
 

  

Abstract—In today's society, people increasingly need 

information acquisition due to the rapid development of science 

and technology and the consequent increase in available data. 

However, finding the information users need from this vast data 

has become challenging. To tackle this problem, recommending 

preferred information to users is becoming increasingly 

important. However, accurately recommending information by 

analyzing existing models such as GraphRec is still a 

challenging problem. A method called PSO_KFCM is proposed 

in this paper to solve this problem better. The technique 

combines Particle Swarm Optimization (PSO) with hybrid 

optimization and the kernel fuzzy C-means clustering technique 

to cluster similar recommendation data into one class. This way, 

the complexity and randomness of the recommendation data 

are reduced. It improves the speed and accuracy of the model 

prediction, which lays a solid foundation for the subsequent 

recommendation. Various factors will impact the 

recommendation process, and channel and spatial 

characteristics are essential. CBAM attention is added to the 

original attention mechanism to fully utilize these features in 

the recommendation data to enhance its performance. 

Furthermore, this paper proposes a social recommendation 

prediction method that combines CBAM attention and 

PSO_KFCM clustering and introduces a new social model 

called TTYGNN. The TTYGNN model optimizes the 

recommendation effect while maintaining the original 

advantages, enabling users to obtain the required information 

more quickly and accurately. To verify the effectiveness and 

practicality of the proposed model, extensive experimental 

comparisons were conducted on two widely used datasets. The 

results show that the TTYGNN model outperforms similar 

methods in all indicators, proving its superiority in information 

recommendation. 

 
Index Terms—CBAM Attention Mechanism, Fuzzy 

clustering,  Graph neural network,  Recommendation system 

 

I. INTRODUCTION 

n recent years, the extensive use of social networks in 

recommender systems has garnered significant attention. A 

standard view in these models is that users' preferences may 

be influenced by those around them (e.g., nearest neighbors), 
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a view that can be well justified by social correlation theory.   

SoRec [1] provides this method of joint factor decomposition, 

an approach that uses ratings and social relationships to 

decompose a matrix of potential common user characteristics. 

TrustMF is a recommendation algorithm grounded in matrix 

factorization, integrating user ratings and social network 

information to enhance recommendation accuracy. The 

model improves the accuracy of recommendations by 

considering the relationship between users  and   items  from  

the perspective of trusting and trusted users through their 

trust in the social network. SoDimRec [2] is a social 

dimension-based recommendation model designed to 

augment the precision of recommendations. The model 

forecasts users' ratings of goods by extensively calculating 

the similarity among users. In summary, SoDimRec portrays 

user relationships as a graph, where nodes symbolize users 

and edges denote their connections. The model then employs 

matrix decomposition techniques to learn the representations 

of nodes and edges, utilizing these learned representations to 

predict user ratings for items. 

A Graph Neural Network (GNN) model called GraphRec 

was chosen and optimized to improve the existing social 

recommendation system. This model includes existing and 

new CBAM attentional mechanisms (Channel Attention 

Mechanism and Spatial Attention Mechanism) [3]. Particle 

Swarm Optimization (PSO) hybrid optimization of the 

Kernel Fuzzy C-mean Clustering Method (PSO_KFCM) was 

incorporated to enhance the original clustering. This new 

model aims to make more accurate predictions and 

recommend users' favorite content. 

As shown in Figure 1, this paper proposes the TTYGNN 

model, which consists of three main components. Firstly, the 

user's social data is transformed into graph-structured data. 

This data is then fed into a graph neural network to perform 

complex transition pattern calculations and identify changes 

in user interests. The obtained information is then sent to the 

prediction layer, which generates accurate recommendation 

data. The optimal mean square error and average absolute 

error are calculated for various items, and suitable content for 

users is recommended based on the magnitude of these 

errors. 

In our paper, we introduce a novel approach to address the 

obstacles faced in social recommendation systems. We 

propose a social recommendation model called TTYGNN, 

based on a combination of PSO_KFCM clustering of Graph 

Neural Network (GNN) and CBAM attention [3].  
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Fig. 1 Graph data in social recommendations. From bottom to top, the eight graphs are user-social data graphs, graph neural network graphs, spatial attention 

learning graphs, channel attention learning graphs, prediction layer graphs, user-item graphs, and user-user social graphs. 

 

The TTYGNN model is proposed to improve prediction 

accuracy and speed while minimizing errors. The CBAM 

attention mechanism is integrated to derive the globally 

averaged feature vector across the channel dimension, with 

the channel attention module executing global average 

pooling on the feature map. The inclusion of a spatial 

attention mechanism allows the model to adaptively. 

Determine the attention weights of different regions, 

capturing crucial spatial information. The PSO_KFCM 

clustering is also integrated, reducing the data's complexity 

and randomness, leading to a substantial acceleration in 

prediction speed, enhanced accuracy, and minimized mean 

square error and average absolute error. The feasibility and 

efficacy of the TTYGNN model were tested on public 

datasets from two actual users, Ciao and Epinions. The 

experimental results show that the TTYGNN model 

significantly outperforms comparable models, confirming its 

validity and practicality. 

Overall, this paper is innovative in the following respects: 

1) A new graph neural network model, TTYGNN, is 

proposed  to  increase  prediction  accuracy   while   reducing  

 

prediction time.  

2) The CBAM attention mechanisms are added to the original 

model to enhance significant features and reduce irrelevant 

ones. 

3) Integrating PSO_KFCM clustering into the original social  

and user clustering models provides efficient search 

capabilities and ease of implementation. It also inherits 

KFCM's superior performance in managing complex data.  

4) Extensive experiments have been conducted to confirm the 

feasibility and effectiveness of the proposed TTYGNN 

model. 

In the following sections, we will discuss the proposed 

framework in detail. Firstly, in Section II, we will present the 

framework in detail. After that, in Section III, we will 

conduct extensive experiments on two authentic datasets to 

demonstrate our approach's practical validity and feasibility. 

Section IV will provide an overview of other frameworks 

similar to our proposed one. Finally, in Section V, we will 

summarize the findings of this work and articulate future 

research directions and goals, particularly within the realm of 

social recommender systems. 
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II. PROPOSED FRAMEWORK 

In this section, we will begin by providing definitions and 

terminology. We will then elaborate on the modeling process 

and its constituent elements. Finally, we will present an 

in-depth discussion of methods for learning model 

parameters. 

A. Constructing social graphs 

Let 1 2{g ,g , ,g }mG =  denote the set encompassing 

all unique items associated with a social user, termed the 

itemset. Indicate the number of items with m . The unknown 

user social sequence is represented by 1 2s { , , , }ng g g= , 

where gi G  signifies the item clicked by the user during 

the social interaction. For instance, the social sequence   

1 2s { , , , }ng g g=  is structured as a weighted directed 

social graph ( , )s s sH G J= , within which sH H , H  

constitutes the ensemble of all social graphs. In social graph 

SH , the set of nodes sG encompasses all the item nodes in 

this network, each embodying an item i sg G  . The set of 

edges sJ  denotes the set of all outgoing edges. Each directed 

edge 1( , )i i sg g J+   indicates that the user clicked on ig  

an item within the social network s  and subsequently clicked 

on another item 1ig +  . 

Following the processing above, the social graph is fed 

into the model to extract the latent information. Predict the 

item 1ng +  that the user is likely to click on, based on the 

user's social sequence s . Input social sequence is used for 

iterative computation of optimal mean square error and 

average absolute error in the learning and prediction layers. 

 

B. Learning the embedding vectors of social graphs 

   In this section, we incorporate the social graph into the 

graph neural network to extract embedding information of 

the global items. We can capture users' long-term interests by 

analyzing the intrinsic sequential patterns within user 

conversations. To derive the global item embedding formula, 

we input the social graph into the graph neural network. We 

have chosen a gated graph neural network [4] to learn the 

embedding vectors of the nodes within the graph. This 

constitutes a classical GRU-based spatial message-passing 

model that utilizes inter-nodal communication for iterative 

information updating. For the social graph SH  , the update 

function of the node vectors can be articulated as follows: 

 
1 1

: 1[ , , ] L+bt t t T

i I nd D l l− −=   (1) 

 
1( )t t t

i z i z iw F d M l −= +  (2) 

 
1( )t t t

i r i r ie F d M l −= +  (3) 

 ( )t t 1

O i o iF d +M (e )
t t

il
ll

−=   (4) 

 
1(1 )

tt t t t

i i i i l
l w l w l

− + = −  (5) 

 

Where 
t

id  represents the outcome of the bi-directional 

transfer of node information interaction, L  signifies the 

control weights, 
t

iw  denotes the update gate, ( ) •  refers to 

the Sigmoid function, and z r oF F F  indicates the matrix of 

learnable parameters. z r oM M M denotes a matrix that is 

learnable, 
t

ie  signifies a reset gate,   represents a dot 

product operator, and il  is equivalent to ig , the initial 

vector. 

Consider the socialization sequence 

4, 1 2 3 1 2 3[ , , , , , ]s g g g g g g g=  as an example. Equations 

(2) to (5) mirror the GRU computation process, in which 

information is updated through the generation and forgetting 

 
 

TABLE I 

NOTATION 

Symbol DEFINITIONS AND DESCRIPTIONS 

E  Indicates the eigenvalue. 
 

denotes element-by-element multiplication. 

 
Indicates final refined output. 

 

denotes the sigmoid function. 

 

denotes the average pooling characteristics. 

 
denotes the maximum pooling characteristic. 

 

 
denotes a convolution operation with a filter size of 7 × 7. 

 

 
Denote the affiliation matrix. 

 

Indicates a data point. 
 

An array indicating the number of classes into which the 
number is to be divided. 

 

denotes the degree of affiliation of sample iA to class 

jX . 

denotes the learning factor. 

 
denoted as a uniform random number in the range. 

 

 
Indicates a weighted index. 

 

denotes a nonlinear mapping. 
 

 

Represents a collection of items for socialization. 
 

User cx  rating value for item wv . 

User cx  predicted score value for item wv . 

 

Indicates items that users have clicked on in the social s. 
 

denotes the convolution operation with a filter size of  

7 7 . 

Indicates the current iteration step. 
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of control information. Ultimately, the final vector for each 

node is obtained through multiple computations. 

 

 
Fig. 2  Social graph and adjacency matrix. 

 

C. CBAM attention-based mechanism 

The CBAM attention mechanism gained popularity in 

2018 thanks to the work of Jeonghee Choo et al. This 

mechanism features the introduction of both channel 

attention and spatial attention modules. Unlike conventional 

attention mechanisms, the channel attention module is 

applied first, followed by the spatial attention module. This 

sequential design enables the model to identify the target 

object more effectively and suppress irrelevant noise 

information. 

It is necessary to consider channel and spatial factors to 

improve the accuracy of recommendation data forecast, 

Which is where the CBAM attention mechanism comes in. 

Incorporating this mechanism enhances the ability to capture 

long-term dependencies, resulting in better prediction 

accuracy.  

With the given intermediate feature map 
C H WE    as 

input, CBAM sequentially generates a 1D channel attention 

map 
1 1C

yT    and a 2D spatial attention map 

1 H W

cT   . The computational formula is as follows: 

 

 
' ( )yE T E E=   (6) 

 
'' ' '( )cE T E E=   (7) 

 

During the multiplication process, attention values are 

broadcasted as needed, and channel attention values 

propagate across the spatial dimension. Figure 4 illustrates 

the computation process. 

 

 
 

Fig. 3  Channel attention mechanisms mechanisms map. 

 

 

 
 

Fig. 4   Spatial attention mechanisms map. 

 

Initially, the spatial information of the feature map is 

aggregated, and two distinct spatial context descriptors are 

produced by applying average pooling and maximum pooling 

operations: 
y

avgE  and 
y

maxE , representing the 

average-pooled features and the maximum-pooled features, 

respectively. The two descriptors are fed into a shared 

network to generate channel attention, as shown in Figure 
1 1C

yT   . The input feature maps' spatial dimensions are 

compressed, and average pooling is used to consolidate 

spatial information in a shared network consisting of a 

single-hidden-layer multilayer perceptron (MLP), to 

minimize parameter overhead. The size of the hidden 

activation is set to 
/ 1 1C r 

, where r  represents the 

reduction ratio. The channel attention is computed as follows: 

 

( ) ( ( ( )) ( ( )))yT E MLP AvgPool E MLP MaxPool E= +

            
y y

1 0 1 0 max( ( ( )) ( ( )))avgV V E V V E= +    (8) 

 

Where,  denotes the sigmoid function,
/ r

0

C CV   , 

/ r

1

C CV  . Note that MLP  weights MLP and 1V are 

shared for both inputs. 

The channel information of the aggregated feature map is 

processed using two types of pooling to yield two 2D maps: 
c 1

avg

H WE    and 
c 1

max

H WE   . These are the average 

and maximum pooled features in the channel, respectively, 

followed by the generated 2D spatial attention graph, which 

is computed as: 

 
7 7

c ( ) ( ([ ( ); ( )]))T E p AvgPool E MaxPool E =  

7 7

max( ([ ; ]))c c

avgp E E =    (9) 

 

Where, c ( ) H WT E R  ,   denotes the sigmoid  function, 

and 
7 7p 

 denotes the convolution operation with a filter size 

of 7 7 . 

 
D. Fuzzy c-mean clustering fcm 

The FCM algorithm is a clustering technique that 

optimizes an objective function [5]. It uses the concept of 

geometric proximity to assign data points to different clusters 

and calculate the distances between them. The algorithm 

follows these specific steps: 

 

1) To initialize the affiliation matrix Y , random values 

between 0 and 1 are required, adhering to the constraints 

specified in Eq. 

 

 

1

( ) 1,    i=1,2, ,n
s

ij
j

V A
=

=  (10) 

 

Where the sample in the data is assumed to contain 

1 2 3{ , , , , }nA a a a a= data points. 

(2 )C c n  indicates the number of classes into which the 

data is to be divided. 
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2) Calculate C  cluster centers, ( 1,2, , )i i CC = .   

 
1

i

1

n
m

jij
j

n
m

ij
j

V A
C

V

=

=



=




 (11) 

3) Determine the value function and determine if the 

algorithm should stop based on its value and the degree of 

change. 

 

 
2

b
1 1

( , ) ( ) ( )J d
n c

b

ik ik
i k

V h V
= =

=    (12) 

Where v  is the affiliation matrix comprised of data points of 

similar types, with the clustering centers of the distinct kinds 

denoted by h, and the individual class clustering centers 

encompass 1 2 3{ , , , , }ch h h h . 

4) Calculate the new affiliation matrix, i.e., calculate the 

degree of affiliation of the sample iA to the class iX  using 

the following formula ijV  . Pass the calculation result to step 

2 to compute the new clustering center. 

 
2

1

1

1

( )

ij c
ij m

k kj

d

d

V
−

=

=


 (13) 

The fuzzy clustering process involves refining the 

clustering center and degree of affiliation through steps 2 and 

4. This facilitates the classification of data points into distinct 

categories. Once the algorithm converges, it signifies the 

successful completion of fuzzy clustering for all data points. 

     

E. Particle swarm optimization  

In 1995, Kennedy and Eberhart [6] introduced the Particle 

Swarm Optimization (PSO) algorithm, a global optimization 

technique. This algorithm is inspired by the collective 

behaviors observed in flocks of birds and schools of fish. In 

the PSO algorithm, each particle mimics an individual's 

behavior within a flock of birds or a school of fish, possessing 

its direction and velocity. The direction of movement reflects 

the particle's current position, and it's essential to consider the 

interaction between individual particles and the rest of the 

particle swarm. The Particle Swarm Optimization algorithm 

identifies individual extrema and the global optimum [7] to 

modify the velocity and position. 

Consider a colony of M particles in a Y-dimensional 

target search space. Each particle, denoted as l , can be 

represented by a Y-dimensional vector, symbolized as 

1 2 l( , , , ), 1,2,i l l yf f f i MF =  = . Additionally, the 

velocity of the particle l  can be defined as 

1 2 l( , , , ), 1,2,l ll yV Ml  =  = . The optimal 

position found by the particle l  up to this point is termed the 

individual extremum, denoted as 

1 2 l( , ,..., ), 1,2,best l l yb b b MB l= = . The globally 

optimal solution explored by the entire swarm of particles is 

denoted as 1 2( , , , ), 1,2,best s s syS Mlb b b=  = . The 

particle refines its position by tracking two "poles," 

( , )best bestB S , and updates its velocity and location using a 

particular formula: 

 

 
1 1

2 2

( 1) ( ) ( )[ ( ) ( )]

( )[ ( ) ( )]

ly ly

lj y

ly ly

s

v

t

nt v t a t b t x t

a t p t xn

+ = + −

+ −
 (14) 

 ( 1) ( ) ( 1)ly ly lyt tk k t + = + +  (15) 

Among these, 1, 2,l M=  represents the total number of 

particles in the swarm, 1a  and 2a  are learning factors, also 

collectively termed acceleration constants; 1n  and 2n  are 

uniform random numbers within the range [0,1], which 

augment the randomness of particle movement; ljv  denotes 

the particle velocity, while max max[ , ]ljv v v −  and maxv  are 

user-defined constants that serve to constrain the particle's 

velocity. The specific calculation process of PSO is as 

follows: 

1) Initialize the parameters of the particle swarm algorithm, 

including the overall size M  , the velocity lv  and position lf  

of each particle, the acceleration constant, the maximum 

number of iterations, and the minimum allowable error. 

2) Determine the initial fitness value for each particle [ ]lflt . 

The fitness function is utilized to appraise the quality of a 

particle within a given solution space, with calculations 

derived from the particle's initial velocity and position values. 

3) For each particle within the swarm, its fitness value, 

[ ]lflt , is compared to the current individual extreme value, 

lyb . If [ ]l lyflt b  is true, then replace lyb  with [ ]lflt . 

4) For each particle in the swarm, compare the particle's 

fitness value, [ ]lflt , with the global extreme value, syb . If 

[ ]l syflt b  is true, then replace syb  with [ ]lflt .  

5) Update the velocity, lv , and position, lf , of the particle 

iteratively based on the two equations above. 

6) Boundary condition processing confines particle 

positions within a feasible search space to prevent positions 

or velocities from exceeding predetermined values. 

7) Check if the maximum number of iterations or 

convergence conditions is met. If yes, terminate the 

algorithm and present optimized particle results. If not, go 

back to step 2 for more iterations.   

F.  Kernel fuzzy c-mean clustering  

     The traditional FCM [8] algorithm uses Euclidean 

distance as the distance function, which may only sometimes 

be effective for clustering. While FCM has good performance 

in various applications, it has its issues. Due to the random 

initialization of cluster centers, the clustering centers and 

affiliation matrices tend to converge towards local optima. 

Moreover, FCM is sensitive to noise and outliers, which can 

result in incorrect allocation of these data points to specific 

clustering centers, thereby affecting the accuracy of the 

clustering outcomes. The kernel function is integrated into 

the FCM algorithm to overcome these challenges, resulting in 

the kernel fuzzy C-means clustering algorithm (KFCM). This 

method uses the kernel function to project finite-dimensional 
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data into a higher-dimensional space. By incorporating the 

kernel function, the computational load associated with inner 

product operations in the high-dimensional feature space is 

substantially reduced, thus enhancing computational 

efficiency. KFCM is an unsupervised algorithm designed to 

address traditional FCM's limitations. It can effectively 

manage nonlinear data, improve clustering performance, and 

uncover hidden data structures by leveraging data features 

without external intervention. 

KFCM maps the data to a high-dimensional feature space 

by transforming the distance function in the FCM algorithm 

via a nonlinear mapping, : : ( )A Q a y → = . 

Partitioning the dataset with a linear function in the 

high-dimensional feature space results in more precise 

sample clustering than the conventional FCM algorithm. The 

algorithmic computations are as follows: 

1) Given the original feature dataset, A , the number of 

clusters, h , and the convergence accuracy,  , the 

clustering centers are initialized using the FCM algorithm, 

0N  . 

2) Definition ( 1, 2, , )i i nU =  represents the affiliation 

function of class i  for sample j , and the objective function 

in KFCM is expressed by the subsequent equation: 

 

 
( )

( )

2

2

1 1

1 1

1 1

( ) ( )

2 2 ( )

2 1 ( )

k n
m

KFCM ij j i

i j

k n
m

ij j i

i j

k n
m

ij j i

i i

J

A

v A U

K A U

K U

v

v

= =

= =

= =

=  − 

= − −

= − −







 (16) 

 

Where   denotes the nonlinear mapping, and m  is the 

weighted exponent. ( )jA  and ( )iU  represent the 

mapping of high-dimensional sample data and the images of 

clustering centers, respectively, from the original input space 

to the high-dimensional feature space. ( )j iK A U−  is the 

Gaussian radial basis function, which can be formulated by 

the equation below: 

 

 

2

22( )

j iU

j iK A U e 

−
−

− =

‖A ‖

 (17) 

Where   denotes the kernel radius and is the scaling 

parameter. 

3) The values for the degree of affiliation, 
( 1)q

ijv +
, and the 

clustering center, 
( 1)q

iU +
, can be derived from the 

Lagrangian extreme value method, as articulated by the 

following formula: 

 

 

 

1

1
( 1)

1

1

1

(1 ( , ))

(1 ( , ))

m
j iq

ij k

m
j i

i

v
K A U

K A U

−

−
+

−

−

=

−
=

−
 (18) 

 

 
1( 1)

1

( , )

( , )

n
m

ij j i j

jq

i n
m

ij j i

j

K A Uv

U

v

A

K A U

=+

=

=




 (19) 

where q  denotes the current iteration step. 

4) The values of affiliation, 
( 1)q

ijv +
, and clustering center, 

( 1)q

iU +
, are computed iteratively until the convergence 

condition 
( ) ( 1)q q

KFCM KFCMJ J −− ‖ ‖  is met, or the 

maximum number of iterations, N , is reached.  Otherwise, 

the iteration advances to step 1q q= +  . 

     

G. PCA-PSO_KFCM clustering 

This paper discusses the challenges faced by KFCM, a 

clustering algorithm that addresses subpar performance in 

FCM due to noise and outliers. Despite its effectiveness, 

KFCM still needs help with issues such as local optima and 

reduced computational efficiency when dealing with 

high-dimensional data. To overcome these challenges, the 

paper proposes a new method integrating Particle Swarm 

Optimization (PSO) with the KFCM algorithm. The PSO 

algorithm is used to identify the optimal subset of features, 

avoiding the pitfall of getting trapped in local optima and 

seeking the global optimal solution. Additionally, PSO can 

automatically tune clustering parameters, thus improving the 

accuracy and robustness of the clustering outcomes. The 

detailed computational workflow of the proposed method is 

depicted in Figure 5. 

The PSO-KFCM clustering process is outlined below: 

1) The raw data is preprocessed to remove outliers and 

jittery adjacent values, ensuring a consistent scale across all 

features. 

2) Initialize the Particle Swarm Optimization (PSO) 

parameters and establish the configurations for the algorithm. 

This encompasses the number of particle clusters, N , the 

learning factors, N  and 2a , the maximum iterations for 

KFCM, the inertia weight, and the parameter boundaries' 

minimum and maximum values. 

3) The swarm's adaptive value is calculated using Equation 

(20) and compared to the previous generation's value for each 

particle. If the current fitness value is greater than the 

previous generation's fitness value, it replaces the last 

individual generation as the new individual bestb  , and updates 

the fitness value to the individual's optimal fitness value. If 

no modifications are made, then it will remain in its current 

state without any alterations. 

 

KFCM

1

1 ( , )
flty

J V U
=

+
 (20) 

Where y  corresponds to the output data. 

4)  Compare the individual fitness value against the group's 

optimal individual fitness value; if the individual's fitness 

value exceeds that of the group's optimal, replace the global 

optimal individual bests  with this individual and update both 

the group's optimal and associated fitness values. Compare 

with the group optimal individual fitness. 

5) Update the velocity and position of the particle using 

Equations (18) and (19).  
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6) The algorithm terminates When it reaches the maximum 

number of iterations or a predetermined threshold surpassing 

the variation in the fitness value of the cluster's best global 

position—indicating no further enhancement in the 

population's fitness value. Otherwise, continue with step 3. 

7) Upon meeting the termination condition of the Particle 

Swarm Optimization (PSO) algorithm, the initial cluster 

center matrix and the initial affiliation matrix are output. 

8) Please update the cluster center matrix and affiliation 

matrix using Equations (18) and (19). 

9) When the maximum number of iterations, N, is reached 

or the condition 
( ) ( 1)q q

KFCM KFCMJ J −− ‖ ‖  is satisfied, 

terminate and output the final result. Otherwise, proceed to 

step 8. 

 

 
 

Fig. 5  PSO _KFCM specific flow chart. 

 

H. Evaluation of projections 

This section will create recommendation tasks to learn 

the model parameters. There are different types of 

recommendation tasks, such as item ranking and rating 

prediction. For this project, we will use the TTYGNN model 

for the rating prediction recommendation task. The user and 

item latent factors will be linked and fed into a multilayer 

perceptron (MLP) for prediction, which will help us achieve 

our objective. The calculations for this process are as follows: 

 

 [ ]c wy z g=   (21) 

 2 2 1 2( )y F y e=  +  (22) 

 

 1 1( )l l l ly F y e− −=  +  (23) 

 1

T

cw lb F y

−=   (24) 

where l denotes the index of the hidden layer, and cwb  

represents the predicted rating from user cj  to item wi . cz  

signifies the user latent factor of the user cj , derived from 

the amalgamation of item space 
C

cz  and social space 
s

cz . 

C

cz  represents the item space user latent factors derived from 

the itemset (c)B  of user cj .  

s

cz  represents the latent factors of 
s

cz social space users, 

specifically from the social friends cj  of the user ia . 

The calculations are as follows: 

 

 ([ ])ae riW y h p=  (25) 

Opinion-aware interactions are denoted as eiW , and through 

the integration of ah  and rp , which embed opinions, y  

symbolizes the fusion of interaction information with opinion 

information. 

 

 

( )

( )C

ei

i B c

c cz iF w e


 
=  + 

 
  (26) 

The elementary mean of the vectors within 

( ) , iei cw B   serves as a mean-based aggregator, 

which can be regarded as a linear approximation of the local 

spectral convolution, as mentioned in [10]. 

Where ci  is fixed to 
( )

1

B c
, for all items in the mean-based 

aggregator. This approach assumes that every interaction 

equally impacts the user's understanding. However, this may 

only sometimes be accurate as some interactions may be 

more important than others. Therefore, it is recommended 

that weights be assigned to each interaction. This allows for 

different interactions to have varying levels of contributions 

to the user's underlying factors. 

 

 

( )

( )S

c i o

o A i

Cz F z e


 
=  + 

 
  (27) 

The 、elementary mean of the vector ( ) , io

C iz A   is 

calculated, with ( ) , io

C iz A   fixed value 
( )

1

A i
, for 

all items within the mean-based aggregator. Where 
C

oz  

signifies social attention, F  and e  denote the attention 

weights respectively, cwb
 represents the prediction ratings 

from cj  to wi , and l  indicates the index of the hidden layer. 

An objective function must be chosen to optimize the 

parameters of TTYGNN. Since the focus is on rating 

prediction, a commonly adopted objective function is 

formulated as follows:  

 

 
2

,

1
( )

2 | |
cw

c w O

cwLoss b b
O





= −  (28) 

 

| |O  represents the number of observed ratings, while cwb  is 

the actual rating of an item w  by the user c .  
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III. EXPERIMENT 

A.   Experiment setup 

Datasets. For this experiment, we selected two publicly 

available datasets, Ciao and Epinions, to simulate and 

evaluate the model's performance on these specific datasets. 

Ciao is an open-source dataset that gathers social information 

about its users from various social networking platforms 

(http://www.ciao.co.uk).  Meanwhile, Epinions is a dataset 

that provides social information on numerous users from 

publicly accessible websites. It has millions of users who can 

comment online simultaneously (www.epinions.com). This 

dataset includes much information about ratings and social 

data. The rating scale ranges from 1 to 5. First, a random 

permutation of these five numbers is utilized to initialize the 

opinion embedding. This means that five different 

embedding vectors are chosen. Please consult Table II for 

statistical information regarding both datasets. 

 
TABLE II 

DSTASET STATISTICS 

Data set Ciao Epinions 

Number of users 7,317 18,088 

Number of projects 10,4975 261，649 

Number of ratings 283,319 764,352 

Density (nominal) 0.0368% 0.0161% 

Social contact 111,781 355,813 

Density(social relations) 0.2087% 0.1087% 

 

Evaluation Metrics. Two commonly used metrics for 

evaluating recommendation algorithms are Mean Absolute 

Error (MAE) and Root Mean Square Error (RMSE). These 

metrics help to measure the accuracy of predictions and 

ensure the quality of recommendations. A lower value of 

MAE and RMSE indicates higher prediction precision and 

accuracy. Even slight improvements, such as a decrease in 

MAE, can significantly impact the overall quality and 

effectiveness of the recommendation algorithm. 

Baseline. To guarantee the precision and dependability of the 

assessment outcomes of the TTYGNN model, a comparison 

was conducted among three different sets of recommender 

systems: conventional recommender systems, traditional 

social recommender systems, and those based on deep neural 

networks [10]. For each category of methods, representative 

classical baseline models were chosen, and their performance 

is subsequently explained in detail. 

•PMF [11]: The probabilistic matrix decomposition 

algorithm inputs only a user/item rating matrix. This matrix is 

then processed through a Gaussian distribution to reveal the 

underlying characteristics of users and items. 

•SoRec [12]: Social recommendation leverages user 

ratings and social relationships to extract valuable features 

through joint decomposition. 

•SoReg [13]: Social network information is transformed 

into regularized terms that constrain matrix factorization 

algorithms. 

•SocialMF [14]: The recommender system model 

incorporates trust information and propagates it through 

matrix decomposition. 

•TrustMF [15]: The trust network is divided into two 

spaces: the trustor space and the trustee space. This is 

accomplished using matrix decomposition techniques to 

project users into two lower-dimensional spaces based on the 

directionality of trust. 

•NeuMF [16]: A neural network-based matrix 

decomposition model was developed for recommendation 

ranking tasks. It was later modified to predict ratings using a 

squared loss function. 

•DeepSoR [17]: This study proposes a model that enhances 

the accuracy of rating predictions by using deep neural 

networks to extract user features from complex social 

relationships and integrate them into probabilistic matrix 

decomposition models. 

•GraphRec [18]: The model uses network embedding 

techniques to effectively diminish dimensionality and 

streamline the training process. 

The PMF and NeuMF models rely solely on collaborative 

filtering to predict ratings and do not incorporate social 

network data. On the other hand, the different models fall 

under the social recommendation category and consider 

social network information. 

We acquired the optimal experimental data after 

conducting multiple simulated parameter optimization 

experiments. We used a certain percentage (x%) of the 

training data for each dataset as the learning parameters. In 

contrast, the remaining data was divided into two equal parts: 

one for hyperparameter tuning and the other for final 

performance comparison. The value of x ranged from 80% to 

60%. We explored the embedding dimension d 

experimentally, using the values [8, 16, 32, 64, 128, 256]. We 

also tested batch sizes and learning rates within [32, 64, 128, 

512] and [0.0005, 0.001, 0.005, 0.01, 0.05, 0.1], respectively.   

In deep learning, ablation studies are widely used to 

evaluate the impact of individual components or features in a 

model on its performance. Ablation experiments provide a 

powerful analytical tool that offers valuable guidance for 

model improvement. We will conduct a detailed comparative 

analysis, focusing on the ablation experiments of each model. 

This experimental approach can help us understand the 

contribution of each component of the model to its 

performance, leading to a better comprehension of how the 

model works and how to optimize and improve its structure. 

We conducted an ablation study in this experiment to 

evaluate our model's performance against other models. We 

progressively removed or replaced specific components or 

features of the model to assess their impact on its overall 

performance. This experiment helped us understand the 

contribution of each part of the model to its overall 

performance and guided further improvements. To ensure a 

comprehensive evaluation, we compared our model with 

other representative models, including traditional machine 

learning models, deep learning models, and some of the latest 

models. These models varied in structure, number of 

parameters, and training methods, providing various 

perspectives and references.  

   We perform an ablation study to assess the importance of 

different components in our model. This involves removing 

key elements, such as a convolutional or recurrent layer, and 

training and testing the modified model using the same 

dataset and evaluation metrics. We then compare the 

performance changes before and after the modification, 

which helps us evaluate the significance of that component to 

the model's performance. We can also try replacing certain 

components, such as changing the activation function or 

optimizer, to evaluate the interactions between different 
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components and their impact on the model's performance. 

Through these experiments, we can better understand how 

our model works and make improvements to enhance its 

performance.  

   During an ablation study, it is crucial to ensure that we 

maintain consistency in controlled variables. This means that 

when making modifications, we should only change one 

component at a time while keeping others unchanged. This 

approach allows for a more accurate assessment of the 

specific impact of each component on the model's 

performance without interference from other factors. 

We conducted an ablation study on our model and 

compared it to other models, evaluating the influence of 

different components on the model's performance. After 

analyzing the data, we found that the error of our model is 

lower than that of the other models. 
TABLE III 

PERFORMANCE COMPARISON OF DIFFERENT 

RECOMMENDER SYSTEMS 

Training 

Ciao(60%） 

MAE RMSE Training 

Ciao(80%） 

MAE RMSE 

PMF 0.9520  1.1967 PMF 0.9021 1.1238 

SoRec 0.8489 1.0738 SoRec 0.8410 1.0652 

SoReg 0.8987 1.0947 SoReg 0.8611 1.0848 

SocialMF 0.8353 1.0592 SocialMF 0.8270 1.0501 

TrustMF 0.7681 1.0543 TrustMF 0.7690 1.0479 

NeuMF 0.8251 1.0824 NeuMF 0.8062 1.0617 

DeepSoR 0.7813 1.0437 DeepSoR 0.7739 1.0316 

GraphRec 0.7540 1.0093 GraphRec 0.7387 0.9794 

TTYGNN 0.7510 1.0032 TTYGNN 0.7247 0.9613 

TABLE IV 
PERFORMANCE COMPARISON OF DIFFERENT 

RECOMMENDER SYSTEMS 

Training 

Epinions 

(60%） 

MAE RMSE Training 

Epinions 

(80%） 

MAE RMSE 

PMF 1.0211 1.2739 PMF 0.9952 1.2128 

SoRec 0.9086 1.1563 SoRec 0.8961 1.1437 

SoReg 0.9412 1.1936 SoReg 0.9119 1.1703 

SocialMF 0.8965 1.1410 SocialMF 0.8837 1.1328 

TrustMF 0.8550 1.1505 TrustMF 0.8410 1.1395 

NeuMF 0.9097 1.1645 NeuMF 0.9072 1.1476 

DeepSoR 0.8520 1.1135 DeepSoR 0.8383 1.0972 

GraphRec 0.8441 1.0878 GraphRec 0.8168 1.0631 

TTYGNN 0.8308 1.0701 TTYGNN 0.8103 1.0537 

B.  Recommend a performance comparison of systems 

The first step is to compare the performance of all 

proposed methods. Tables 3 and 4 comprehensively 

summarize the prediction errors (RMSE and MAE) of the 

other models on the Ciao and Epinions datasets. The key 

findings are as follows: 

•Matrix decomposition-based methods such as SoRec, 

SoReg, SocialMF, and TrustMF have been found to 

outperform PMF in recommender systems. They use rating 

data and social network information to improve 

recommendations' accuracy. In particular, incorporating 

social network information can enhance the performance of 

recommender systems. 

 •Neural Collaborative Filtering (NeuMF) outperforms 

Probabilistic Matrix Factorization (PMF), which relies solely 

on rating information. It is worth noting that NeuMF employs 

a neural network architecture, highlighting the superiority of 

neural network models in recommender systems. 

•DeepSoR and GraphRec outperform SoRec, SoReg, 

SocialMF, and TrustMF by leveraging ratings and social 

network data. These models use neural network architectures, 

highlighting the potential of neural networks in recommender 

systems. 

•In initial tests, TTYGNN demonstrated satisfactory 

performance. This suggests that Graph Neural Networks 

(GNNs) possess immense potential in learning graph data 

representation, enabling effective integration of node 

information and topology. 

•The paper thoroughly examines the contributions of each 

model component and proposes suitable frameworks for 

integrating ratings data with social network information. 

TTYGNN outperforms GraphRec and DeepSoR in this 

regard. 

In summary, the comparative results demonstrate that: 

1) Improving the accuracy of recommendations by 

incorporating social network data. 

2) Integrating neural network models can significantly 

enhance the efficiency of recommender systems. 

3) The proposed framework outperforms several 

commonly used baselines. 

 

C. Model analysis 

This section thoroughly investigates the impact of model 

components and hyperparameters on the results. 

The text below discusses the examination of the impact of 

social networks and user opinions. The proposed framework 

presented in the concluding chapter demonstrates its efficacy. 

The framework introduces model components integrating 

comprehensive social network information and incorporating 

user opinions and preferences. To gain a deeper 

understanding of how TTYGNN operates, the data is 

summarized similarly to the GraphRec model and compared 

against two variants: TTYGNN-SN and TTYGNN-Opinion. 

The findings of this comparison are presented in Figure 6. 

The subsequent sections define these two variants: 

•TTYGNN-SN: In TTYGNN, user social network 

information is omitted. This variant uses only the item space 

latent factor czC
 to represent the user's latent factor and does 

not consider the user's latent factor z s

c  in the social space.  
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Fig.6  Impact of social networks and user Information on the ciao and 

epinions datasets. 

 

•TTYGNN-Opinion: During the Study eiw  , this variant 

ignores the user's opinion of the project. The text talks about a 

specific approach that only considers the potential of users 

and projects within a project space without considering the 

user's perspective on the interaction between the user and the 

project. The third figure shows how TTYGNN and its two 

variants performed on the Ciao and Epinions datasets. By 

analyzing the results, we can conclude the following things: 

•An investigation is being conducted on how social 

network information affects recommender systems. The 

findings suggest that TTYGNN-SN is less effective than 

TTYGNN, highlighting social network information's 

significance in enhancing recommendation learning and 

accuracy. 

•During the interaction process, opinions play a crucial 

role. If there is a lack of opinion information, it can 

significantly reduce the accuracy of rating predictions. For 

instance, on the Ciao and Epinions datasets, the average 

relative errors calculated using RMSE are 3.50% and 2.64%, 

respectively. On the other hand, those determined using 

MAE are 5.84% and 5.02% respectively. This highlights the 

importance of user reviews in uncovering a user's or 

program's underlying factors, enhancing recommender 

systems' effectiveness. 

The article examines the influence of attention and how it 

can affect the performance of a model. To improve the 

model's performance, the CBAM attention mechanism is 

incorporated and compared with an older version that does 

not have this feature. The findings of this comparison are 

presented in Figure 7. 

 

 

 
Fig.7 Impact of cbam attention mechanisms on the ciao and epinions 

datasets. 

 

Four TTYGNN variants were compared: TTYGNN-α, 

TTYGNN-β, TTYGNN-μ, and TTYGNN-CBAM. 

TTYGNN-α:Represented as item attention. This variant 

is not considered in the concept-aware interactive 

representation of aggregated items. The mean aggregation 

function combines items and represents user latent factors 

within the item space. 

TTYGNN-β:Denoted as social attention. In this variant, 

TTYGNN neglects the social attention α during user 

neighbor aggregation. The variant uses a mean-based 

aggregation function to capture social aggregation of user 

latent factors in social space. 

TTYGNN- μ :Denoted as user attention. When users 

interact with each other, the perceived TTYGNN of 

intersections within the overall opinion μ is ignored. This 

variant uses a mean-based aggregation function to model the 

underlying factors of the project for user aggregation. 

TTYGNN-CBAM: The CBAM module enhances 

intermediate feature maps with channel and spatial attention 

mechanisms to optimize recommender systems. 

•Different users of interactive items, such as those with 

varying purchase histories, contribute differently to user 

latent factors within the item space. Similarly, the importance 
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of understanding item latent factors varies among interactive 

users, such as buyers. The TTYGNN model was evaluated 

using two different attentional mechanisms. The 

experimental results indicate that TTYGNN-α, TTYGNN-β, 

and TTYGNN-μ performed worse than TTYGNN-CBAM. 

These findings suggest that the CBAM attentional 

mechanism outperforms the no-addition-prior attentional 

mechanism. 

•In summary, integrating the CBAM attention mechanism 

significantly improves recommendation performance for the 

TTYGNN model. 

According to the results displayed in Figure 8, it is evident 

that KFCM clustering offers significant advantages in 

accurately identifying data clusters and improving cluster 

stability compared to the traditional FCM clustering method. 

When the PSO algorithm is integrated with KFCM clustering, 

it results in an enhanced PSO_KFCM clustering model. This 

model exhibits several notable advantages over the original 

KFCM clustering method. By combining the PSO algorithm, 

we can optimize the parameter selection of KFCM clustering, 

thereby improving the clustering effect. 

 

 

 
Fig.8 PSO_KFCM clustering on the ciao and epinions datasets. 

 

As a heuristic optimization algorithm, the PSO algorithm 

can effectively explore the parameter space and find the 

optimal parameter combinations, thus obtaining more 

accurate and stable clustering results. Compared with the 

traditional KFCM clustering method, the PSO_KFCM 

clustering model can better adapt to different datasets and 

improve the accuracy and reliability of clustering. In addition, 

the PSO algorithm helps to avoid the local optimal solution 

problem in KFCM clustering. In KFCM clustering, the 

choice of initial parameters and the non-convexity of the 

objective function may lead to local optimal solutions, while 

the global optimal solution cannot be realized. In contrast, the 

PSO algorithm avoids the problem of local optimal solutions 

by simulating the foraging behavior of bird flocks and 

effectively searching globally in the solution space. This 

means that the PSO_KFCM clustering model can better 

explore the solution space, discover better clustering results, 

and improve the sta bility and accuracy of clustering. 

By combining the PSO algorithm with KFCM clustering, we 

arrive at a new enhanced PSO_KFCM clustering model. 

Compared with the original KFCM clustering method, this 

model has the advantages of optimizing parameter selection 

and avoiding local optimal solutions, thus improving the 

stability and accuracy of clustering results. This innovative 

model combining heuristic optimization algorithm and 

clustering method provides a new idea and method for 

solving complex data clustering problems. 

 

 

 
Fig. 9 Effect of embedding size on ciao and epinions datasets. 

 

The figures presented in Figure 9 illustrate the impact of 

embedding length on the Ciao and Epinions datasets. The 

experimental findings indicate that enhancing the embedding 

length leads to a significant improvement in performance 

when the embedding size falls between 8 and 32. However, 

when the embedding size is increased to 256, the 

performance of TTYGNN begins to decline. This indicates 

that while larger embedding sizes may improve 
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representativeness, excessively long embedding lengths may 

increase the complexity of the model. Therefore, finding an 

optimal embedding length is crucial to achieving maximum 

experimental performance. 

As shown in Figure 9, the performance of the Ciao and 

Epinions datasets increases with an increase in the 

embedding length when the embedding size is between 8 and 

32. This implies that elevating the embedding length within 

this range can extract more feature information, thus 

enhancing the model's performance. However, when the 

embedding size is further increased to 256, the performance 

of the TTYGNN model begins to decrease. This suggests that 

an embedding size that is too large may make the model too 

complex, negatively affecting its performance. Therefore, 

determining an appropriate embedding length is essential to 

achieve the best experimental performance. The embedding 

length should provide enough feature information while 

avoiding making the model too complex. 

In summary, the figures in Fig. 9 exhibit the impact of 

embedding length on the Ciao and Epinions datasets. 

Increasing the embedding length can significantly improve 

the performance within a specific range. However, an 

embedding size that is too large may make the model too 

complex, which negatively affects its performance. Therefore, 

determining an optimal embedding length is crucial to 

achieving maximum experimental performance. 

 
 

IV. RELATED WORK 

This section briefly overviews our contributions to social 

recommendation systems, deep neural network techniques, 

and advanced graph neural networks. 

 Recently, recommender systems have shifted from 

traditional algorithms to deep learning-based algorithms. 

This paper concentrates explicitly on social recommender 

systems prioritizing frequent interactions among individuals. 

These systems aim to assist users in filtering out irrelevant 

information by collecting and analyzing data. As a result, 

social relationships play a critical role in enhancing the 

effectiveness of recommender systems. 

In the current age of rapid internet expansion, there has 

been significant progress in deep neural network technology 

for image data processing. Graph Neural Networks (GNN) 

are a collection of network architectures that exhibit 

exceptional performance in image classification tasks. The 

core concept behind GNN is to integrate feature information 

from a self-defined graph neighborhood using a neural 

network. This method effectively learns representations by 

transferring node information and merging graph topologies. 

The emergence of deep neural network models has 

profoundly impacted various learning domains, such as 

image recognition, natural language processing, and speech 

recognition. Researchers have also proposed neural 

collaborative filtering frameworks, such as NeuMF, designed 

to capture the nonlinear interactions between users and items. 

This framework can improve the ability of recommender 

systems to understand user interests and needs, leading to 

more personalized recommendations.  

Integrating deep neural networks with social recommender 

systems has recently gained popularity. One example is the 

NSCR, which uses the NeuMF model to suggest items from 

an information domain to potential users within a social 

network. This method introduces a neuro-social collaborative 

ranking framework. The NeuroMF model uses a neural 

network to represent and align user and item features, 

resulting in more precise recommendations. Unlike 

traditional collaborative filtering algorithms, NeuroMF 

considers the similarities and differences among users and 

the degree of association between users and items.  

SMRMNRL uses a ranking approach that adopts the 

perspective of learning from a multimodal heterogeneous 

network to illustrate the evolution of socially conscious 

movie recommendations within social media. They use 

recurrent neural networks and convolutional neural networks 

to understand elements such as the portrayal in movie text 

descriptions. A stochastic perturbation-based approach was 

employed to integrate multimodal neural networks [19,20]. 

Through these initiatives, they have successfully addressed 

the challenge of cross-domain social recommendation, which 

is notably different from conventional social recommender 

systems. 

The paper closely relates to two neural network [21] 

models: DeepSoR and GraphRec. The DeepSoR team has 

proposed a unique method that combines probabilistic matrix 

decomposition with a neural network model that considers 

users' social relationships. This method employs pre-trained 

node embedding techniques to represent users and 

c-nearest-neighbor algorithms to create connections between 

the user's embedded features and the neural network [22-24]. 

On the other hand, the GraphRec model introduces the 

concept of "relational embeddings," which capture the vector 

representations of node-edge relationships within the graph. 

By acquiring these embeddings, the model can better 

understand the graph's structure, improving its performance 

in classifying graph relations. 

GraphRec is an advanced recommendation system that 

uses attention mechanisms to effectively combine user, social, 

and network information for accurate and personalized 

recommendations. Since every user has unique interests and 

preferences, GraphRec employs an attention mechanism 

[25-26] to integrate user, social, and network information, 

enabling personalized recommendations to users. This fosters 

social network interactions and exchanges, leading to a more 

engaging and personalized social experience. The emergence 

of this technology presents new opportunities and challenges 

for the advancement of social networks. 

Graph Neural Networks (GNNs) have shown impressive 

ability in handling graph-structured data, particularly in 

recommender system tasks where the complex interaction 

between users and items is considered a prime example of 

graph data. To tackle the recommendation challenge, 

researchers have developed GNN-based models such as 

SRMGCNN [25-26]. This model utilizes Graph Neural 

Network (GNN) techniques to derive graph embedding 

representations from the intricate relationships between users 

and items. The graph auto-coding framework introduced by 

GCMC generates latent features for users and items by 

disseminating unique messages throughout the user-item 

graph. The framework leverages node and edge 

representations to extract valuable features through message 

propagation. It can play a crucial role in social network 

analysis and personalized recommendations. The stochastic 

wandering graph neural network of PinSage is a promising 

approach for learning node embedding representations in 

web-scale graphs. This method holds significant potential 

IAENG International Journal of Computer Science

Volume 51, Issue 8, August 2024, Pages 936-948

 
______________________________________________________________________________________ 



 

within the domain of graph neural networks. It is expected to 

provide an effective solution for various graph data analysis 

and modeling tasks. 

 

V. CONCLUSIONS AND FUTURE WORK 

In the internet era, exchanging information and interacting 

with each other has become increasingly important. For 

recommender systems that focus on social interactions, 

accurately understanding user-user interactions is crucial for 

providing personalized recommendations. However, existing 

recommender system models often have limitations that can 

affect the accuracy and efficiency of recommendations. To 

address these issues, we propose a new model called 

TTYGNN, which is based on graph neural networks. 

TTYGNN combines the PSO_KFCM clustering algorithm 

and the CBAM attention mechanism. Graph neural networks 

are powerful tools to process complex network-structured 

data efficiently, while PSO_KFCM is an improved clustering 

algorithm that combines historical recommendation data 

points with similar features. CBAM is an attention 

mechanism that identifies essential features in an image 

while suppressing irrelevant noise information. By 

integrating CBAM, TTYGNN can understand and capture 

the dynamics of user-item interactions more 

comprehensively, providing more accurate and personalized 

recommendations. TTYGNN also employs the Particle 

Swarm Optimization (PSO) algorithm to optimize the KFCM 

clustering process. PSO is an efficient global optimization 

algorithm that effectively finds the optimal solution and 

improves the accuracy and efficiency of clustering. We 

conducted experiments on two real datasets, and the results 

show that TTYGNN performs significantly better than other 

similar recommender system models. This demonstrates the 

effectiveness of our model in capturing user-item interaction 

dynamics and improving recommendation accuracy and 

efficiency. In our future research, we plan to explore and 

study the factors affecting user-to-user dynamics to 

understand better and predict users' social behaviors, 

providing more accurate and personalized recommendation 

services. 
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