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Abstract—The rapid evolution of technology has raised 

questions about the authenticity of digital images due to easy 

access to software for image manipulation. This challenges the 

reliability of cybernetic images, making it difficult for analysts 

to verify their authenticity. Therefore, there is a need to 

improve image forgery detection techniques. Many existing 

systems rely on standard pooling and a single approach, 

limiting the comprehensiveness and demonstration of features 

acquired. In response, this research introduces a Pixel-Based 

Optimized Deep Convolutional Neural Network (PBO-DCNN) 

classification and a Hybrid Boosting Machine method for 

detecting image fabrications. The technique employs block-

wise feature extraction in a block-by-block manner and a 

Hybrid Boosting Machine segmentation approach to enhance 

detection. Performance analysis shows that the Hybrid 

Boosting Machine approach attained an accuracy of 94.74%, a 

sensitivity of 95.00%, and a specificity of 95.27% on the DSO-1 

dataset. Further, the Hybrid Boosting Machine model attained 

the accuracy, sensitivity, and specificity values of 94.86%, 

94.97%, and 93.38% on the DSI-1 dataset concerning the 

training percentage (TP). Comparative analysis against 

traditional techniques such as Linear Regression (LR), Deep 

CNN, SVM, Decision Tree (DT), and Naïve Bayes (NB) 

classifiers demonstrates the superior performance of the 

Hybrid Boosting Machine approach. 

Index Terms—Deep CNN, Forgery detection, Feature 

extraction, Hybrid Boosting Machine, Segmentation. 

I. INTRODUCTION 

The human brain possesses a remarkable ability to process 

and understand visual details, which finds applications in 

diverse domains such as education, the internet, healthcare, 

law, entertainment, and more. With the proliferation of 

image editing tools on portable devices like smartphones 

and laptops, there is a growing potential for image 

manipulation for various purposes, which can significantly 

impact public perception [1]. Consequently, it becomes 

essential to establish techniques for detecting image 

tampering and falsification. Typically, image falsification is 

divided into three categories: imitation [9], integration [10], 

and deletion [11].  

Imitation involves copying elements from one image and 

pasting them into another, while integration separates and 

combines image elements from different sources. Deletion, 

on the other hand, entails removing a portion of an image 

and replacing it with a pixel pattern [2]. 

The advent of user-friendly image editing applications has 

made it easier to alter image content, and image falsification 
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can occur virtually anywhere.  

 This rise in image manipulation coincides with the 

increasing prevalence and sophistication of manipulated 

images, making it a significant concern. Detecting and 

determining image falsification is a global problem, as it 

involves distinguishing characteristics among various 

regions of images to identify tampered sections [6]. 

Automated image falsification can be broadly categorized 

into two types: imitation and interlace falsification. In 

imitation falsification, portions of image elements are 

transposed into similar images, whereas interlace 

falsification involves borrowing elements from other images 

to create the manipulated image [3]. Depending on the 

alteration of the visual components of an image, falsification 

can be broadly categorized into global falsification [12][13] 

and local falsification.  

In global falsification, imitation, and deletion falsification 

impact a single source image, while interlace falsification 

combines parts from one or multiple source images into the 

target image [4]. These manipulations can often be achieved 

without leaving clear evidence and can be challenging for 

the human eye to detect. These manipulations can be 

executed using various techniques, including imitation, 

interlacing, and modification. These methods involve 

integrating various portions of one or more images to 

produce a new image [5]. Recently, images with proximity 

and easily understandable visual elements have become a 

primary source of news dissemination and are used as 

evidence in legal proceedings, investigative work, public 

forums, and real-time events. For interlace falsification, 

regions are typically distorted, rearranged, and obscured to 

create a manipulated image, making it difficult for the 

human eye to detect these falsifications [8]. Support vector 

data description is utilized by Ayoub Mniai and Khalid 

Jebari [20] for credit card fraud detection. Hirofumi 

Miyajima [21] et al., used the ML algorithm along with the 

PSO to secure the data in the cloud and edge systems. 

As for the models based on CNN, various techniques [6] 

majorly study the variations among the image patch to 

decide if an image patch is influenced or not. For example, 

the research [6] developed a two-phase identification 

system, which digests the variations of the image elements 

identification system based on CNN, the researchers 

normally utilize usual pooling performance such as max-

pooling and mean-pooling to condense the features, but 

these functions will lead to the loss of information, which is 

irrevocable. As the details of the educated attributes are 

misplaced, it will be a severe challenge for the systems to 

identify the trespassed areas by differentiating the attribute 

variations of every pictorial area. Furthermore, they only 

concentrate on a particular undertaking, like creating the 

identified trespassed areas, which assembles the attributes 
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studied by the network system into more provisional as well 

as fewer representative [6], and it has been discovered that 

the search field didn’t pass its developing phase yet and 

emerged as a theme of curiosity for various types of 

research, in which the traditional techniques [8] were 

utilized. The image interlacing fabrication is identified 

either by the combination of DWT and LBP [8] or Markov 

and DWT fusion [8], however, as per the author’s better 

intelligence, the fusion of DWT, Markov, and LBP were yet 

to be utilized in the applications [8].   

 

The key intention of the research is image forgery detection, 

in which the data needed for the identification of forgery is 

collected from the dataset [14], and then the preprocessing is 

employed to make the input image useful for the forgery 

identification. A Hybrid Boosting Machine as well as a 

Pixel-based optimized deep CNN is developed to identify 

the input image as normal or forged. 

➢ Hybrid Boosting Machine: The Hybrid Boosting 

Machine is established based on the conventional 

hybridization of the light Gradient Boosting Machine 

(light GBM) technique and the Decision Tree (DT), 

which will detect whether the inserted image is normal 

or forged. 

➢ Pixel-Based Optimized Deep Convolutional Neural 

Network (PBO-DCNN): The pixel-based optimized 

deep CNN classification algorithm identifies the 

information of the picture elements of the forged 

imagery and presents the segmented picture element to 

the classification process. The further process will be in 

between the real image in the increased test blocks and 

the fabricated picture elements given by the pixel-based 

deep CNN algorithm and the forged image will be 

sectioned. 

 

The image forgery detection method presented in the 

previous papers with its pros and cons are explained in 

section II, and the proposed Pixel-based optimized deep 

CNN and Hybrid Boosting Machine are enumerated in 

section III. The output achieved is projected in section IV 

and the conclusion is depicted in section VIII.  

II. LITERATURE REVIEW  

Several previous research based on the detection of image 

forgery were reviewed and described in this section with 

their benefits as well as drawbacks. 

Kalyani Kadam et al. in [1] developed a multi-image 

interlacing identification by utilizing the Mask Refined-

CNN (RCNN), along with the MobileNet V1 as a vertebra 

to detect and label a numerous image interlacing 

falsification with the increased rate of identification and 

reduced size of the technique as well as complexity, and 

estimates the probability of an artificial area of multi-

interlace pictures. However, the established model takes an 

extended period for the process. Hongwei Ding et al. in [2] 

established the advanced image interfere location technique 

based on double-channel U-Net (DCU-Net), in which the 

identification structure based on the technique is primarily 

separated into three sections such as encipher, feature 

connection, as well as decipher, where the method input is 

the real trespassed picture as well as the tampered remaining 

image, and the fusion of the feature for identifying the 

image interlacing fabrication, where the experimental 

analysis states that the method reduces the information loss 

as well as memory consumption. However, the 

mathematical complexity of the technique is huge. 

Moreover, in [3] Bin Xiao et al. suggested an identification 

technique for interlacing fabrication with two sections such 

as a coarse-to-RCNN (C2RNet) as well as dilute adaptive 

clustering, which issues a coarse-CNN as RCNN, and 

removes the variations present in the image elements among 

the interfered and un-interfered areas from the image patch 

with various lengths. However, the concentration of the 

machine sound is feeble and the identification method might 

happen to be void. In [4] Bo Liuet et al. developed the D-

Unet model for image interlace identification, which uses a 

detached and stable encipher, which is succeeded by a 

spatial feature extraction technique, which lengthens the 

universal perception of D-Unetto and categorize the 

interfered and un-interfered areas. It decreases the failure 

identification range, high precision, F-measure, and high 

recall range. However, the technique improves the 

complexity of identification as the changing function 

regularly misses some images. Sahani Pooja Jaiprakash et 

al. [5] developed a low-dimensional feature-based technique 

to substantiate the images and to access the areas diagnosis 

by utilizing the novel key-point-based technique; its 

experimental outcome shows that the approach decreased 

the time of detection and detected the dual kind of non-

resistance at the similar period. This method is not suitable 

for compositing functions. Xiuli Bi et al. in [6] developed a 

multiple-task wavelet corrected network (MWC-Net) that 

could learn many extensive and indicative attributes for the 

identification of image interlacing and locating, in which the 

method makes use of wavelet-pooling and un-pooling to 

reduce and renovate the attributes of fabricated images, 

which decreases the loss of information. However, the 

technique will not be utilized in the alternative functions of 

pooling. In [7] Avinash Kumar et al. implemented an 

improved Markov technique in the Block Discrete Cosine 

Transform (BDCT) field and the Discrete Meyer Wavelet 

Transform (DMWT) field to categorize the forged image 

from a real image; the cross-field attributes stimulate the last 

critical attributes for Support Vector Machine (SVM) 

algorithm which reduces the size of the feature vector length 

at a less computational price. However, a large number of 

attributes create over-fitting issues. In [8] Navneet Kaur et 

al. extracted and merged both the DWT and the LBP fields 

for the identification of image forging, in which the three-

stage DWT is implied to the original image with separate 

Haar wavelet, which achieved additional information and a 

little amount of noise, with reduced computational 

complexity. However, the method contains high 

computation expenses. In [22] Kang Tan et al. introduced an 

image manipulation method utilizing a two-stream Faster R-

CNN architecture with a constrained convolution layer in 

the preprocessing stage by incorporating the Convolutional 

Block Attention Module (CBAM) into the model to improve 

the attention towards tampered regions, allowing the model 

to focus on a larger manipulation area within the image. 

Challenges 

a. The MobileNet V1 technique is required to be evaluated 

with different attacks and will differentiate the 

estimated outcomes either in the presence or absence of 

the ambush [1]. 

b. The DCU-Net technique is required to be integrated with 

object detection techniques such as RCNN and YOLO 
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methods to resolve the issue regarding the functioning 

imagery by analyzing the possible varying attributes 

among the interfering or non-interfering region and a 

broader identification method will also be generated 

[2]. 

c. The C2RNet model is to be focussed only on an 

individual interfered area in imagery due to the 

limitation of the post-processing technique, and the 

problem will be evaluated and eliminated in the 

upcoming research. 

d. The passive approach is to be further implied to the 

medicinal imagery that makes it useful for the local 

civilization as well as the research group of people [8]. 

III. METHODOLOGY 

The major purpose of this paper is to recognize the image 

splicing as well as to section the fabricated imagery by 

utilizing the Hybrid Boosting Machine and Pixel-Based 

Optimized Deep CNN classifier.  

At first, the input image will be composed of the image 

forgery detection dataset (DTS) known as DSO-1 and DSI-

1[14] which will be further passed to pre-processing to 

decrease the noise and data irregularity. The block-wise 

feature extraction and the ResNet 101 feature extraction will 

be conducted simultaneously. The real imagery is altered to 

YCbCr to utilize the lesser declaration potential of the 

human vision network for color proportional to the 

luminosity, and then after the alteration and extraction of the 

ResNet 101 feature map, the attributes will be integrated and 

passed to the pixel-based optimized deep CNN classifier, in 

which the feature extraction is functioned by the feature 

progression like the Haralick feature, Local ternary pattern, 

SIFT, and light coefficient features.  

Haralick feature is the process of the standard Grey Level 

Co-occurrence Matrix (GLCM), whereas the local ternary 

pattern utilizes threshold stability to threshold components 

into three integrities, and the SIFT feature is utilized to 

identify and explain the general image attributes. The light 

coefficient attributes estimate the effectiveness, and then the 

features are sequenced. Simultaneously, the block-wise 

feature extracted will be further passed to the novel Hybrid 

Boosting Machine established by the conventional 

hybridization of the light GBM and Decision Tree (DT).  

Moreover, the Hybrid Boosting Machine will identify the 

input image as normal or forged, and if the detected imagery 

is evaluated to be forged, it will be passed to the PBO-

DCNN classifier.  

The normal data will be passed to the enlarged blocks, in 

which the PBO-DCNN classifier detects the pixel details of 

the fabricated imagery and offers the sectioned pixel to the 

Hybrid Boosting Machine. The differentiation will function 

among the real image in the increased test blocks and the 

fabricated pixels provided by the PBO-DCNN classifier and 

the fabricated image will be sectioned.  

The research will be carried out by utilizing PYTHON and 

effectiveness will be evaluated concerning the performance 

metrics which include accuracy, sensitivity, specificity, and 

segmentation accuracy. The diagrammatic demonstration of 

the Hybrid Boosting Machine methodology is shown in 

Fig.1. 

 

 

A. Data Collection 

The input image employed in this paper is collected from 

the DTS DSO-1 and DSI-1 [14] which include 200 inside as 

well as exterior images along with an image assertion of 

2,048 x 1,536 picture elements, which is expressed 

arithmetically as, 

fdt IMD =                 (1) 

where, 
tD  is referred to as a dataset and 

fdIM  is specified 

as image forgery. 

B. Image Preprocessing 

The data preprocessing is functioned for reducing the 

unnecessary noise present in the data collected from the 

database [14], thus, the attributes might be efficiently 

extracted for the recognition of the forged image, in which 

the pre-processed image is articulated by, 

** fdt IMD =                                    (2) 

where, 
tD  is referred to as a dataset and 

fdIM  is specified 

as image forgery. 

C. Block-wise Feature Extraction 

The computer radiography (CR) based categorization 

system normally utilizes original image elements which are 

vectorized as an attribute vector. Nevertheless, these 

techniques essentially need the test image and the training 

image to be associated well, in which, if the test imagery 

contains a smaller number of listing issues adjacent to the 

training imagery, the demonstration factors will be no 

longer instructive. Therefore, to handle this issue, various 

research was performed in recent times. The block-wise 

statistics which involves Haralick features, LTP, scale-

invariant feature transform (SIFT), and light coefficient 

features is developed. 

D. Haralick features 

 

The Haralick features (HF) are used as general surface 

signifiers in the image analysis. To calculate these features, 

the image's gray levels are reduced through a process known 

as quantization. Since the subsequent features heavily 

depend on the quantization processes, the HFs are 

irreproducible if a similar quantization fails. These features 

are counted using the GLCM, which signalizes the surface 

by refactoring the frequent occurrence of the sets of adjacent 

picture elements with specific rates. Additionally, the 

GLCM is regulated by the number of gray levels present in 

the quantized imagery and affects the rates of the surface 

attributes. With increasing number of gray levels, the 

arithmetic will transform, in which the GLCM properties 

and HF surface signifies that the attribute rate of the surface 

relies on the number of scales in the quantized picture, 

which is mathematically expressed as 

                    (3) 
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where   is referred to as an element function of P , g  is 

signified as a vector-valued function of P , i  

and j represent the gray levels being compared and   is 

referred to as an indices function. 

 Here,    
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E. Local ternary pattern (LTP) 

It has been identified in previous research that the 

descriptions from Local Binary Patterns (LBP) commonly 

offer huge-discerning attributes for the categorization of 

barks. However, several issues such as revolution and noise 

vulnerability as well as automation difficulty were their 

major drawbacks. Thus, the LTP pattern is introduced as a 

surface description that removes huge-discerning attributes. 

LTP can resist revolution and noise and is also vigorous to 

inclination, in which every picture element of imagery has 

an LTP which is enumerated with a 1,0,1 code, and is 

articulated with the following expression 


−

=

−=
1

0

, 3)(
i

i

i

ciRP ggsLTP

                (4)

 

where, g  is referred to as the user threshold for coding. i  is 

the index of the neighbor pixel in a predefined order. The 

result of the 
RPLTP ,
 accelerator for every picture element of 

imagery is a P-bit binary numerical with 3P varied values 

which improve the calculation difficulty with minimalism 

and reduction of mathematical difficulty.  

 

F. Scale-invariant feature transform (SIFT) 

The SIFT is considered as an image description for the 

imagery-based similarity, which is constant to conversions, 

revolutions, and alterations within the image area and 

vigorous to the average transmission of perception as well 

as clarification difference.  

Analytically, the SIFT has been stated to be beneficial in the 

training for the similarity of imagery and identification of 

the objectives beneath the physical situations.
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The technique for identifying the interesting spots in the 

SIFT mechanism can be viewed as a differentiation of the 

identification of the scale-adaptive blob technique based on 

convolution along with Gaussian kernels and is articulated 

as   

)2/()( 22

2

1
),,( sbae

S
sbaG +−=

                   (5)

 

where ),,( sba is denoted as the input values, S is specified 

as the variance of the Gaussian kernel. 

 

G. Light coefficient features 

The light coefficients are calculated in a block-wise manner; 

the summation of the absorption and the coefficient 

dispersion of light is intended. At present, it is unclear 

which portion of optical attenuation could be qualified to the 

light dispersion and which to absorption. Therefore, few 

publications are concerned merely with light absorption. 

Nevertheless, considering the huge amount of defects, the 

light dispersion could additionally create an extensive 

contribution to the totality reduction of light, which is 

expressed mathematically as  




2cos
16

3
=cfI                    (6) 

where, cfI is referred to as the Light coefficient features. 

H. Hybrid Boosting Machine 

The Hybrid Boosting Machine describes a common 

structure for boosting a guideline technique, like the 

standard logistic regression technique. For boosting the 

guideline method, non-linear techniques such as random 

forests (RF), XGBoost, extreme learning machines, or 

integrated methods could be implemented. For example, the 

RF or XGBoost methods can be implemented to evaluate the 

importance of the features as well as to detect the extra 

variables that are utilized to enhance the calculation. The 

boosting technique is based on the augmented family 

distribution utilized in the generalized linear methods, in 

which an arbitrary variable Y belongs to the augmented 

family distribution if the mass allocation can be articulated 

as 
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where   is referred to as the canonical parameter,   is 

defined as the dispersion parameter, as well as )(v , ),( aw , 

and  were the functions correlated to the mass 

distribution of a . Based on the Eq. (7), the log-likelihood 

function can be articulated as 
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The current rejoinder of the boosted guide-line method is 

expressed as  
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In every latest measure )2( m of the boosting algorithm, 

current pseudo retaliations are produced based on the 

variations among experimental as well as accumulated 

responses of traditional layers of the methods. Thus, every 

current pseudo-retaliation holds details that are not captured 

by previous layers. For the regression issues, the boosting 

algorithm generates consecutive layers of methods by 

utilizing the remainder of the traditional layers as fresh 

pseudo-retaliations for the impending layers. 

 

I. Segmentation Model 

The pre-processed input data is further subjected to the 

process of segmentation with YCBCR conversion as well as 

the ResNet 101 feature map which is described briefly in 

this section. 

 

a. YCBCR conversion 

The color-space alternation is one of the significant changes 

in the image processing executions, in which the live 

images, and recordings, are saved in the color space of RGB 

(red, green, and blue), as it is based on the color 

vulnerability identification cells in the human vision 

network. Moreover, in virtual functioning, the YCbCr color 

space is frequently used to utilize the lesser declaration 

potential of the human vision network for color concerning 

brightness. Therefore, the RGB to YCBCR alternation is 

extensively utilized in the processing of images as well as 

video, which is attained based on the expression

 )(2 RGBycbcrrgbYCBCR =                   (10)
  

b. ResNet 101 Feature map 

The highly developed VGG-19 approach, which addresses 

both object identification and image categorization, serves 

as the inspiration for the ResNets-101 plan. Typically, a 

CNN technique consists of a few layers that are both 

specialized for different tasks and related to one another. At 

the end of the layering process, the system learns different 

attribute scales. The size of the convolutional layers in this 

technique consists primarily of 33 filters, and each layer 

contains a similar number of filters for a similar feature map 

outcome range. The amount of filters is increased when the 

feature map volume is reduced halfway, which helps to 

manage the time complexity of each layer and exposes down 

sampling by convolutional layers with double strides. 

Moreover, the ResNet-101 concludes with an inclusive 

average layer of pooling and a SoftMax-activated 

completely related layer. The module of ResNet-101 is 

demonstrated in Fig.2. 

 

 

 

 

 

Fig.2.ResNet-101 Module 

J. Feature Concatenation  

The input images and their features which are converted 

based on the YCBCR, as well as the ResNet 101 feature 

map, are further subjected to feature concatenation to 
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combine them with varied depths and structures for the 

accomplishment of better segmentation accuracy. 

 

K. Pixel-based deep CNN 

The optimized DCNN consists of pooling, contortion, fully 

connected, and SoftMax functionality. It is advanced by an 

added layer that utilizes an attribute tensor and the 180*16 

shape, where 180 represents each sensor's sequential aspect 

and 16 represents the number of sensors. Additionally, there 

is a traditional layer with thirty-two kernels, all of which 

have 12 ranges, 11 strides, comparable padding, and a 

ReLU activation process that is used to extract effective and 

outstanding attribute characteristics. In addition, a high layer 

of pooling with a 12 range and 11  stride is used to shorten 

each sensor's sequential data length. Except for the number 

of kernels alternating by 16, the binary layer of 

convolutional and the high layer of pooling are comparable 

to the traditional layers. The data matrix then became 

45×16. The last three convolutional layers resemble the 

binary layer. After that, there is a completely related layer 

with over a thousand nodes and the SoftMax layer with 

roughly ten nodes, also known as ten dendrobium kinds. In 

this case, the optimized DCNN is suitable for the E-nose 

because the involution kernel's range remains constant when 

paired with the E-nose's data. Furthermore, each picture 

element in an image is connected to its neighboring picture 

elements for the image to function. To eliminate educational 

features, the square of 2D kernels is used. This differs from 

the image functioning where the sensors were self-

regulating even if the sequential aspect is connected. As a 

result, the lined 1D convolutional kernels are used for more 

than just eliminating inefficient characteristics; they also 

keep track of the feature justifications for the added images. 

Additionally, the neurons in the convolutional layers were 

organized into feature maps. These feature maps have an 

accessible sector that is linked to neuron regions in the 

preceding layer through the use of a skillful pair of weights 

that are periodically displayed as a filtered stock. The inputs 

of this feature map are associated with the mass that was 

previously trained to measure it, and the convoluted outputs 

are transmitted through a nonlinear process of activation that 

is expressed arithmetically as  

)( * seg

mee IFMfX =
                                   (11)

 

where 
eX  is defined as the output feature map, seg

mI  is 

defined as the input image, and *

eFM  is referred to as the 

feature map connected with the convolutional filter.  

The forged input image gathered from the classification 

process then gets subjected to the proposed technique in the 

segmentation process, in which the model combines and 

masks the forged image, which is then fed forward to the 

segmented pixel. The segmented pixel is the process of 

highlighting the pixels in an image that are forged and 

passing them to the augmented blocks. The augmented 

blocks are classified into the finished blocks and unfinished 

blocks for the test genotypes. In a randomized finished 

block pattern, tests are simulated similarly in every block, 

whereas in the unfinished block design, the block volumes 

are different, which produces the desired final segment 

image. 

IV.  RESULTS AND DISCUSSION 

The result attained through the image splicing detection by 

utilizing the Hybrid Boosting Machine model is established 

in the subsequent section. 

A. Experimental setup 

The experiment is executed in PYTHON, which provides 

instance-efficient and ordered programming. The 

implementation system includes PyCham software and is 

implemented in the Operating system of Windows 10 with 

8GB RAM as memory. 

 

B. Datasets 

The input data is collected from the standard DTS such as 

DSO-1 and DSI-1 [14], in which DSO-1 is collection of 200 

interiors as well as outside images with an image assertion 

of 2,048 x 1,536 picture elements, and DSI-1 is collection of 

50 images and are downloaded from various sites in the 

internet with various resolution. 

C. Experimental Analysis 

 

The image results acquired from the experiment based on 

the datasets [14] have been demonstrated in this section in 

terms of original and output images as well as the results 

obtained from the ResNet Feature Map and YCBCR 

conversion have also been represented in Fig.3 and Fig.4. 

D. Performance Metrics 

a) Accuracy 

The accuracy is evaluated as the degree of approximation to 

the target value of the detection and represented as, 

a

ca

n

n
Acc =                                        (12) 

where, 
can is specified as the number of correct analyses, as 

well as 
an is recognized as the whole number of analyses. 

 

b) Sensitivity 

The sensitivity is evaluated on account of the positive 

instances recognized by the existing approaches together 

with the gathered DTS by utilizing the below expression 

np

p

tt

t
SN

+
=                                       (13) 

where, 
pt is defined as the true positive as well as 

nt  is 

referred to as the true negative. 

 

c) Specificity 

The specificity is evaluated concerning the fraction of true 

negatives to the overall negatives with the given expression 

pn

n
p

tt

t
S

+
=                                        (14) 

where nt  is specified as the true negative and pt  is referred 

to as the true positive. 
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Fig.3. Experimental outcome based on the dataset DSO-1 and DSI-1 

 

ResNetFeatureMap YCBCR ResNetFeatureMap YCBCR 
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c) c) d) d) 

Fig.4. Experimental results based on ResNet Feature Map and YCBCR 
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d) Mean square error (MSE) 

The MSE measures the average squared difference between 

the predicted and actual values. A lower MSE signifies 

better model performance, indicating that the model's 

predictions are closer to the true values. 


=

−=
n

i

ii SS
n

MSE
1

2)ˆ(
1

                                      
(15) 

 

Where n is the number of samples, iS is the real value and 

iŜ  is the predicted value. 

 

E. Performance Analysis 

This section depicts the performance of the Hybrid Boosting 

Machine to obtain the detection of image splicing by 

utilizing metrics concerning the DTS [14]. 

 

Performance evaluation concerning the Training 

Percentage (TP) on the DSO-1 

 

The performance evaluation of the Hybrid Boosting 

Machine is evaluated by utilizing the dataset DSO-1 [14] 

particularly, concerning metrics such as accuracy, 

sensitivity, and specificity.  

Table I shows the accuracy, Table II shows sensitivity and 

Table III shows specificity of the model with TPs from 40% 

to 90% and epochs from 100 to 300.  

Fig.5 depicts the performance evaluation of the Hybrid 

Boosting Machine model on DSO-1 at TP 90% for epochs 

100 to 300. 

 
 

 

Table I. Hybrid Boosting Machine Accuracy on DSO-1 

Training 

Percentage 

No. of Epochs 

100 150 200 250 300 

TP-40 94.64 94.64 94.78 94.78 94.81 

TP-50 94.81 94.82 94.85 94.89 94.91 

TP-60 94.84 94.85 94.89 94.89 94.91 

TP-70 94.86 94.87 94.9 94.9 94.97 

TP-80 94.94 94.94 94.96 94.99 95.03 

TP-90 95.04 95.12 95.12 95.12 95.19 

 

 

 
 

Table II. Hybrid Boosting Machine Sensitivity on DSO-1 

Training 

Percentage 

No. of Epochs 

100 150 200 250 300 

TP-40 94.06 94.08 94.19 94.22 94.22 

TP-50 94.22 94.23 94.26 94.29 94.34 

TP-60 94.23 94.25 94.28 94.31 94.36 

TP-70 94.25 94.30 94.31 94.32 94.36 

TP-80 94.29 94.32 94.34 94.38 94.38 

TP-90 94.37 94.39 94.39 94.43 94.48 

 
 

Table III. Hybrid Boosting Machine Specificity on DSO-1 

Training 

Percentage 

No. of Epochs 

100 150 200 250 300 

TP-40 95.06 95.08 95.15 95.16 95.17 

TP-50 95.11 95.19 95.28 95.35 95.39 

TP-60 95.28 95.32 95.36 95.41 95.44 

TP-70 95.33 95.41 95.44 95.45 95.58 

TP-80 95.45 95.51 95.52 95.59 95.65 

TP-90 95.47 95.61 95.65 95.80 95.87 

 

 
Fig.5. Performance evaluation of the Hybrid Boosting Machine model on 

DSO-1 

 

 

 

Performance evaluation concerning the TP on DSI-1 

 

The performance evaluation of the Hybrid Boosting 

Machine is evaluated by utilizing the dataset DSI-1 [14] 

particularly, concerning metrics such as accuracy, 

sensitivity, and specificity.  

Table IV shows the accuracy, Table V shows sensitivity and 

Table VI shows specificity of the model with TPs from 40% 

to 90% and epochs from 100 to 300.  

Fig.6 depicts the performance evaluation of the Hybrid 

Boosting Machine model on DSI-1 at TP 90% for epochs 

100 to 300. 

 
Table IV. Hybrid Boosting Machine Accuracy on DSI-1 

Training 

Percentage 

No. of Epochs 

100 150 200 250 300 

TP-40 90.65 90.69 90.75 90.92 91.15 

TP-50 90.85 91.25 91.28 91.58 91.94 

TP-60 91.45 91.83 92.10 92.19 92.19 

TP-70 91.55 92.24 92.41 92.41 92.70 

TP-80 92.41 92.57 93.02 93.19 93.23 

TP-90 94.28 94.33 94.33 94.61 94.78 
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Table V. Hybrid Boosting Machine Sensitivity on DSI-1 

Training 

Percentage 

No. of Epochs 

100 150 200 250 300 

TP-40 89.25 89.75 90.00 90.00 90.11 

TP-50 89.85 90.17 90.22 90.45 90.64 

TP-60 90.35 90.35 90.64 90.99 91.65 

TP-70 90.69 90.92 91.51 92.37 92.66 

TP-80 92.52 93.11 93.21 93.50 93.50 

TP-90 93.27 93.86 94.01 95.29 95.39 

 
Table VI. Hybrid Boosting Machine Specificity on DSI-1 

Training 

Percentage 

No. of Epochs 

100 150 200 250 300 

TP-40 90.34 90.42 90.44 90.68 90.90 

TP-50 90.61 90.87 90.95 91.20 91.61 

TP-60 91.21 91.45 91.73 91.94 92.07 

TP-70 91.32 92.02 92.07 92.14 92.46 

TP-80 92.19 92.20 92.90 93.02 93.08 

TP-90 94.02 94.09 94.12 94.38 94.54 

 

 

 
Fig.6. Performance evaluation of the Hybrid Boosting Machine model on 

DSI-1 

F. Comparative evaluation 

The comparative evaluation of the Hybrid Boosting 

Machine approach is evaluated with a few traditional 

techniques such as Linear Regression (LR) classifier (MD1), 

DeepCNN (MD2), SVM (MD3), Decision Tree (DT) (MD4), 

and Naïve Bayes (NB) (MD5). 
 

Comparative evaluation utilizing the TP on DSO-1 

 

The comparative evaluation is conducted on the DTS DSO-

1 [14] and the results are obtained based on accuracy, 

sensitivity, specificity, and ROC/AUC.  

The accuracy of the Hybrid Boosting Machine method 

established by TP 90 with epoch 300 is 94.74%, which is an 

improvement of 52.08% over MD1, 20.50% over MD2, 

8.89% over MD3, 0.64% over MD4, and 0.28% over MD5. 

However, the Hybrid Boosting Machine method's sensitivity 

at TP 90 with epoch 300 is 95.00%, an improvement over 

the preceding technique MD1, 23.92% from MD2, 10.92% 

from MD3, 0.66% from MD3, and 0.25% from MD5. At TP 

90, the specificity value of the Hybrid Boosting Machine 

technique with epoch 300 is 95.27%, which is improved 

from 16.03% in the current MD1, 15.50% in the MD2, 

15.28% in the MD3, 11.59% in the MD4, and 8.57% in the 

MD5, respectively. The ROC of the Hybrid Boosting 

Machine model achieves 0.833, 0.867, 0.883, 0.910, 0.917, 

0.918, 0.922, 0.943, and 0.947, which are higher than the 

other existing techniques such as MD1, MD2, MD3, MD4, 

and MD5.The Hybrid Boosting Machine method attains an 

MSE of 3.18 which is very much less than other existing 

methods attaining 11.97, 6.77, 5.77, 4.25, and 4.16 for MD1, 

MD2, MD3, MD4, and MD5 respectively. 

The systematic representation of the comparative analysis is 

depicted in Fig.7. 

 

The analysis revealed that the performance of the Hybrid 

Boosting Machine outperformed the existing techniques 
 

Comparative analysis concerning the TP on DSI-1 

 

The comparative analysis is performed according to the 

DTS DSI-1 [14] and the result is achieved in terms of 

accuracy, sensitivity, specificity, and ROC/AUC. The 

accuracy of the Hybrid Boosting Machine approach at TP 

90 with epoch 300 is 94.86%, which is improved by 12.29% 

compared to the MD1, 9.53% compared to MD2, 9.18% 

compared to MD3, 6.22% compared to MD4, and 2.29% 

compared to MD5. However, the Hybrid Boosting Machine 

approach's sensitivity at TP 90 with epoch 300 is 94.97%, 

which is an improvement over the MD1, 37.64% to MD2, 

29.57% to MD3, 22.38% to MD4, and 18.73% to MD5. At 

TP 90, the specificity of the Hybrid Boosting Machine 

approach with epoch 300 is 93.38%, up 23.31% from the 

MD1, 22.20% from MD2, 18.47% from MD3, 17.34% from 

MD4, and 15.11% from MD5, correspondingly. The ROC of 

the Hybrid Boosting Machine model attains 0.829, 0.861, 

0.880, 0.904, 0.913, 0.916, 0.920, 0.933, and 0.945, which 

are higher than the other existing techniques such as MD1, 

MD2, MD3, MD4, and MD5. The Hybrid Boosting Machine 

method attains an MSE of 5.29 which is very much less than 

other existing methods attaining 13.36, 11.59, 6.89, 5.52, 

and 5.47 for MD1, MD2, MD3, MD4, and MD5 respectively. 

 

The analysis proves that the Hybrid Boosting Machine 

model outperformed the existing techniques. The systematic 

demonstration of the comparative evaluation is shown in 

Fig.8. 
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e) ROC/AUC Curve 

Fig.7.Comparative evaluation of the proposed method based on the DSO-1 a) Accuracy b) Sensitivity c) Specificity d) MSE and e) ROC/AUC Curve 
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c) Specificity 

 

d) MSE 

 

 

e) ROC/AUC Curve 

Fig.8.Comparative evaluation of the proposed method based on the DSI-1 a) Accuracy b) Sensitivity c) Specificity d) MSE and e) ROC/AUC Curve 

 

 

  

Comparative evaluation concerning the K-Fold on DSO-1 

 

The comparative evaluation concerning the k-fold utilizing 

the DSO-1 dataset is performed for the Hybrid Boosting 

Machine model, in which different metrics are evaluated and 

are illustrated in Fig.9. The accuracy of the Hybrid Boosting 

Machine at k-fold 10 is 95.145% which shows 18.82% 

improvement over the existing LR technique, 10.23 % over 
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Deep CNN,6.30% over SVM,4.65% over DT, and 1.67% 

over the NB technique. The sensitivity of the Hybrid 

Boosting Machine model at k-fold 10 is 95.63% which 

shows 33.81 % improvement over the existing LR 

technique, 24.77 % over Deep CNN, 22.26 % over SVM, 

17.37 % over DT, and 4.95% over NB technique. Further, 

the specificity of the Hybrid Boosting Machine at k-fold 10 

is 94.76% which shows 22.56% improvement over the 

existing LR technique, 11.96 % over Deep CNN, 9.56 % 

over SVM, 6.70 % over DT, and 2.22 % over NB technique. 

The analysis revealed that the Hybrid Boosting Machine 

model surpassed the other existing techniques. 

 

a) Accuracy 

 

b) Sensitivity 

 

c) Specificity 

 Fig.9. Comparative evaluation concerning the K-Fold on DSO-1a) Accuracy b) Sensitivity c) Specificity 
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Comparative evaluation utilizing the K-Fold on DSI-1 

 

The comparative analysis utilizing the k-fold utilizing the 

DSI-1 dataset was performed for the Hybrid Boosting 

Machine model, in which different metrics are evaluated and 

are depicted in Fig.10. The accuracy of the Hybrid Boosting 

Machine model at k-fold 10 is 95.59% which shows 9.37% 

improvement over the existing LR technique, 5.37% over 

Deep CNN, 2.78% over SVM, 0.52% over DT, and 0.22% 

over NB technique. The sensitivity of the Hybrid Boosting 

Machine model at k-fold 10 is 94.26% which shows 4.65% 

improvement over the existing LR technique, 3.43% over 

Deep CNN, 2.77% over SVM, 1.33 % over DT, and 1.13% 

over NB technique. Further, the specificity of the Hybrid 

Boosting Machine model at k-fold 10 is 95.59% which 

shows 6.55% improvement over the existing LR technique, 

2.87% over Deep CNN, 2.17% over SVM, 1.61 % over DT 

and 1.02 % over NB technique. The analysis revealed that 

the Hybrid Boosting Machine model surpassed the other 

existing techniques. 

 

 

a) Accuracy 

 

b) Sensitivity 

 

c) Specificity 

Fig.10. Comparative evaluation concerning the K-Fold on DSI-1 a) Accuracy b) Sensitivity c) Specificity 
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V. COMPARATIVE DISCUSSION 

The comparative discussion of the Hybrid Boosting 

Machine approach and existing techniques is displayed in 

Table VII.  

 

This section provides a quick overview of the analysis of the 

effects of various image forgery detection methods. The 

existing techniques such as LR classifier, DeepCNN, SVM, 

Decision Tree (DT), and Naïve Bayes (NB) have some 

limitations in effectively performing image forgery 

detection. The Deep CNN model [16] detected only whether 

an image is spliced or not, but does not localize the sliced 

regions in images that forms the limitation. The drawback of 

LR model is that positive outcomes are not obtained [15]. 

The SVM model does not perform well on images with 

more noise and requires optimization techniques to enhance 

the performance [17]. Further, the DT technique attained 

limited accuracy [18]. The NB model was found with 

computational complexity that limited the performance [19]. 

However, the proposed method overcame the above 

limitations by utilizing the block-wise feature extraction and 

a Hybrid Boosting Machine segmentation approach that 

enhanced the detection accuracy. Based on this 

comprehensive comparative analysis, it is evident that the 

Proposed Hybrid Boosting Machine is the superior choice 

for Image forgery detection from both the DSO-1 and DSI-1 

datasets, offering a robust and balanced solution for a wide 

range of applications. 

Comparative analysis includes LR, Deep-CNN, SVM, DT, 

and NB classifiers. The DSO-1 and DSI-1 databases are 

used for the comparative analysis, which shows how well 

the classifiers perform at the early computation stage of 

image forgery detection. The Hybrid Boosting Machine 

model is the most promising method when compared to 

other classification techniques using the DTS DSO-1 and 

DSI-1 datasets. The Hybrid Boosting Machine constantly 

outperforms conventional methods like LR, Deep-CNN, 

SVM, DT, and NB classifiers when measured on a variety 

of criteria.  

Against all other approaches, it outperforms with 

outstanding accuracy of 94.74% for DSO-1 and 94.86% for 

DSI-1. It also performs exceptionally well in terms of 

sensitivity and specificity, ensuring a balanced prediction 

capacity; its respective values are 95.00% and 95.27% for 

DSO-1 and 94.97% and 93.38% for DSI-1. Also, the method 

shows MSE of 3.19 on DSO-1 and 5.29 on DSI-1. 

To summarize, Table VII shows that the Hybrid Boosting 

Machine regularly outperforms other Deep Learning (DL) 

classifiers in terms of MSE, accuracy, sensitivity, and, most 

importantly, specificity on the DSO-1 and DSI-1 datasets. 

Because of its capacity to retain a high degree of sensitivity 

and specificity, it is an excellent choice for tasks where 

precisely identifying both positive and negative examples is 

essential. 

VI. STATISTICAL ANALYSIS 

 

The statistical analysis for dataset 1 is shown in Table VIII 

and the statistical analysis for Dataset 2 is presented in 

Table IX.  Here the Hybrid Boosting Machine is compared 

to other existing techniques such as LR, deep-CNN, SVM, 

DT, and NB classifiers to show its efficiency in statistical 

analysis which is performed in terms of Best, Mean, and 

Variance for accuracy, sensitivity, and specificity.   

For dataset 1, the Hybrid Boosting Machine method attains 

a Best of 94.72 and Mean of 94.59 for accuracy which is 

improved by 0.28% and 0.34% than NB respectively, and 

the proposed method attains a Variance of 0.005 for 

accuracy. As for sensitivity, the Hybrid Boosting Machine 

method attains a Best of 95.00 and a Mean of 94.77 which is 

improved by 0.25% and 0.35% than NB respectively, and 

the Hybrid Boosting Machine method attains a Variance of 

0.08 for sensitivity. Similarly, for specificity, the Hybrid 

Boosting Machine method attains a Best of 95.27 and a 

Mean of 94.31 which is improved by 8.56% and 9.25% than 

NB respectively, and the Hybrid Boosting Machine method 

attains a Variance of 0.70 for specificity.  

 

For dataset 2, the proposed method attains a Best of 94.86 

and Mean of 93.08 for accuracy which is improved by 

2.29% and 2.65% than NB respectively, and the Hybrid 

Boosting Machine technique attains a Variance of 0.16 for 

accuracy. As for sensitivity, the Hybrid Boosting Machine 

method attains a Best of 94.97 and a Mean of 82.85 which is 

improved by 18.73% and 14.72% than NB respectively, and 

the Hybrid Boosting Machine technique attains a Variance 

of 74.58 for sensitivity. Similarly, for specificity, the 

proposed method attains a Best of 93.37 and a Mean of 

84.41 which is improved by 15.11% and 7.59% than NB 

respectively, and the Hybrid Boosting Machine method 

attains a Variance of 41.02 for specificity.  

The improvement in these results for statistical analysis 

shows that the Hybrid Boosting Machine technique is more 

efficient than other existing techniques. 

 

 
Table VII. Comparative discussion concerning the DTS DSO-1 and DSI-1 

Methods 
DSO-1 dataset DSI-1 dataset 

Accuracy Sensitivity Specificity MSE Accuracy Sensitivity Specificity MSE 

LR classifier 45.40 37.22 80.00 11.98 83.20 54.45 71.61 13.36 

Deep-CNN classifier 75.32 72.27 80.50 
6.77 

85.82 59.22 72.65 
11.59 

SVM classifier 86.32 84.62 80.71 5.77 86.16 66.89 76.13 6.89 

DT classifier 94.14 94.37 84.23 4.25 88.96 73.72 77.18 5.52 

NB classifier 94.47 94.76 87.11 4.16 92.69 77.18 79.27 5.47 

Proposed Hybrid 

Boosting Machine 
94.74 95.00 95.27 3.19 94.86 94.97 93.38 5.29 
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Table VIII: Statistical Analysis for Dataset 1 

Methods 
Accuracy Sensitivity Specificity 

Best Mean Variance Best Mean Variance Best Mean Variance 

LR classifier 45.40 43.31 1.22 37.22 35.03 1.30 80.00 79.99 0.00 

Deep-CNN classifier 
75.32 74.73 0.10 72.27 71.77 0.06 80.50 80.22 0.03 

SVM classifier 86.32 85.80 0.14 84.62 81.89 7.18 80.71 80.46 0.02 

DT classifier 94.14 93.99 0.01 94.37 89.45 23.39 84.23 83.24 0.77 

NB classifier 94.47 94.27 0.02 94.76 94.44 0.05 87.11 85.59 1.11 

Proposed Hybrid 

Boosting Machine 
94.742 94.590 0.005 95.00 94.77 0.08 95.27 94.31 0.70 

 
 

 

 

Table IX: Statistical analysis for Dataset 2 

Methods 
Accuracy Sensitivity Specificity 

Best Mean Variance Best Mean Variance Best Mean Variance 

LR classifier 83.20 81.06 2.44 54.45 47.15 89.91 71.61 68.36 4.37 

Deep-CNN classifier 85.82 84.31 0.54 59.22 53.42 65.84 72.65 70.64 0.89 

SVM classifier 86.16 84.79 0.40 66.89 61.56 22.68 76.13 72.90 4.20 

DT classifier 88.96 87.58 0.73 73.72 66.95 24.33 77.18 75.49 1.21 

NB classifier 92.69 90.61 1.40 77.18 70.65 30.35 79.27 78.00 1.12 

Proposed Hybrid 

Boosting Machine 
94.86 93.08 1.16 94.97 82.85 74.59 93.38 84.41 41.02 

 

 

 

Table X: Comparison of the computational time on dataset DSO-1 and DSI-1 

Methods 

Computational Time (seconds) 

DSO-1 DSI-1 

LR classifier 
20.84 20.85 

Deep-CNN classifier 
20.65 20.76 

SVM classifier 
20.74 20.80 

DT classifier 
20.76 20.83 

NB classifier 
20.82 20.84 

Proposed Hybrid Boosting Machine 
20.62 20.75 

 

 

 

                                      Table XI: Comparison of the convergence on dataset DSO-1 and DSI-1 

Methods 

Error 

DSO-1 DSI-1 

LR classifier 0.19 0.36 

Deep-CNN classifier 0.19 0.35 

SVM classifier 0.20 0.37 

DT classifier 0.19 0.36 

NB classifier 0.18 0.35 

Proposed Hybrid Boosting Machine 0.17 0.34 
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                                       a) Time Complexity analysis on the DSO-1 

 

 

b) Time Complexity analysis on the DSI-1 

Fig 11. Time Complexity Analysis of the Hybrid Boosting Machine Model 
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a) Convergence analysis on the DSO-1 

 

 

 

b) Convergence analysis on the DSI-1  

Fig 12. Convergence Analysis of the Hybrid Boosting Machine Model 
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VII. TIME COMPLEXITY ANALYSIS 

 

The time complexity analysis of the Hybrid Boosting 

Machine technique based on datasets DSO-1 and DSI-1 is 

illustrated in Fig. 11. Here, the comparison between the 

Hybrid Boosting Machine model and existing techniques 

based on computational time across various iterations is 

done to prove the superiority of the Hybrid Boosting  

 

Machine model. Further, the developed technique attains a 

low computational time of 20.61 for DSO-1 and 20.74 for 

DSI-1 at iteration 100, which is faster than all other existing 

methods. The results emphasize the computational 

efficiency of the Hybrid Boosting Machine technique by 

showing that it consistently takes a much shorter amount of 

time than other existing methods. The comparison of the 

computational time on datasets DSO-1 and DSI-1 is 

depicted in Table X. 

VIII. CONVERGENCE ANALYSIS 

 

Fig. 12 shows the analysis of convergence for the proposed 

Hybrid Boosting Machine approach and other traditional 

approaches. Here, the analysis is done by assessing the error 

obtained for 0 to 100 iterations. The Hybrid Boosting 

Machine technique achieved an error of 0.1716 for DSO-1 

and 0.34 for DSI-1 at the 100th iteration, which are 

significantly lower than other conventional methods that 

achieved errors of 0.19 for LR, 0.18 for deep CNN, 0.20 for 

SVM, 0.19 for DT, and 0.18 for NB on DSO-1 as well as 

0.36 for LR, 0.35 for deep CNN, 0.37 for SVM, 0.36 for 

DT, and 0.34 for NB on DSI-1. The model's efficacy and 

resilience in forgery detection are demonstrated by its low 

error rate when compared to other traditional techniques. 

Table XI shows the comparison of the convergence on the 

datasets DSO-1 and DSI-1. 

IX. CONCLUSION 

 

To detect image fabrications, this paper proposes a Pixel-

Based Optimized Deep-CNN classification and Hybrid 

Boosting Machine method. Additionally, it describes a 

common structure for Hybrid Boosting Machine boosting a 

criterion method using a hybrid boosting segmentation 

method, similar to the standard logistic regression technique 

along with block-wise feature extraction, which is a process 

based on a block-by-block manner. The performance 

analysis shows that the Hybrid Boosting Machine technique 

achieved an accuracy of 94.74%, 95.00% sensitivity, and 

95.27% specificity based on the DSO-1 as well as accuracy 

of 94.86%, 94.97% sensitivity, and 93.38% specificity based 

on DSI-1 concerning the TP. Further, the Hybrid Boosting 

Machine model was compared with several existing 

techniques, including the LR classifier, Deep-CNN 

classifier, SVM classifier, DT classifier, and NB classifier, 

and attained high accuracy, sensitivity, and specificity 

values of 95.14%, 95.63%, and 94.76% on the DSO-1 and 

95.59%, 94.26%, and 95.59% on DSI-1 concerning the k-

fold analysis. To enhance the forgery detection in the future, 

other hybrid DL classifiers will be used. 
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