighted prediction result 

using the normalized feature weight vector of the i-th model. 
4) When calculating the final prediction result, the 

weighted average of the predicted results from each model is 
used to obtain the final prediction result; this is shown in 
Formula (5). 
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The WCCA algorithm utilizes the CCA method to 
compute the weights of models via the weighted arithmetic 
mean fusion algorithm. This algorithm constructs a feature 
space to reduce high-dimensional and highly correlated data 
in the original space to low-dimensional and low-correlated 
data. Consequently, this approach effectively addresses the 
collinearity and correlation issues among models. A diagram 
illustrating the principle of the WCCA algorithm is shown 
below. 

 
Algorithm2 WCCA 
Input：Number of principal components n_components，the predictions of 
the single models. 
Output：The result of WCCA. 
1：y_pred_all ← np.hstack(predictions) 
2：y_true_all ← y_test.reshape(-1, 1) 
3：cca ← CCA(n_components=1) 
4：cca.fit(y_pred_all, y_true_all) 
5：weights ← np.abs(cca.coef_) 
6：weights ← weights /weights.sum() 
7：result ← np.average(y_pred_all, axis=1, weights=weights.flatten()) 
8：return result 

III. EXPERIMENT 

A. Data Description 
TABLE 1 

RAW DATA ATTRIBUTE INFORMATION 
Feature Name Description Data Type 
date Date object 
quality Air Quality object 
AQI Air Quality Index int64 
ranking Air Quality Ranking int64 
PM2.5(μg/m3) PM2.5 Level int64 
PM10(μg/m3) PM10 Level int64 
SO2(μg/m3) SO2 Level int64 
NO2(μg/m3) NO2 Level int64 
CO(mg/m3) CO Level float64 
O3(μg/m3) O3 Level int64 
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The experiment was conducted utilizing the PM2.5 air 
quality datasets obtained from Tianqihoubao for Dongguan 
city [33] and Guangzhou city [34]. The detailed attribute 
information for both datasets can be found in Table 1. The 
Dongguan dataset comprises 3453 samples, whereas the 
Guangzhou and Shantou datasets comprise 3459 samples and 
3674 samples respectively. Each dataset contains 10 features. 

B. Data analysis 

The study focused on analyzing the air pollutant data, and 
the specific steps are as follows: 

1) Investigate the correlation between air pollutants and 
identify features strongly correlated with PM2.5. 

2) Automatically derive temporal features and study the 
seasonal patterns of features strongly correlated with PM2.5. 

3) The results of the data analysis are organized, feasible 
combinations of features are summarized, data mining is 
performed, and valuable new features are obtained. 
In this study, a heatmap of air quality was generated to 
investigate the correlations among air pollutants. Figure 3(a) 
shows the dataset for PM2.5 air quality in Dongguan city, 
where PM10 and the AQI are strongly correlated with PM2.5, 
with correlation coefficients of 0.95 and 0.94, respectively. 
Similarly, Figure 3(b) shows the PM2.5 air quality dataset for 
Guangzhou city, where PM10 and the AQI also exhibited 
strong correlations with PM2.5, with correlation coefficients 
of 0.96 and 0.95, respectively. Figure 3(c) shows the PM2.5 
air quality dataset for Shantou city, where PM10 and the AQI 

also exhibit strong correlations with PM2.5, with correlation 
coefficients of 0.93 and 0.94, respectively. 

In this experiment, we performed automated derivation of 
temporal features, resulting in the generation of eight 
temporal features: "year," "month," "day," "quarter," "day of 
week," "day of year," "weekofyear," and "weekend." 
Subsequently, we conducted seasonal data analysis of air 
pollutant levels in Dongguan city and Guangzhou city, as 
shown in Figure 4. Figure 4(a), (b) and (c) reveal that the 
seasonal distribution patterns of PM10, AQI, and PM2.5 
levels are consistent, exhibiting the following trends: 

1) The levels of PM2.5, PM10, and AQI are greater in the 
spring and winter seasons and lower in the summer and 
autumn seasons, revealing a concave shape with seasonal 
fluctuations. 
For pattern 1), the following five points were analyzed. 

① Meteorological conditions: Summer and autumn are 
usually warm and humid seasons with high temperatures, 
ample sunlight, and high humidity. These meteorological 
conditions facilitate the dispersion and dilution of pollutants 
in the air, reducing their concentrations. Additionally, strong 
winds can quickly carry pollutants away, reducing their 
accumulation in the air. However, spring and winter have 
lower temperatures and lower humidity. Cold temperatures 
and unfavorable weather conditions increase the thickness of 
the atmospheric stable layer, reducing convective and 
diffusion abilities in the air and resulting in the accumulation 
of pollutants. 

 

     
(a)                                                              (b)                                                               (c) 

Fig. 3. Heatmap of the air quality, where larger values in the graph represent stronger correlations. 
 

     
(a)                                                               (b)                                                              (c) 

Fig. 4. Seasonal analysis diagram of the strongly correlated features. (a), (b), (c) are analysis diagrams for Dongguan, 
Guangzhou and Shantou, respectively. 
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② Chemical reactions: Summer and autumn are usually 
warm and humid seasons with high temperatures, ample 
sunlight, and high humidity. These meteorological conditions 
facilitate the dispersion and dilution of pollutants in the air, 
reducing their concentrations. Additionally, strong winds can 
quickly carry pollutants away, reducing their accumulation in 
the air. 

③  Biological activities: Vegetation plants thrive in 
summer and autumn, increasing the leaf area that can absorb 
and transform some pollutants in the air while releasing 
oxygen. Plants can effectively purify air and reduce pollutant 
levels. 

④  Heating emissions: During winter, people require 
heating and use coal, gas, and other heating devices indoors, 
which emit a large amount of pollutants such as particulate 
matter, sulfur dioxide, and nitrogen oxides. 

⑤ Venting mechanisms: In spring, farmers often burn 
crop residues for irrigation control, and in autumn, they burn 
crop residues after harvesting. As a result, the PM2.5 and 
PM10 concentrations in autumn are slightly greater than 
those in summer. Furthermore, spring is a peak season for 
forest fires and grassland burning, during which large 
amounts of smoke and toxic gases are released. 

2) The magnitude of the increase or decrease in the PM2.5 
concentration is similar to that of the PM10 concentration and 
AQI. 

For pattern 2), the following two points were analyzed. 
Common sources: PM2.5 and PM10 usually originate 

from similar sources, such as vehicle emissions, industrial 
exhaust, and coal combustion. When these sources release 
more pollutants, both the PM2.5 and PM10 concentrations 
increase. Conversely, reducing emissions from these 
pollutants leads to a decrease in both PM2.5 and PM10 
levels. 

Air transportation processes: The transport processes of 
PM2.5 and PM10 in the air are similar and influenced by 
factors such as wind speed, atmospheric stability, and 
humidity. These factors have similar effects on the transport 
of PM2.5 and PM10, resulting in similar changes in their 

concentrations. 
Based on the above data analysis, we can consider 

constructing seasonal concave features for PM10 and the 
AQI. These features effectively capture the seasonal 
distribution patterns of PM2.5. 

C.  Feature Cross 

Based on the data analysis of strongly correlated seasonal 
features, in this experiment, we performed feature 
cross-construction between 'PM10 (μg/m3)', 'AQI', and 
'quarter'. This resulted in two new features: 
'PM10_quarter_low' and 'AQI_quarter_low'. The details of 
the feature cross-construction are shown in Table 2. 
Specifically, if the values fall within the range of seasonal 
concavity for PM10 and AQI, they are assigned a value of 1; 
otherwise, they are assigned a value of 0. 

 
TABLE 2 

FEATURE CROSSES CONSTRUCTION 
Feature Cross Original Features Constructional Details 

PM10_quarter_low PM10(μg/m3), quarter 
Taking the PM10 value 
of the concave-valley 
range 

AQI_quarter_low AQI, quarter 
Taking the AQI value 
of the concave-valley 
range 

 

D.  Feature Selection 

After data analysis and feature cross-construction, the 
number of features increased from 10 to 20. In this 
experiment, three feature selection algorithms were used: 
DTR, MIR, and MIDTR. Half of the features were ultimately 
selected. The MIDTR algorithm removed 5 features in the 
first stage (MIR) and another 5 features in the second stage 
(DTR). The results of feature selection are shown in Table 3. 

By combining the three datasets, Table 3 shows that all the 
feature selection algorithms included 'AQI, 'CO (mg/m3), 
'PM10 (μg/m3), 'NO2 (μg/m3), and 'SO2 (μg/m3). These 
findings indicate that these five features are considered to be 
optimal. 

 
TABLE 3 

 FEATURE SELECTION RESULTS 

Dataset 
Number Of 
Original 
Features 

Number Of 
Features After 
Derivation 

Feature 
Selection 
Algorithm 

Selected Subset Of Features 
Subset 
Size 

Dongguan of 
PM2.5 

10 20 

MIDTR 
PM10(μg/m3), AQI, year, ranking, NO2(μg/m3), weekofyear, 
O3(μg/m3), quarter, CO(mg/m3), SO2(μg/m3) 

10 MID 
AQI, CO(mg/m3), PM10(μg/m3), NO2(μg/m3), SO2(μg/m3), 
PM10_quarter_low, ranking, AQI_quarter_low, year, weekofyear 

DTR 
PM10(μg/m3), AQI, O3(μg/m3), CO(mg/m3), year, dayofyear, day, 
ranking, NO2(μg/m3), SO2(μg/m3) 

Guangzhou of 
PM2.5 

10 20 

MIDTR 
PM10(μg/m3), AQI, ranking, O3(μg/m3), year, CO(mg/m3), 
weekofyear, quarter, NO2(μg/m3), SO2(μg/m3) 

10 MID 
AQI,weekofyear, PM10(μg/m3), NO2(μg/m3), SO2(μg/m3), 
CO(mg/m3), PM10_quarter_low, AQI_quarter_low, ranking, 
dayofyear 

DTR 
PM10(μg/m3), AQI, O3(μg/m3), CO(mg/m3), dayofyear, ranking, 
NO2(μg/m3), SO2(μg/m3), weekofyear, year 

Shantou of 
PM2.5 

  MIDTR 
PM10(μg/m3), AQI, ranking, O3(μg/m3), year, CO(mg/m3), 
weekofyear, dayofyear, NO2(μg/m3), SO2(μg/m3) 

10 10 20 MID 
AQI,weekofyear, PM10(μg/m3), NO2(μg/m3), SO2(μg/m3), 
CO(mg/m3), PM10_quarter_low, AQI_quarter_low, ranking, 
dayofyear 

  DTR 
PM10(μg/m3), AQI, O3(μg/m3), CO(mg/m3), dayofyear, ranking, 
NO2(μg/m3), SO2(μg/m3), weekofyear, year 
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E. Evaluation indicators 

In this experiment, R2 [35]-[38] and MAE [39] were 
selected as evaluation metrics. R2 is a commonly used metric 
for measuring the degree of fit of a predictive model; it 
represents the proportion of the variance in the target variable 
(in this case, PM2.5) that is explained by the model. Ranging 
from 0 to 1, a value closer to 1 indicates a better fit of the 
model. Using R2 as an evaluation metric can intuitively 
reflect the explanatory power of the predictive model for 
PM2.5 variations. The MAE measures the average absolute 
error between the predicted values and the actual values; it 
provides the average level of absolute prediction error, 
independent of the direction of the errors. Therefore, 
choosing the MAE as an evaluation metric can provide a 
visual understanding of the average prediction error in 
predicting PM2.5. The formulas for R2 (Equation 6) and 
MAE (Equation 7) are as follows: 
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where n  denotes the sample size, iy  denotes the true 
value, iŷ  denotes the predicted value, and iy  indicates the 
average of the true values. 
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where n  denotes the sample size, iy  denotes the true 
value, and iŷ  denotes the predicted value. 

F.  Experimental Results 

In this experiment, six algorithms were used, namely, RF, 
XGB, LGBM, GBDT, stacking, and WCCA. To compare the 
performances of these algorithms, three feature selection 
methods were utilized, namely, FC, DTR, MIR, and MIDTR. 
Additionally, no parameter optimization was performed in 

this experiment. The experimental results are shown in Table 
4. 

The results in Table 4 indicate that the WCCA algorithm 
outperforms the other algorithms in predicting PM2.5 for 
three datasets (bolded and underlined to indicate highest 
score). Figures 5(a), 5(b) and 5(c) demonstrate that the 
WCCA algorithm achieves the highest R2 values, while 
Figures 5(d), 5(e) and 5(f) reveal the lowest MAEs for the 
same algorithm. The WCCA algorithm is capable of adapting 
to online learning by recalculating weights for model updates, 
eliminating the need for hyperparameter tuning. Therefore, 
the WCCA algorithm exhibits insensitivity to model 
parameter choice and maintains low computational 
complexity. In contrast, the remaining five algorithms 
demonstrate heightened sensitivity to model parameter 
selection, and their default parameters may not be effective 
for diverse datasets. Moreover, an increased number of 
optimization parameters contributes to heightened model 
complexity and computational cost, while the optimal 
parameters can vary across different datasets. However, the 
WCCA algorithm does not encounter the aforementioned 
issues. 

The framework of the hybrid fusion PM2.5 prediction 
method involves analyzing seasonal strong correlation 
features and identifying the features strongly correlated with 
PM2.5. A feature cross is performed, and Fig. 5 clearly 
demonstrates the significant improvement in prediction 
accuracy achieved by combining feature crosses with all the 
algorithms. Among them, the FC-WCCA algorithm has the 
best performance. Through data analysis and feature crossing, 
the feature set of the air quality PM2.5 dataset is expanded. 
To enhance the prediction accuracy of PM2.5, a feature 
selection algorithm is applied to eliminate unimportant 
features and select the optimal PM2.5 feature set. Figure 5 
reveals that only FC-DTR-GBDT shows a slight decrease in 
R2 for the datasets. 

 

     
(a)                                                             (b)                                                             (c) 

     
                              (d)                                                             (e)                                                             (f) 

Fig. 5. Experimental results. (a), (b), (c) are R2 for PM2.5 prediction in Dongguan, Guangzhou and Shantou respectively;  (d), 
(e), (f) are MAE for PM2.5 prediction in Dongguan, Guangzhou and Shantou respectively. In each figure, the solid line is 

FC-MIDTR, the long-dashed-dotted line is Baseline for bilinear types, the long-dashed-dotted-dotted line is FC for thick-thin 
line types, the systematic short-dashed line is FC-MIR for unilinear types, and the systematic short-dashed line is FC-DTR for 

thick-thin line types. 
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TABLE 4 
EXPERIMENTAL RESULTS 

Dataset Alogrithm 
Baseline Feature Cross 

Feature Selection 
DTR MIR MIDTR 

R2 MAE R2 MAE R2 MAE R2 MAE R2 MAE 

Dongguan of PM2.5 

WCCA 0.96652 2.60057 0.97500 2.20004 0.97539 2.19117 0.97449 2.19066 0.97615 2.15186 
RF 0.96405 2.64069 0.97133 2.34716 0.97123 2.34152 0.97029 2.43528 0.97181 2.32535 
XGB 0.96094 2.73445 0.97003 2.36057 0.97173 2.32735 0.97129 2.34703 0.97388 2.25 
LGBM 0.96475 2.64766 0.97385 2.23726 0.97385 2.26092 0.97335 2.23091 0.97371 2.4274 
GBDT 0.96275 2.81389 0.97041 2.44843 0.97017 2.42194 0.96678 2.57333 0.97074 2.445 
Stacking 0.95869 2.83129 0.96876 2.46559 0.969 2.44995 0.96731 2.50126 0.97049 2.39014 

Guangzhou of PM2.5  

WCCA 0.98023 2.06312 0.98340 1.87115 0.98365 1.85194 0.98053 2.01443 0.98382 1.83910 
RF 0.97927 2.12855 0.9811 2.01819 0.98187 1.97386 0.97867 2.11776 0.98158 1.98133 
XGB 0.97466 2.25877 0.97973 2.02673 0.9786 2.02681 0.97424 2.2197 0.97991 1.96424 
LGBM 0.97822 2.11696 0.98167 1.89982 0.98186 1.89249 0.97905 2.04733 0.98252 1.88551 
GBDT 0.97533 2.33968 0.97869 2.15193 0.97856 2.16004 0.97364 2.38637 0.97858 2.16018 
Stacking 0.97399 2.30358 0.97831 2.11112 0.9783 2.0837 0.97483 2.24254 0.97735 2.10002 

Shantou of PM2.5 

WCCA 0.95319 2.54878 0.96001 2.28394 0.96006 2.28697 0.95366 2.52088 0.96010 2.28833 
RF 0.95129 2.58973 0.95519 2.45844 0.95598 2.43171 0.94836 2.65312 0.95607 2.42607 
XGB 0.94696 2.69602 0.95465 2.39996 0.95282 2.4648 0.94441 2.69618 0.95285 2.46445 
LGBM 0.94914 2.61281 0.95852 2.3264 0.95861 2.30544 0.95191 2.53568 0.95861 2.30544 
GBDT 0.94626 2.74756 0.95154 2.58741 0.95108 2.59353 0.94669 2.76651 0.95108 2.59273 
Stacking 0.9483 2.67981 0.95382 2.48121 0.95221 2.51699 0.94224 2.80363 0.95177 2.53912 

 
This is because the decision tree primarily considers 

feature importance and overlooks the complex relationships 
among features during feature selection. In contrast, the 
GBDT algorithm captures feature interactions but may not 
fully exploit feature correlations when solely relying on the 
importance of individual features during the selection process. 
The performance of the combined FC-MIR hybrid fusion 
method framework deteriorates in both datasets. This can be 
attributed to the statistical metrics selected by the MIR 
algorithms, which lack customization for a specific model, 
resulting in varied algorithm performances. However, overall, 
the WCCM algorithm still has the highest prediction 
accuracy. The MIDTR feature selection framework 
facilitates a more comprehensive selection of important 
features by incorporating feature correlations and interactions. 
The combination of decision tree feature selection with 
mutual information effectively leverages the noise tolerance 
capability of the decision tree algorithm and mitigates the 
information loss that arises from an excessively stringent 
mutual information screening method. Figure 5 illustrates 
that the prediction performance improved across all the 
combined FC-MIDTR hybrid fusion method frameworks, 
with the FC-MIDTR-WCCA framework having the highest 
prediction accuracy. 

IV. CONCLUSION 

This study presents FC-MIDTR-WCCA, a machine 
learning framework for PM2.5 prediction. The study 
commences with the analysis of PM2.5 air quality 
information and the examination of features that are highly 
correlated with PM2.5. The seasonal trends of these features 
are then evaluated to construct cross-features. Subsequently, 
the MIDTR algorithm is utilized to select the best feature 
dataset, accounting for factors such as feature correlation and 
contribution. The selected dataset is subsequently compared 
with those obtained utilizing the MIR and DTR algorithms. 
Finally, the WCCA algorithm is employed to model and 
predict the optimal feature dataset. To address the 
correlations among the RF, XGB, LGBM, and GBDT models, 
as well as the collinearity issue, stable model weight vectors 
are obtained for weighted arithmetic mean fusion. We 
compare these four ensemble tree models with the stacking 

algorithm using R2 and MAE as evaluation metrics. The 
experimental results for three air quality PM2.5 datasets 
show that FC-MIDTR-WCCA achieves superior prediction 
accuracy and generalizability; this allows for early and 
precise alerts of high-pollution events, assisting the 
government and relevant departments in promptly 
implementing appropriate emergency response measures. 
These measures may include public notifications to reduce 
outdoor activities, limitations on industrial emissions, 
strengthened traffic control, and other actions that minimize 
public exposure to high pollution risks. 
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