
 

 
Abstract—This paper proposes a multi-scale information 

fusion based remote sensing small target detection method that 
aims to address the issue of low target detection accuracy in 
optical remote sensing images due to complex backgrounds, 
diversified scales, small targets, and different directions. Firstly, 
the architecture of the RepConv module significantly increases 
the detection accuracy of small targets without adding more 
inference time. Secondly, by introducing the ECA attention 
mechanism, a C3ECA module is constructed to effectively 
reduce the interference of complex background areas and 
achieve accurate positioning of the target area. The PANet 
structure in YOLOv5 is replaced by the BiFPN structure to 
balance the feature information of different scales and improve 
the detection performance of multi-scale objects. In addition, in 
order to solve the uncertainty of target direction and reduce the 
boundary discontinuity caused by angle regression, a circular 
smooth label method is used to provide an effective solution for 
target detection. The preprocessing method of image slices is 
employed to successfully achieve the target detection of 
high-resolution images. This approach greatly minimizes the 
issue of missed detection and erroneous detection of small 
objects in large images. The experimental findings indicate that 
the proposed approach markedly enhances the accuracy of 
remote sensing image detection and offers notable benefits in 
the recognition of small-scale targets. 
 

Index Terms—Optical remote sensing image, Deep learning, 
Target detection, Circular smooth label 
 
 

I. INTRODUCTION 
he era of high-quality optical remote sensing 
photographs has begun with the fast advancement of 

space remote sensing technology. These images are captured 
by satellites or drones from high altitudes and contain a 
wealth of surface information. The ground data in optical 
remote sensing photos has improved in quality and detail as 
resolution keeps rising. This trend provides rich and 
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extensive possibilities for applications in multiple fields such 
as aerial reconnaissance [1], urban and rural construction [2], 
precision agriculture [3], and natural disaster monitoring [4]. 

In recent years, computer vision has advanced 
significantly, largely due to the growing applications and 
innovations in deep learning methods. Many excellent deep 
learning models for target detection have been proposed, 
including two-stage models like R-CNN [5-7], and one-stage 
models like SSD [8] and YOLO [9-12]. In the domain of 
detecting natural images, these models have exhibited 
remarkable performance. Researchers have initiated the 
incorporation of sophisticated detection algorithms into 
applications related to satellite remote sensing imaging, with 
the objective of addressing the challenges associated with 
this process. 

In an effort to enhance item recognition in remote sensing 
photos, Yu et al [13] created the Stepwise Localization 
Bidirectional Pyramid Network (Sw-LBPN). Zhou et al [14] 
use of contextual transformation and data augmentation 
modules significantly increased the precision and 
effectiveness of remote sensing image identification. To 
improve the ability to express features, Zhao et al [15] used 
an embedded Reception Field Block (RFB) module with an 
RFBNet detector. Wan et al [16] successfully improved the 
object detection performance. Fu and colleagues [17] created 
a coordinate attention module that has an adaptable sensing 
field size, which improves the network's capacity to extract 
target characteristics that are multi-scale. Also, a CSandGlass 
module was used by Luo et al [18] to replace the residual 
module on the backbone feature extraction network, which 
greatly enhanced the performance of airplane target 
recognition in remote sensing photos. Conversely, Cao et al 
[19] improved the CSPDarknet53 architecture to retain 
adequate global contextual information by using Swin 
Transformer and introducing the Coordinate Attention (CA) 
module to enhance the accuracy of tiny object characteristics 
in remotely sensed pictures. Using the dual-branch 
architectural attention mechanism, Yi et al [20] improved the 
local module in the YOLOv8 feature extraction network. 
They also employed the visual converter block to maximize 
the feature map's representation, which improved the 
detection results' accuracy. 

Although these methods have achieved certain results, 
they still have limitations for the detection of small targets 
under complex backgrounds. First of all, although the above 
methods improve the detection accuracy, they also increase 
unnecessary inference time and do not effectively solve the 
problem of small target detection in complex backgrounds. 
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Secondly, the above method still has room for improvement 
in target detection at different scales and in solving the 
uncertainty of target direction. 

This work presents Ric-YOLOv5, a high-precision target 
identification technique, as a potential solution to the 
challenge of target recognition in satellite remote sensing 
images. The RepConv module is used to replace the 
traditional Conv module, which is integrated into the 
backbone network of YOLOv5; the ECA attention 
mechanism is introduced to construct the C3ECA module, 
which is used in place of the C3 module in YOLOv5; in 
YOLOv5, the BiFPN structure takes the role of the PANet 
structure; the image slicing pre-processing method is used, 
and the circular smooth labeling module is introduced. The 
enhanced model exhibits a notable increase in the assessment 
metrics of target detection and performs better in the DOTA 
dataset [21]. 

II. YOLOV5 NETWORK STRUCTURE 
YOLOv5, a single-stage algorithm, is the fifth generation 

of the YOLO family and a member of the regression family 
of target identification techniques. In contrast to conventional 
methodologies for identifying sliding windows and 
subsequent region delineation, YOLOv5 conceptualizes 
target detection as a regression problem. This approach 
enables optimization of end-to-end detection performance 
and brings significant innovation to the field of target 
detection. The YOLOv5 is available in five variants: 
YOLOv5l, YOLOv5x, YOLOv5m, YOLOv5n, and 
YOLOv5s. These variations have been designed to 
accommodate varying application situations and vary in 
terms of network depth and width. This series of versions 
offers a range of options, from lightweight to high 
performance, to suit various computing resources and 
performance requirements. The YOLOv5s model, which is 
extensively employed in the field of real-time target detection, 
is the smallest and quickest detection speed among them. As 
a result, YOLOv5s serve as the foundation for the research 
presented in this article. 

III. RIC-YOLOV5 NETWORK STRUCTURE 
In this study, we improved the YOLOv5 target detection 

model and proposed a target detection model, Ric-YOLOv5, 
suitable for remote sensing images. The main improvements 
include (1) Without requiring more inference time, the 
architecture of the RepConv module can significantly 
increase the detection accuracy of small targets. (2) The ECA 
attention mechanism and the C3ECA module are designed to 
deal with the interference caused by complicated background 
areas in remote sensing image data sets. This helps the model 
to detect targets in regions more accurately. (3) The BiFPN 
structure replaces the PANet structure in YOLOv5 to achieve 
the balance of feature information at different sizes and thus 
improve the detection performance of multi-scale objects. (4) 
In order to solve the target orientation uncertainty problem 
and mitigate the boundary discontinuity caused by angular 
regression, the circular smoothing labeling method is adopted 
as an effective solution. (5) In order to skillfully achieve 
target detection on high-resolution images, a preprocessing 
method of image slicing is employed, which significantly 

reduces the problem of missing and misdetecting small 
targets in large images. 

With these enhancements, the Ric-YOLOv5 model now 
exhibits better robustness and performance in challenges 
involving the identification of targets in remote sensing 
images. Figure 1 shows the architecture of the Ric-YOLOv5 
neural network. 
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Fig. 1.  Ric-YOLOv5 neural network structure 
 

A. RepConv Module 
The RepConv module has been seamlessly integrated into 

YOLOv5, utilizing the multi-branch structure of RepConv to 
effectively enhance the feature representation ability of small 
targets. As a result, the accuracy of tiny target detection 
improves. Furthermore, the reparameterization approach [22] 
is applied throughout the reasoning phase to merge the 
RepConv parallel branch into a single branch, preserving the 
YOLOv5 structure without adding to the reasoning time. 
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(a) Channels changed      (b) Channels unchanged     (c) Inference architecture 
Fig. 2.  RepConv module structure 
 

The module expands the convolutional module by 
integrating a parallel 1×1 convolutional layer into the 
backbone's 3×3 convolutional layer. The 3 x 3 convolutional 
layer receives the outputs from the parallel branches during 
the inference stage. This update increases the detection 
accuracy of tiny items in the DOTA dataset without adding 
extra time to the inference process. The RepConv module 
makes use of a multi-branch structure during training. When 
there are more input feature channels than output feature 
channels, as in Fig. 2a, the module structure is altered. On the 
other hand, the module's structure is shown in Fig. 2b when 

IAENG International Journal of Computer Science

Volume 51, Issue 6, June 2024, Pages 681-687

 
______________________________________________________________________________________ 



 

the number of input feature channels and output feature 
channels equals one. As illustrated in Fig. 2c, the outputs 
from the multi-branch structure are combined in the 3 × 3 
convolution layer during the inference stage to create a single 
path structure. 

B. C3ECA Module 
DOTA datasets typically have a high concentration of 

complicated background, which significantly impairs object 
detection accuracy and causes interference. This is 
particularly detrimental to the identification of tiny objects. 
Therefore, this work uses the Efficient Channel Attention 
(ECA), an enhancement of the SE module, to reduce 
background interference and enhance the efficiency of tiny 
target identification. This innovation eliminates background 
interference, particularly when dealing with complex 
background information, which significantly limits feature 
extraction in DOTA datasets. This paper presents a unique 
attention mechanism, the C3ECA module, which is produced 
by integrating an efficient channel attention mechanism, 
ECA, inside the C3 module. The purpose of this mechanism 
is to improve the feature information within the target region 
and reduce the interference caused by the background. 
Following global average pooling (GAP), the ECA module 
eliminates the fully connected layer from the SE module and 
employs weight-shared one-dimensional convolution to learn 
features directly. A crucial factor in one-dimensional 
convolution is the convolution kernel size, or hyperparameter 
k, which establishes how well local interactions work across 
channels. 

The ECA module aims to capture the interactions between 
channels by utilizing each channel and its adjacent k channels 
in the feature map. Fig. 3 vividly demonstrates the structure 
of the ECA module. In Fig. 3, it can be observed that the 
weights of the one-dimensional convolution are designed in a 
staggered arrangement, thus realizing the cross-channel 
interaction function. 
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Fig. 3.  ECA module structure 

 
There are groups of weights, and the size of the 

convolutional kernel determines how many weights there are 
in each group. This greatly lowers the overall number of 
parameters because the weight values within each group are 
shared. While attention is calculated using two completely 
linked layers in the SE attention mechanism, it is computed 
using k closest neighbor channels in the ECA attention 
mechanism. It is evident that the ECA module's 
computational performance is directly impacted by the 
magnitude of k. In fact, there is a nonlinear mapping 
relationship between k and the number of channels C, which 
can be described by an exponential function as follows: 

( ) exp( )C k k b                            (1) 
Given that the number of channels is frequently an 

exponential multiple of two, the following formula may be 
employed to derive k: 

2

odd

log C bk (C)
 

                        (2) 

As illustrated in Fig. 4, a comparative analysis of the 
enhanced C3ECA module and the conventional C3 module is 
conducted within the context of the YOLOv5s network 
architecture. It can be clearly seen that the C3 module 
consists of multiple stacked bottleneck modules, while in this 
study, we introduced the ECA attention mechanism in these 
bottleneck modules, which effectively suppresses the 
background interference and improves the detection 
performance of small targets. 
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(b) C3ECA module 

Fig. 4.  Comparison of the architecture of the C3 module and the C3ECA 
module 
 

C. Bidirectional Feature Pyramid Network 
The YOLOv5 feature fusion network utilises PANet, 

which combines feature maps extracted at various levels to 
higher levels. In order to improve target identification 
efficiency, this allows the model to fully utilize multi-level 
and multi-scale feature information. 
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Fig. 5.  BiFPN module structure 
 
The advent of FPN has led to the development of 

numerous cross-scale feature fusion networks, including 
PANet and NAS-FPN, which have gained popularity due to 
the increasing prevalence of multi-scale feature fusion. 
However, the incorporation of learnable weights, which 
assist in the assessment of the significance of certain input 
traits, and the more even distribution of data across several 
scales, collectively enhance the performance of FPN. 
Therefore, instead of using the neck portion of the feature 
fusion approach, BiFPN is employed in this research. The 
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BiFPN model's schematic structure is seen in Fig. 5, where 
P1, P2, and P3 stand for the various scale characteristics that 
the Backbone component produces. The weighted 
aggregation approach is employed by the feature fusion 
modules BiFPN_Add2 and BiFPN_Add3, which fuse the 
features of the current layer with those of the preceding layer. 

D. Circular Smooth Label 
At present, target detection bounding boxes are mainly 

divided into three types: horizontal bounding boxes, 
rotational bounding boxes and customized bounding boxes. It 
is important to keep in mind that while recognizing objects in 
remote sensing photos, the target's orientation may vary or be 
random. As a result, the bounding box labeling technique 
should be flexible enough to change depending on the target 
object's true shape. Given the features of changeable object 
orientation in remote sensing picture target recognition, the 
rotating bounding box is undoubtedly a better option. 

This paper performs rotated bounding box target detection 
for the DOTA dataset and introduces angular loss. Four 
major components comprise the total loss: angle loss, 
classification loss, regression loss, and confidence loss. The 
angular regression problem is converted into a classification 
problem in the computation of angular loss, and Circular 
Smooth Label (CSL) is adopted to solve it. The approach of 
angular segmentation restricts the range of predicted results 
and effectively mitigates potential boundary issues. The 
circular smooth labels are given smooth label values with a 
tolerance and are encoded cyclically and periodically. 

Equation (3) displays the CSL expression. 
( ),

( )
0, otherwise
g x r x r

CSL x
    

 
   

            (3) 

The window function's radius θ is connected to the angle of 
the current bounding box in the case when g(x)  is the 
window function. The window function has four main 
characteristics, including periodicity, monotonicity, 
maximum value and symmetry. In practical applications, 
window functions, which include impulse, rectangle, 
trigonometric, and Gaussian functions, are frequently 
employed. The network model can effectively calculate the 
angular separation between the expected and the real label by 
expertly setting the window function. The model performs 
better because of this architecture, which causes the loss 
value to gradually drop as the forecast gets better. In addition, 
the periodic nature of the window function effectively solves 
the problem of angular periodicity, as shown by CSL in Fig. 
6. 
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Fig. 6.  Circular smooth label 

IV. EXPERIMENTAL DESIGN 
The experimental data set used in this work was taken from 

the DOTA public remote sensing data set, which is sourced 
from a variety of platforms and sensors, including the JL-1, 
GF-2, and Google Earth satellites. There are 2806 
high-resolution photos in the collection, which span 188,282 
distinct instances. These examples relate to 15 different 
categories, including Small Vehicle (SV), Basketball Court 
(BC), Tennis Court (TC), Harbor (HA), Soccer Ball Field 
(SBF), Plane (PL), Swimming Pool (SP), Roundabout (RA), 
Large Vehicle (LV), Storage Tank (ST), Ship (SH), Bridge 
(BR), and Helicopter (HC), Ground Track Field (GTF), 
Baseball Diamond (BD). These photos' resolutions span from 
800×800 to 4000×4000, providing a broad range of realistic 
application scenarios. 

The picture in the dataset is too big, therefore direct model 
training is not appropriate. Therefore, the image cutting 
method is used for preprocessing. In order to ensure that no 
target information is lost during the cutting process, the 
conventional approach is to ensure that there are overlapping 
areas in the image after cutting. In this study, the original 
image is cut by the overlap distance of each 200 pixels, and a 
sub-image with a size of 1024×1024 pixels is generated. This 
process generated multiple sub-images with a resolution of 
1024×1024, yielding a total of 21046 such images. Of these, 
2105 photos made up the test set and 16837 images were 
chosen at random to form the training set. 

The AMD Ryzen 76800HCPU, 3.20 GHz, 16 GB RAM, 
NVIDIA GeForce RTX3060 graphics card, Windows 11 
operating system, and CUDA version 11.6 were the 
specifications of the machine used for the tests, which were 
carried out with the PyTorch deep learning framework. With 
a momentum term of 0.9, an initial learning efficiency of 
0.001 for the weights, and a decay coefficient of 0.0005, the 
network was trained via asynchronous stochastic gradient 
descent. Batch-size = 16 and 200 iteration rounds. 

V. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Evaluation Index 
The model's performance is assessed in this research using 

the mean average precision (mAP), recall (R), precision (P), 
and average precision (AP) of AP values across all categories. 
Below are the formulae for these metrics: 

TPP
TP FP




                                   (4) 

TPR
TP FN




                                   (5) 

n
P

AP
n

                                       (6) 

1

N

i
AP

mAP
N
                                  (7) 

where N  is the number of categories, n  is the total 
number of data, TP stands for true instances, FP for false true 
cases, and FN for the number of missed detections by the 
model. An area under a curve, represented by the AP value, 
may be visualised by using the accuracy rate as the vertical 
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axis and the recall rate as the horizontal axis. In this 
experiment, the evaluation index is the mean average 
precision (mAP) at the point where the intersection and 
concurrency ratio thresholds between the detection frame and 
the real frame are equal to 0.5. 

B. Ablation Experiment 
This study conducts a series of module ablation 

experiments on the DOTA dataset to fully validate the 
effectiveness of the proposed algorithm. The experiments 
aim to investigate the effects of RepConv, C3ECA, 
bidirectional feature pyramid network, and circular 
smoothing labelling module on the algorithm's performance. 
This study included five sets of ablation trials, the results of 
which are displayed in Table Ⅰ. 

 
TABLE I 

ABLATION EXPERIMENT 
Group RepConv C3ECA BiFPN CSL mAP 

1     75.7 
2 √    77.1 
3 √ √   80.2 
4 √ √ √  81.5 
5 √ √ √ √ 82.2 

 
It is evident from the data in Table Ⅰ that the method 

suggested in this work yielded a number of important 
experimental findings. The benchmark model used in the first 
set of experiments was the YOLOv5 algorithm, which was 
compared in detail with the subsequent experiments. The 
mAP of the benchmark model is 75.7%. In the second set of 
tests, the original algorithm structure is maintained by 
substituting the RepConv module for the Conv module in the 
backbone network. This simple yet effective improvement 
significantly improves the detection accuracy of small-scale 
objects and increases mAP by 1.4%. The third group of 
experiments further introduces the RepConv module and the 
C3ECA module. The combined impact of these two modules 
efficiently aids in the model's correct target area location and 
enhances detection accuracy by 3.1%. Based on the findings 
of the third set of trials, the fourth group presents a 
bidirectional feature pyramid network module. By increasing 
mAP by 1.3%, this module successfully improves multi-scale 
object detection performance. Finally, the fifth set of 
experiments further optimized the boundary regression, 
especially after increasing the rotation angle of the target, 
using a circular smooth label to improve the accuracy of 
target positioning. This improvement improves the overall 
accuracy of the algorithm mAP to 82.2%. When the 
improved Ric-YOLOv5 network is trained for 200 rounds, 
the loss, recall rate and mAP have basically converged. The 
comparison charts for the loss, recall rate, and mAP of the 
Ric-YOLOv5 network and the original network are shown in 
Figures 7, 8, and 9. 

After a thorough analysis of these data, it can be said that 
the algorithms presented in this research have significantly 
advanced the field of remote sensing picture target 
recognition, and that each of the modular techniques offered 
has improved performance to a large degree. These 
experimental findings not only confirm the algorithms' 
efficacy but also offer compelling evidence in favor of further 
study and use of remote sensing image processing. 
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Fig. 7.  Loss comparison 
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Fig. 8.  Recall rate comparison 
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Fig. 9.  mAP comparison 
 

C. Comparison Experiment 
To evaluate the performance of the updated algorithm 

against well-known target identification methods as R2CNN, 
YOLOv3, YOLOv4, MaskOBB, YOLOv6s, and YOLOv8, a 
number of comparison experiments were conducted using the 
DOTA dataset. Table Ⅱ displays the experiment results. 
These comparative trials offer a better knowledge of how 
well the enhanced algorithms perform in contrast to other 
algorithms. 

The data shown in Table Ⅱ provides a clear understanding 
of how various target recognition algorithms perform on 
remote sensing photos. 
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TABLE Ⅱ 
COMPARATIVE EXPERIMENTS OF DIFFERENT TARGET DETECTION ALGORITHMS 

Model SV LV PL ST SH HA GTF SBF TC SP BD RA BC BR HC mAP 
R2CNN 59.6 51.2 79.9 73.1 55.4 54.9 65.2 55.3 89.7 54.1 66.1 53.2 67.1 36.1 49.3 60.7 

YOLOv3 68.3 70.2 90.1 61.3 83.6 78.9 48.8 51.1 95.3 78.3 54.8 33.3 53.6 28.9 81.4 65.2 
YOLOv4 65.7 77.7 89.7 81.3 86.7 80.3 62.7 60.9 90.6 66.8 73.1 63.1 70.6 50.6 57.8 71.8 
MaskOBB 68.8 60.8 89.8 86.6 73.3 66.8 68.7 66.1 90.5 68.4 80.9 67.1 88.1 52.1 65.5 72.9 
YOLOv6s 76.6 75.2 89.5 86.7 86.6 74.1 72.8 54.6 90.1 69.1 85.8 70.1 83.9 54.6 63.5 75.5 
YOLOv8 87.2 91.4 95.8 85.3 95.6 86.1 74.6 60.3 94.6 61.8 82.4 71.1 80.4 60.2 69.9 79.8 

Ric-YOLOv5 90.1 94.6 97.7 87.5 97.8 88.2 74.1 63.5 97.3 63.2 85.3 74.2 82.6 63.1 73.5 82.2 
 

The suggested R2CNN algorithm, which is based on Faster 
R-CNN, has a mAP value of 60.7%; however, it has some 
issues processing multi-category remote sensing images. 
These issues are primarily caused by the requirement to 
generate a lot of horizontal frames using the RPN, which 
causes the horizontal frames to overlap, which lowers the 
detection accuracy overall. With a detection accuracy of 
65.2%, YOLOv3 does particularly well when it comes to 
identifying major target categories like helicopters (HC). 
However, the algorithm is constrained by poor localization 
accuracy as well as weak detection of small objects, and the 
overall detection effect needs to be improved. As opposed to 
the first two algorithms, YOLOv4 obtains a mAP value of 
71.8%, indicating a notable improvement in performance. 
However, the algorithm has low detection efficiency when 
dealing with complex scenes and dense targets. MaskOBB 
has a mAP value of 72.9%, and while it works well in the 
majority of detection circumstances, its accuracy in detecting 
dense objects, such large vehicles (LV), may still be 
improved. With a mAP score of 75.5% and a quite good 

accuracy, YOLOv6s does well when it comes to detecting 
tiny targets in complicated backgrounds. Nevertheless, the 
technique is vulnerable to the missed detection issue, 
necessitating more study and development. The YOLOv8 
algorithm achieved an average accuracy of 79.8%. In 
particular, it outperforms most of the compared algorithms in 
the detection of the Ground Track Field (GTF) category. The 
algorithm's shortcomings, which show up as a lack of 
recognition efficacy, persist when it comes to the 
identification of tiny spinning objects. 

After extensive experimental validation, the method 
proposed in this study shows a significant improvement in 
accuracy compared with existing techniques. Specifically, 
the algorithm achieves an average precision mean of 82.2 %, 
which is in the leading position among the compared 
algorithms. In addition, the algorithm shows significant 
performance improvement in dense target detection such as 
Small Vehicle (SV), Plane (PL), ship (SH) and other targets. 
This finding provides additional evidence of the algorithm's 
efficacy in processing remote sensing images. 

 

 
                          (a) R2CNN                                         (b) YOLOv5s                                    (c) YOLOv6s                              (d) proposed algorithm 
Fig. 10.  Comparison of detection effect of some algorithms 
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Using R2CNN, YOLOv5s, YOLOv6s, and the enhanced 
algorithms suggested in this study, among other methods, 
some of the photos chosen for this study were recognized in 
order to assess how well various target detection algorithms 
performed in processing the images in the DOTA test set. 
Figure 10 displays a comparison of the detection findings. 
The graphic clearly shows that the classic R2CNN, YOLOv5s, 
and YOLOv6s algorithms frequently have missed detection 
for tiny objects, such small automobiles. Large differences in 
target scales in remote sensing images are a challenge that 
these algorithms struggle to handle, and they are unable to 
fully extract the features of small targets in complex 
backgrounds or focus enough on targets that are hard to 
classify. However, the enhanced method shown in this work 
improves the capability of multi-scale target localization and 
feature extraction in complicated backdrops by the 
incorporation of modules including bidirectional feature 
pyramid network, C3ECA, and RepConv. As a result, it can 
generate more accurate detection frames, reducing both false 
positives and missed detections to some extent. Together, 
these improved modules make the algorithm in this study 
perform well in dealing with small targets in complex 
backgrounds. 

VI. CONCLUSION 
Building upon the YOLOv5 architecture, this paper 

suggests an enhanced method for remote sensing image 
target recognition called Ric-YOLOv5. This study first 
designed the RepConv module and used it to replace the 
conventional Conv module in the backbone network, thereby 
significantly improving the detection accuracy of small-scale 
targets. This was done in response to the challenges posed by 
complex backgrounds, diverse scales, the prevalence of small 
targets, and the diversity of target directions in remote 
sensing images. Furthermore, the ECA attention mechanism 
is used in the construction of the C3ECA module. This 
enhancement lessens the impact of background noise while 
simultaneously improving the accuracy of recognizing tiny 
objects. We substituted the BiFPN structure for the PANet 
structure in order to better match the detection requirements 
of multi-scale targets. Furthermore, we successfully 
addressed the problem of border discontinuity and target 
direction uncertainty by employing the circular smooth label 
approach.  Simultaneously, the high-resolution picture 
pre-processing approach of image slicing is used, which 
successfully mitigates the issue of tiny target false and missed 
detection. The results of the experiments confirm the benefits 
of the Ric-YOLOv5 algorithm for small-scale target 
detection that this research proposes. The quality of target 
recognition tasks in remote sensing images is greatly 
enhanced by this advancement. Subsequent investigations 
endeavor to enhance the model's equilibrium between 
inference velocity and detection precision, rendering it more 
applicable to realistic situations. 
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