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Abstract—Attention Deficit Hyperactivity Disorder (ADHD)
is a neurodevelopmental condition that affects millions of
children. In this manuscript, we propose methods to classify
two groups of children, viz. healthy children, and children with
ADHD, providing supplementary information to the doctors
for analysis and prediction. An electroencephalogram (EEG)
correlation and EEG channel selection are used to discrimi-
nate between ADHD EEG and healthy children’s EEG. The
primary objective of the channel selection method is to reduce
the dimensions of the data, reduce computational complexity,
improve model performance, and provide faster processing.
We use EEG signals recorded in three different scenarios.
We propose two models for channel selection using Pearson’s
correlation coefficient and Hoeffding’s D correlation coefficient.
Various nonlinear features are extracted from selected channels
and used with multiple classifiers. The performance of different
classifiers has been tested by calculating the accuracy, precision,
recall, and ROC curves among different datasets. The proposed
algorithms achieved similar or better accuracy above 90 %with
significantly fewer features and channels.

Index Terms—EEG Signal Processing, ADHD, Channel Se-
lection, Correlation, Nonlinear features, EEG classification

I. INTRODUCTION

ATtention Deficit Hyperactivity Disorder (ADHD) is
a prevalent neurodevelopmental disorder affecting ap-

proximately 5%–8% of children. It typically begins in child-
hood and can persist through adolescence and into adulthood.
Children with ADHD often struggle with maintaining atten-
tion, listening attentively, following instructions, and remain-
ing still. The classification of ADHD aids in understanding
the diverse symptom profiles, guiding appropriate treatment
strategies, facilitating research on its etiology and manage-
ment, and promoting awareness and support for individuals
affected by the disorder [1]. Neural functioning and human
activity are strongly related. Electroencephalography (EEG)
records the electrical activity of the brain, and it shows
a highly complex electrical activity with distinct nonlinear
and dynamic features. Brain activity is measured by placing
electrodes on the subject’s scalp. The 10–20 International
Electrode Positioning System is used for electrode place-
ment. Due to its high temporal resolution and ease of data
acquisition compared to other brain imaging techniques,
many researchers adopted EEG to assess and evaluate ADHD
disorder in their research [1].

Various studies have shown that EEG can differentiate
brain function in normal subjects with ADHD. In [2], re-
searchers reviewed several combinations of diagnosis, evalu-
ation, and analysis treatment methods for ADHD using EEG.
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EEG features like statistical features [3], linear/nonlinear fea-
tures [4][5], entropy[6], and spectral features [7] [8] are used
to characterize the EEG channels, and afterward, they are
used for ADHD classification with different machine learning
[9][10][11] and deep learning methods [12][13][14]. The
acquired EEG signals are generally multichannel. Although
a large number of EEG channels provide more information
about cerebral activity, it also increases redundancy due to
noise, resulting in high-dimensional data.

The setup procedure with several channels in EEG sig-
nal processing is time-consuming and inconvenient for the
subjects. Additionally, it adds to the system’s computational
complexity, which needs to be maintained to a minimum in
some applications. The above reasons lead to the need for
dimension-reduction methods. Dimension reduction can be
achieved in EEG signal processing by limiting the number
of EEG channels.

This paper aims to classify the ADHD subjects and control
subjects with high accuracy with reduced dimensions. We
proposed models, Model 1 and Model 2, for EEG channel
selection to reduce the dimension. Our models are based
on Pearson’s and Hoeffding’s correlation coefficient. After
applying the proposed models, six nonlinear features were
extracted, namely, Approximate entropy, Singular Value De-
composition entropy (SVD), Spectral entropy, Petrosian FD,
Katz FD, and Higuchi Fractal dimension (HFD) for each
selected channel. These features are used with classifiers
such as K-nearest neighbor (KNN), Random Forest, Naive
Bayes (NB), Support vector machine (SVM), Decision tree
(DT), and Multi-layer perceptron (MLP). The performance of
classifiers was compared with reduced dimensions for three
different datasets. We are able to improve the performance by
up to 10% with less dimensions. The classifier’s performance
gives good results using Hoeffding’s correlation coefficient
compared to Pearson’s coefficient for Model 1. The same
highest accuracy for Dataset 1 is achieved by using proposed
Model 2 at 98.45%, for Dataset 2, 73%, and for Dataset 3
it is 68%.

The details about existing EEG channel selection methods
and applications are given in section 2. Section 3 discusses
the proposed methods for channel selection and feature
extraction, followed by results analysis and discussion in
Sections 4 and 5, respectively.

II. RELATED WORK

Electroencephalography (EEG) signals have been exten-
sively utilized in diverse applications, such as motor imagery
classification, mental task classification, emotion recognition,
brain-computer interfaces (BCI), seizure detection, and sleep
stage classification. In numerous studies, EEG channels
are treated as features, and feature engineering in EEG
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signal analysis involves selecting the optimal measuring
electrodes. However, the choice of specific electrodes may
vary depending on the objectives of the application [15].
The EEG channel selection task falls under the features
selection category. The popular feature selection methods
are classified as filter methods, wrapper methods, Embedded
techniques, and Hybrid techniques [15]. Apart from these,
optimization bases such as particle swarm optimization and
genetic algorithm optimization [16][17] are also used.

A novel approach for optimizing EEG channel selection
using Relief and its extended Relief function was introduced
by [18]. These functions aim to assign weights to features
based on their ability to distinguish samples in proximity
to each other. Various classifiers were employed to evaluate
different combinations of EEG channels for distinguishing
between real and imagined movements of hands and feet. The
study began with two channels (C3-C4, CP3-CP4) located on
the contralateral and ipsilateral sensorimotor cortex, defining
the Region of Interest (ROI) centered on C3 or Cp3 and C4 or
Cp4. Subsequently, a data-driven automatic channel selection
method was tested to identify the optimal channel combina-
tion that enhances classification accuracy [19]. Furthermore,
a novel approach using Granger causality (GC) analysis was
proposed by the researcher to classify motor imagery (MI)
tasks based on left-hand and right-hand MI [20].

A modified grey wolf optimizer (MGWO), which is a
swarm-primarily based meta-heuristic approach as integra-
tion with two modifications proposed to achieve the balance
between exploration and exploitation [16], has evaluated its
performance on different BCI EEG datasets.

Likewise, many researchers have studied the relationship
between emotional states and brain regions in selecting
emotion-based EEG channels. In [21], the authors referred
to the method of selecting channels based on brain region
as channels from frontal and adjacent frontal and temporal
channels of frontal, parietal, temporal, and occipital EEG
signals. The mRMR-FS and mRMR-CS methods show the
best classification performance for emotion classification in
each channel combination [21].

Extracting useful information from EEG signals efficiently
is a complex and demanding endeavor. Hence, many re-
searchers advocate for automated feature learning, which
serves as a driving force behind the adoption of deep
learning techniques. In [22], CNN was utilized alongside the
Reversed Correlation Algorithm (RCA) to identify optimal
combinations of electrodes and their associated frequency
bands. Furthermore, researchers in [23] introduced a multi-
objective optimization approach for EEG channel selection
using the non-dominated sorting genetic algorithm (NSGA).
This method was applied to classify epileptic seizures using
SVM, KNN, and Random Forest machine learning tech-
niques.

In the same way, correlation-based EEG channel selection
is a prominent technique many studies utilize. In [24], the au-
thors implemented channel reduction through subject-specific
channel selection. The analysis aids in selecting highly
correlated EEG channels based on correlation, taking C3,
C4, and Cz as a separate reference channel for each subject.
A new correlation-based channel selection (CCS) method is
proposed by [25], followed by a novel regularized common
spatial pattern (RCSP). CCS was used to optimize the motor

imagery features to improve classification accuracy.
Similarly, the Filter Bank Common Spatial Pattern

(FBCSP) method was used to examine the classification
performance of a selection of EEG channels that had been
chosen based on the correlation coefficient of spectral en-
tropy. This channel selection strategy improved classification
accuracy from 1.25% to 8.22%, according to the results in
[26]. Correlation analysis is valuable for assessing the rela-
tionship between two variables. In [27], researchers demon-
strated that correlation analysis provides significant insights
into the brain’s functional organization during cognitive tasks
and effectively discriminates between individuals based on
how inter-channel correlation values vary across subjects.

Recent studies have investigated the correlation between
EEG signals using various methods in both the frequency
and time domains; in the frequency domain, methods such as
correlation coefficients, coherence analysis, auto-correlation,
wavelet coefficients, and cross-correlation [28]. Time domain
metrics, including Kendall rank order correlation, mutual
information, Pearson correlation, and Spearman rank order
correlation, have been employed to assess channel corre-
lations in EEG recordings from healthy individuals under
different behavioral conditions, such as open and closed eyes
[29]. Among these metrics, cross-correlation is particularly
well-suited for analyzing EEG signals in the time domain due
to its ability to evaluate signal similarity across all potential
time delays [28].

Another study [30] has used features such as the autore-
gressive (AR) parameters extracted from EEG attention activ-
ity of ADHD and non-ADHD subjects. Two different classifi-
cation methods, KNN and GMM-UBM, were used iteratively
to find the best combination of fewer channels. However,
some researchers implemented channel reduction through
subject-specific channel selection or considered channels
according to brain region. Most channel selection methods
are based on linear correlation or monotonic relation. These
approaches may not always work with EEG data. This paper
aids in selecting channels according to the nonlinear and non-
monotonic behavior of EEG with the help of Hoeffding’s
correlation coefficient. We compared our results using linear
and monotonic correlation (Pearson’s) and nonlinear and
non-monotonic (Hoeffding’s). The results using Hoeffding’s
correlation coefficient are better than Pearson’s.

III. MATERIALS AND METHODS

To analyze the effect of dimension reduction methods,
we processed EEG through different steps, namely data
acquisition, pre-processing, channel selection, feature ex-
traction, and classification, as shown in Figure 1. Different
preprocessing methods were applied to each dataset. For
Dataset 1 and Dataset 2, preprocessing involved removing
slow drift below 1 Hz and high-frequency noise above 20
Hz, which included line noise. Additionally, a high-pass filter
at 0.05 Hz, a low-pass filter at 70 Hz, and a notch filter at
50 Hz were applied on Dataset 3. Afterward, the proposed
correlation-based channel selection Model 1 and Model 2 are
applied to pre-processed data. Nonlinear features (as stated
in section 3.4) are extracted from selected channels set to
form feature vectors and processed for classification. In sub-
sequent sections, we describe the methodologies employed
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for data preparation and processing to ensure suitability for
classification.

A. Dataset

To check the robustness of the proposed model, we used
three datasets. In our experiment, three different data sce-
narios have been considered. Dataset 1 belongs to cognitive
tasks; Dataset 2 is based on working memory, and Dataset 3
refers to auditory tasks. The details of each of the datasets
are mentioned below.

Dataset 1: This dataset is utilized in the Iran National
Brain Mapping Laboratory’s project and is available to the
public [13]. The dataset comprises thirty-one children in the
ADHD group (twenty-two boys and nine girls, ages 7 to
10 years) and thirty children in the normal group (twenty-
five boys and five girls, ages 8 to 11 years). During the EEG
recording, children viewed various images on a monitor, such
as animal figures or cartoon characters, and were instructed
to count them. The goal was to keep the child engaged in a
continuous mental task. EEG recordings were made using
the international 10-20 system, which included reference
electrodes on the earlobes and nineteen channels (Fp1, Fp2,
F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T7, T8, P7, P8, Fz,
Cz, and Pz). Figure 2 illustrates the nineteen EEG channel
positions and their corresponding labels used in Dataset 1.

All trial data were sampled at intervals of 30 seconds. A
total of 328 samples were obtained, of which 196 comprised
the group with ADHD and 132 of the control group.

Dataset 2: This dataset [31], meticulously designed,
consists of EEG data of 59 participants (aged 9 to 16).
Among them, 34 were diagnosed with ADHD (21 with
combined ADHD, and one each with inattentive and hyperac-
tive ADHD), and 25 were healthy controls. EEG recordings
were made using a SynAmps amplifier (Neuroscan, Sterling,
VA, United States) across 21 channels. Healthy participants
completed the single n-back, go/no-go, and combined n-
back/no-go tasks in one session, while ADHD participants
performed only the combined n-back/no-go task. Participants
were asked to respond quickly and accurately to tasks
displayed on a flat screen. The study’s paradigms can be
accessed at https://doi.org/10.6084/m9.figshare.c.493332. In
our experiment, we focused on the combined n-back/no-go
task. In this task, a list of capital letters (A, D, E, H, I,
N, R, S, T, U) was presented, and participants determined
whether the current stimulus matched the one presented two
trials earlier (n = 2). They were also asked to withhold their
response when the letter X appeared, with no n-back target
trials occurring immediately after a no-go trial. Figure 3
illustrates the tasks.

Dataset 3: In this dataset [32], a novel recording of 20
neurotypical and 25 ADHD young adults was considered.
EEG data was collected using 64 channels while perform-
ing auditory tasks. Human speech streams with syllable
sequences of /ba/, /da/, and /ga/ were used for the stimuli.
Each trial featured a three-syllable: Target, Distractor, and
Interrupter. The target stream heard from the center, the
Distractor of the five-syllable stream spatialized to the right,
and the Interrupter stream spatialized to the left, beginning
either 1 second (Early Interrupter) or 1.5 seconds (Late Inter-
rupter) after the Target. The experimental design balanced the

number of trials among No Interrupter, Early Interrupter, and
Late Interrupter conditions. Each trial started with a visual
cue indicating the required attentional state. Participants were
asked to keep their eyes open and focused on a central
fixation dot. During FOCAL attention trials, participants
focused on the Target and reported the order of the /ba/, /da/,
and /ga/ syllables. In BROAD attention trials, participants
monitored the Target and were prepared to shift attention
to the Interrupter if it appeared while always ignoring the
right-lateralized Distractor.

B. Correlation Coefficient
The concept of channel selection based on correlation

is derived from the manner in which signals propagate
between neurons. When a task or activity is performed, a
specific set of neurons is activated, leading to high corre-
lations between signals from these particular neurons. This
observation suggests that correlations between signals have
strong discriminating properties, which can be leveraged to
differentiate between various conditions. In this study, to
distinguish between ADHD and normal EEG and analyze the
functional connectivity of brain regions, we compute an inter-
class correlation coefficient matrix for the ADHD class (C1)
and the normal class (C2) using Pearson’s correlation [33]
and Hoeffding’s correlation [34]. The EEG signal associated
with channel k is represented as a vector (Eq. 1).

Xx(k)D = [x(k)1, x(k)2, .......x(k)N ] (1)

In this context, k (k=1,2. . . K) represents the channel number,
and N denotes the number of temporal samples per channel.
Our study involves 19 channels with 15,630 sample values
for each channel. The average correlation coefficient of class
C is represented by (Eq.2,3)

P
(k,P )
C (C = 1, 2) (2)

P
(k,P )
C =

1

|Ic|
∑
i∈Ic

P
(k,P )
i (3)

|Ic| represent the number of samples for Class c.
We consider a training dataset consisting of I EEG signal

samples, where each sample has N sample points, indexed
by x(k)i ∈ RNX1, where i = 1, . . . , I .

a) Pearson’s correlation coefficient: Pearson’s correla-
tion coefficient of the ith sample EEG channel pair k and p
is expressed as (Eq.4)

P
(k,P )
i =

Cx
(k,P )
i√

(p(x
(k)
i )

√
(p(x

(p)
i )

k, p = 1, 2, . . .K (4)

Cx
(k,P )
i is the sample Covariance and p(x

(k)
i ) is the sample

variance

Cx
(k,P )
i =

N∑
n=1

(x
(k)
i (n)− x

(−k)
i )(x

(p)
i (n)− x

(−p)
i ) (5)

p(x
(k)
i ) =

1

N

N∑
n=1

(x
(k)
i (n)− x

(−k)
i )2 (6)

x
(k)
i = 1

n

∑N
(n=1) x

(k)
i (n)denotes the sample mean ofx(k)

i .
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Fig. 1. Block diagram of EEG processing steps using the proposed model

Fig. 2. 19 EEG Channel position with Number labels of Dataset1

Fig. 3. Schematic illustration of the combined n-back/nogo task (redrawing
based on [31])

b) Hoeffding’s D Correlation Coefficient: Hoeffding’s
D, introduced in the 1940s, is a rank-based nonparametric
test of independence. Unlike the Pearson correlation, which
assesses linear relationships, Hoeffding’s D statistic evaluates
nonlinear or non-monotonic relationships. A Hoeffding’s

D statistic greater than 0 indicates dependence between
variables.
It measures the distance D between F(x,y) and FG(x)H(y),
where F(x,y) represents the joint cumulative distribution
function (CDF) of X and Y, and G and H are marginal CDFs.

D =

∫
(F −GH)dF (7)

Equation 7 quantifies the difference between the joint
ranks of (X, Y) and the product of their marginal ranks. A
higher value of D indicates a stronger dependence between
X and Y across various types of dependencies.

After calculating Pearson’s and Hoeffding’s D coefficient
matrix for each class, we analyzed channels paired for the
ADHD and normal classes. We used standard deviation
error bars to determine whether a correlation difference is
significant in studying discrimination between ADHD and
normal classes. The difference may be significant if the
standard deviation error bars do not overlap, and it is most
likely not statistically significant if there is even less overlap.

For Pearson’s, we got less overlapped bars for many chan-
nel pairs, while for Hoeffding’s coefficient, we got almost
all non-overlap error bars. Consequently, we can state that
Hoeffding’s correlation shows more discrimination between
ADHD and Normal EEG channel pair correlation compared
to Pearson’s. A visual analysis of these is given in Figure 4
to support our findings.

Likewise, we applied a t-statistic method to identify dis-
criminative EEG channel pairs. The t-score for correlation
coefficients represents the normalized difference between the
average correlation coefficients of the two classes. This test
yields a t-value and the associated probability for the null
hypothesis. A high t-value, and consequently a low P-value,
signifies effective discrimination. In this context, the null
hypothesis hypothesizes that there is no difference in the
correlation coefficients between EEG channel pairs for the
ADHD and normal groups.

C. EEG Channel Selection
The correlation coefficient between EEG channel pairs

indicates brain connectivity and has been used to evaluate the
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(a)

(b)

Fig. 4. Standard Deviation error bar analysis to study discrimination between ADHD and normal class. The X-axis denotes the channel pair, and the
Y-axis denotes the correlation coefficient value. (a): Standard Deviation error bar for Pearson’s Correlation(b) Standard Deviation error bar for Hoeffding’s
Correlation

relationships between EEG signals across different channels.
In this step, our goal is to reduce the dataset’s dimensionality
by excluding EEG channels that show relatively low or
negligible correlations with one another.

We have proposed two models: Model 1 and Model 2. To
build these models, we assume that the behavior of channels
of the ADHD or Normal classes should exhibit common
information across all samples where participants engage in
the same tasks. Following this hypothesis, we evaluate intra-
class similarity by employing a correlation coefficient. Here,
we assess the similarity between channels rather than the
directional influence among them.

In Algorithm 1 and Algorithm 2, we discussed a compre-
hensive exploration of the algorithmic steps employed in the
proposed models.

For dataset 1, we used 132 samples (I) of 30 seconds
for each class. One sample contains 15600 sample values
of 19 channels (N x K). Then, we calculated Pearson’s
correlation coefficient matrix and Hoeffding’s correlation
coefficient matrix for each sample for each class. After taking
the mean of the correlation matrix of each class for each
correlation, we sorted the coefficient vector and selected the

top 200 correlation coefficient values with their channel pairs
from each class.

The top 200 average correlation coefficients from the
ADHD and Normal classes were compared using a t-test.
The associated probability of the null hypothesis (p-value)
was considered. The null hypothesis hypothesizes that there
are no correlations between channels. Selected channel pairs
from both classes whose correlation coefficient rejects the
Null hypothesis. The standard deviation error bar was used to
get a sense of whether a correlation difference is significant
in studying discrimination between ADHD and normal class.
From the top 200 channel pairs, we made a two-class channel
set named sets s1 and s2 with channel pairs whose coefficient
values are more significant than the threshold value. For
Pearson’s coefficient, we kept 0.60 as the threshold for
coefficient value; for Hoeffding’s, we selected the top 25
coefficient values. Channel selection is done by selecting
channels after union and intersection operation between the
two-class channel sets. So, we got Pearson’s intersection
set with channel number as {0,1,2,3,4,5,6,7} channel (0-7)
and Pearson’s union set: {0,1,2,3,4,5,6,7,9,12} channel (0-7)
(9,12). Similarly, In Model 2 for Hoeffding’s correlation, we
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got intersection/union: {0,1,2,3,4,5,6,7, 10,11,12,13} channel
(0-7) (10-13). For dataset2 we got 8(C3, C4, CZ, FZ,
FC5, FC6, F3, F4) channels out of 21 after using Model2.
Moreover 14 (C2, C4, CP1, CP2, CP3, CP4, CP5, CP6,
CPZ, P1, P2, P3, P4, PZ) channels get selected out of 64
for dataset3.

Algorithm 1 Proposed Model 1
1: Select sample of the fixed time window and form the

EEG data of dimension N x K x I (N =number of sample
values, K= number of channels, I= number of samples)

2: for C = 1, 2 do
3: for i = 1, I do
4: Compute correlation coefficients and get the ma-

trix:
RP=Correlation.p(Ici)
RH=Correlation.h (Ici)

5: end for
6: end for
7: Get the mean of the correlation matrix of each class for

each correlation (Pearson’s and Hoeffding’s)
8: Sort the values in descending order
9: Make set ‘S’ of channel pair for each class (s1 -

ADHD, s2- Normal) choosing coefficient value greater
than threshold values

10: Apply (s1 ∪ s2) and(s1 ∩ s2) to select the channel
———————————————————————
*RP= Pearson’s correlation coefficient matrix,
RH= Hoeffding’s correlation coefficient matrix,
C=Class 1-ADHD; Class 2- Normal

Algorithm 2 Proposed Model 2
1: Select sample of the fixed time window and form the

EEG data of dimension N x K x I(N =number of sample
values, K= number of channels, I= number of samples)

2: for C = 1, 2 do
3: for i = 1, I do
4: Compute correlation coefficients and get the ma-

trix:
RP=Correlation.p(Ici)
RH=Correlation.h (Ici)

5: end for
6: end for
7: Get the mean of the correlation matrix of each class for

each correlation (Pearson’s and Hoeffding’s)
8: Convert matrix to unweighted graph basis of the thresh-

old value of correlation coefficients
9: Select the node with the top 3 degrees and make set S

of the channel of each degree for each class
10: Apply (s1 ∪ s2) to select the channel
——————————————————————-
*RP= Pearson’s correlation coefficient matrix,
RH= Hoeffding’s correlation coefficient matrix,
C=Class 1-ADHD; Class 2- Normal

D. Feature Extraction
The brain’s highly nonlinear dynamic network reveals

dynamic behavior during activity. Nonlinear dynamics and

chaos theory are used to model brain dynamics and identify
abnormalities in EEG recordings. Various nonlinear fea-
tures are reported in the literature for EEG analysis, viz.
Lempel-Ziv complexity, fuzzy entropy, spectral entropy [35],
and correlation dimension (CD) [6]. Incorporating nonlinear
mathematics minimizes the reliance on subjective methods
for ADHD diagnosis. To achieve this, we have employed six
nonlinear features to construct a feature vector. Three of these
features are derived from Fractal Dimension (FD), while
the remaining three are based on entropy. Fractal dimension
(FD) is computed using methods such as Higuchi, Katz,
and Petrosian [36]. It is a metric used to characterize a sig-
nal’s complexity or irregularity. Additional features include
Approximate entropy [37], Singular Value Decomposition
entropy (SVDEn), and Spectral entropy. Entropy metrics
are used to quantify the uncertainty in the EEG, which
is essentially equivalent to the predictability of probable
configurations.

The details of each of the features are mentioned below.
1) Fractal Dimension:

a) Katz Fractal Dimension: The Katz method calcu-
lates the fractal dimension of a signal trial as follows (Eq.8).

FD =
lnln(N − 1)

lnln(N − 1)− lnln(d/L))
(8)

Here, L represents the sum of distances between consecutive
points, N denotes the length of the data sequence, and d
signifies the diameter of the data sequence

b) Higuchi Fractal Dimension: In Higuchi, using a
time series x(1), x(2), . . . , x(N) as input, a new time series is
generated as follows (Eq. 9).

xk
m =

{
x(m), x(m+ k), x(m+ 2k), .., x(m+

∣∣∣N −m

K

∣∣∣k}
(9)

For m= 1, 2,3...K. where m indicates the initial time and
k indicates the discrete interval time. The average lengthLk

m

is computed for each curve xk
m, as (Eq.10).

Lk
m =

∑(N−m)/k)
i=1

∣∣∣x(m+ ik)− x(m+ (i− 1)k
∣∣∣⌊

(N −m)/K
⌋
k

(N − 1)

(10)
Where N represents the total length of the data, (N−1)

(N−m)/k
serves as a normalization factor. Then, the average length
L(k) is computed across the all-time series as (Eq.11).

L(k) = 1/k
k∑

m=1

Lk
m (11)

c) Petrosian Fractal Dimension: Another method uti-
lized to calculate the Fractal Dimension (FD) of a signal is
the Petrosian method, computed as (Eq.12)

D =
log10n

log10n+ log10(n/(n+ 0.4N∆))
(12)

Here, n represents the number of samples, and N∆
signifies the number of sign changes in the binary sequence.

2) Entropy:
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a) Approximate entropy (ApEn): By using one-time
point augmentation, approximate entropy (ApEn) quantifies
the logarithmic value of the frequency at which the neigh-
borhoods of temporal patterns of the same duration within a
specific distance in phase space remain close for the patterns
[37].

The state space of N-dimensional EEG signal x = {x1,
x2..., xN} is computed given the time lag J and the embedding
dimension m. ApEn is derived from the correlation integral
Cm

i (r), which denotes the number of points within distance
r from the ith point of the EEG time series when embedded
in phase space with embedding dimension m. The following
equation is used to get the correlation integral ( Eq.13)

Cm
i (r) =

1

N −m+ 1

N−m+1∑
J=1

θ(r − || Xi −Xj || ) (13)

In the given equation (Eq.13), θ represents the Heaviside
function, while Xi and Xj denote vectors in the state space,
and r is a threshold value for distance. Finally, the ApEn is
defined as follows (Eq. 14):

ApEn(m, r,N) = ϕm(r)− ϕm+1(r) (14)

ϕm(r) =
1

N −m+ 1

N−m+1∑
i=1

logCm
i (r) (15)

We have considered the value of embedding dimension as 2.
b) Spectral Entropy: Spectral entropy is a comprehen-

sive measure of signal disorganization, and its mathematical
expression is as follows (Eq.16):

H(x)
N∑
i=1

p(xi)log10p(xi) (16)

where x = (x1, x2, x3, . . . xN ) is the signal in the time
domain.p(xi) is the probability of xi

c) Singular Value Decomposition Entropy (SVDEn)::
Singular Value Decomposition Entropy (SVDEn), represent-
ing the dimensions of the data, reveals the number of
eigenvectors required for a comprehensive understanding of
the dataset. The calculation process is as follows ( Eq.17).

SvdE = −
M∑
i=1

σi(σi) (17)

Y = [y1, y2, ..y(N−(r−1)τ)]
T (18)

yi = [xi, xi+τ , ..xi+(r−1)τ ]
T (19)

Where M represents the number of singular values
of the embedded matrix Y , obtainable through Eq. 18.
σ1, σ2, . . . , σM denote the normalized singular values of Y .
r indicates the order of permutation entropy, and τ represents
the time delay, which was set to 3 and 1, respectively, in this
study.
By considering selected channels from the proposed Model 1
and Model 2, feature extraction for each channel is done for
the classification of Feature vectors with nonlinear features,
as shown in Figure 5.

(a)

(b)

Fig. 5. Feature vector with nonlinear features (a) Feature vector for
classification (b) sample vector
where FV: Feature vector, SV: Sample vector, k: Number of selected
channels, m: Number of features, N: number of samples

The total dimension number for classification is calculated
as follows: If the selected channel numbers are 8 and are
used to extract 6 nonlinear features, then the total number of
dimensions will be 8 X 6= 48.

IV. CLASSIFICATION

Deep learning algorithms have been successful in im-
age processing and other domains. However, they have
not consistently demonstrated improvements over the most
advanced approaches available to date when using EEG [38].
Moreover, its success depends on using a large number
of instances, which is rare when using EEG data. Indeed,
DNN’s computational complexity is generally high, both
for training and testing [13]. To assess the effectiveness of
the proposed channel selection model, which is based on
non-linear features, in distinguishing between control and
ADHD groups, the recorded EEG signals must undergo
classification. To achieve this, we opt to use some effective
and less complex classifiers with little data to train.

The performance of multiple classifiers, such as Decision
tree (DT), Random Forest [20], Naive Bayes (NB) [23],
K—nearest neighbor (KNN) [39], Support vector machine
(SVM) [40], and multi-layer perceptron (MLP) [36][41], was
investigated. We have used all these classifiers for Dataset 1,
Dataset 2, and Dataset 3. KNN (K-Nearest Neighbors) is a
simple and effective classifier, whereas SVM (Support Vector
Machine) exhibits strong generalization abilities, reducing
the risk of overfitting [19]. Ensemble classifiers enhance
accuracy by integrating multiple less accurate models, often
outperforming single classifiers [9]. Decision Tree (DT) clas-
sifiers can adeptly learn various representations and demon-
strate resilience to noisy data. KNN, SVM, Random Forest,
DT, and Multilayer Perceptron (MLP) are among the most
commonly employed techniques for achieving successful
classification and are consequently examined in our study.

For SVM, two kernels, including Linear and RBF, were
used. In the KNN classifier, we selected the optimal k value,
which gives maximum accuracy. The four-layered feed-
forward Multi-Layer Perceptron (MLP) with 256,128,64,32
neurons in hidden layers, respectively, was used for fitness
computation. The random forest (RF) was also tested using
the optimal number of trees (n estimator =50). Furthermore,
the Decision Tree and Naive Bayes (NB) classifiers were also
evaluated to analyze their performance in classification.
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V. RESULT ANALYSIS

In this section, we present the experimental results for dif-
ferent classifiers and datasets for ADHD EEG classification
with different numbers of dimensions. Classification results
are measured through accuracy, precision, and recall with
10-fold cross-validation. We analyzed the performance of
classifiers for datasets 1, 2, and 3. In dataset 1, we analyzed
the performance of classifiers with all 19 channels using
single features such as Higuchi and six non-linear features.
Table 1 shows the results.

Then, we select different channels by applying our pro-
posed models and compare their results as given in Table 2.
For Model 1, we analyzed the result for Pearson’s and
Hoeffding’s correlation coefficient; however, for Model 2,
we only considered Pearson’s correlation coefficient. The
classifier’s performance gives good results using Hoeffding’s
correlation coefficient compared to Pearson’s. For instance,
Random Forest for the model using Hoeffding’s given 93.97
% with 72 dimensions (Table 3), whereas 90.51% and
90.07 % were given using Pearson’s coefficient with 48-
dimensions and 60-dimension size, respectively. Likewise,
the highest accuracy for dataset1 is achieved by using
model2 as 98.45% with MLP classifier. In the previous
studies [13] on the same dataset1, researchers were able to
achieve accuracies of 98.48% but with high dimensions. Our
models achieved nearly the same accuracy (98.45%) with less
dimension. In Table 4. the state-of-the-art and our proposed
model are compared.

Model 2, which demonstrated the highest accuracy for
Dataset 1, was further tested for its robustness by applying
it to Dataset 2 and Dataset 3. The results were encouraging,
as model 2 continued to perform well with these additional
datasets (see Tables 5 and 6). For Dataset 2, the Random For-
est method yielded the highest accuracy (78 %) with a total
of 126 and 48 dimensions. However, Model 2 showcased
its strength by improving the performance of MLP with just
48 dimensions, compared to the 126 dimensions required
by the Random Forest method. This further underscores
the robustness and efficiency of Model 2 in achieving high
accuracy with fewer dimensions.
Likewise, in Dataset 3, Model 2 gives the highest accuracy
(68 %) by the Random Forest method with 78 dimensions
compared to 384 dimensions. It also improves accuracy
by 5 % with MLP. NB classifier also shows performance
improvement (61 %) using Model2 for Dataset 3.

Furthermore, we analyzed our proposed models using the
mean Area Under the Curve (AUC) metric. The receiver
operating characteristic (ROC) curve plots the true positive
rate (TPR) against the false positive rate (FPR) at different
threshold settings. The AUC of the ROC curve indicates the
likelihood that a classifier will rank a randomly selected
positive instance higher than a randomly selected negative
instance.

The ROC curve and AUC calculation for all classifiers for
all datasets with proposed model 1 and model 2 are shown in
Figures 6 to 8. The result indicates that performance with a
smaller number of channels shows a better AUC mean with
a greater number of channels. For instance, as in Figure 6,
the AUC mean of Random Forest shows similar values for
19 channels and 12 channels with model 2. Moreover, MLP

and GaussianNB had higher AUC values of 0.75 and 0.71
than 64 channels, as shown in Figure 8.

VI. CONCLUSION

Our objective was to determine the most effective strategy
for addressing the curse of dimensionality inherent in mul-
tichannel EEG recording data. To achieve this, we proposed
two channel selection models, namely Model 1 and Model
2, aimed at identifying the optimal subset of channels from
the available set. These models are based on Pearson’s and
Hoeffding’s correlation coefficients, which give information
about the most correlated channels. Correlation also helps to
reduce redundancy.

We analyzed Pearson’s and Hoeffding’s correlation coef-
ficient matrix for ADHD and normal classes using Standard
Deviation and t-statistic methods. Hoeffding’s correlation
shows more discrimination between ADHD and Normal EEG
channel pair correlation compared to Pearson’s. Moreover,
after applying the proposed models, we also found that
most of the channels that belong to the central lobe had
the maximum correlation with other regions of the brain.
Similarly, majorly selected channels belong to the central
lobe and parietal lobe or frontal lobe, irrespective of the
recording scenario.

To check the robustness of the proposed channel selec-
tion method, we used three different EEG recordings with
different working scenarios. As one dataset was recorded
during cognitive activity, the second recording was consid-
ered while performing a memory task, and the third with
an auditory task. With the correlation, we have used Fractal
dimension (FD) (which is calculated based on Higuchi, Katz,
and Petrosian methods) non-linear features extraction to get
complexity or roughness of signals as well as Approximate
entropy, Singular Value Decomposition entropy (SVD), and
Spectral entropy measures to quantify the uncertainty in the
EEG. The performance of different classifiers such as KNN,
SVM, random forest, DT, and MLP are evaluated using
accuracy, precision, recall, and AUC mean.

For Dataset 1, Model 1 gives good results using Hoeffd-
ing’s correlation coefficient compared to Pearson’s coeffi-
cient. We also compared our results with the state-of-the-art;
both models show a good result with fewer channels (12 out
of 19). Model 2 gives the highest accuracy at 98.45 % using
MLP for Dataset 1. Thus, we apply it to Datasets 2 and 3 to
test the robustness of the model.

In Dataset 2, 8 channels are selected out of 21 by Model
2, and it gives the highest 78% accuracy with random forest
and 73% accuracy with MLP. Similarly, Model 2 selected
13 channels out of 64 from Dataset 3. It improves the 5-
9% performance with MLP and random forest, respectively,
with less dimension. Model 2 with the NB classifier also
shows performance improvement (61%) for Dataset 3. Af-
ter analyzing different classifiers and proposed models, we
found that irrespective of the EEG recording scenario, our
proposed models yielded good results with a lesser number
of channels.
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TABLE I
RESULTS FOR 19 CHANNELS WITH A SINGLE FEATURE AND 6 NON-LINEAR FEATURES

Dataset 1
19 channels

With 6 nonlinear features
Dimension: 114

19 channels
with Single feature (Higuchi)

Dimension: 19
Classifier Accuracy Precision Recall Accuracy Precision Recall
KNN 90.91 0.9294 0.88868 93.14 0.9348 0.9401
SVM (RBF) 75.42 0.7517 0.7824 90.89 0.9102 0.917
Linear SVC 90.12 0.9056 0.9093 86.75 0.8672 0.8873
Random Forest 93.6 0.9536 0.9395 96.22 0.9652 0.9703
Logistic 71.23 0.8481 0.9098 96.6 0.8219 0.8357
DT 88.98 0.9038 0.8703 89.78 0.9432 0.9087
NB 71.23 0.7201 0.7137 71.25 0.7176 0.7137
MLP 98.10 0.9802 0.9696 99.23 0.9928 0.9923

TABLE II
RESULTS OF VARIOUS METRICS FOR DATASET 1 OF PROPOSED MODEL1

Dataset 1
Proposed Model 1

8 Channel with 6 nonlinear Features 10 Channel with 6 nonlinear Features 12 Channel with 6 nonlinear Features
(Pearson’s-Intersection) (Pearson’s -Union) (Hoeffding’s D)

Dimension: 48 Dimension: 60 Dimension: 72
Classifier Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall
KNN 87.54 0.9606 0.7879 90.58 0.9391 0.8714 87.17 0.9718 0.7653
SVM (RBF) 74.64 0.74644 0.7732 73.05 0.7321 0.7818 75.39 0.7545 0.7878
Linear SVC 79.99 0.7862 0.8401 79.14 0.7718 0.8478 84.48 0.8362 0.8708
Random Forest 90.51 0.9187 0.9318 92.07 0.9025 0.9093 93.97 0.9174 0.9247
Logistic 71.23 0.71944 0.706 78.07 0.7657 0.8483 81.08 0.7918 0.8631
DT 87.09 0.8375 0.8934 87.49 0.8575 0.8791 84.52 0.8549 0.8175
NB 71.39 0.71944 0.706 70.09 0.7062 0.706 71.62 0.734 0.706
MLP 93.6 0.9507 0.9318 95.82 0.9642 0.9538 97.35 0.979 0.9692

TABLE III
RESULTS OF VARIOUS METRICS FOR DATASET 1 OF PROPOSED MODEL2

Dataset 1
Proposed Model 2

12 Channel with 6 nonlinear Features
Dimension: 72

Classifier Accuracy Precision Recall
KNN 91.69 0.9594 0.8719
SVM (RBF) 77.33 0.765 0.8054
Linear SVC 88.27 0.8707 0.9098
Random Forest 93.2 0.9269 0.9283
Logistic 93.21 0.9152 0.9395
DT 88.2 0.9104 0.8774
NB 73.91 0.757 0.7208
MLP 98.45 0.979 0.962

TABLE IV
COMPARISON OF MODEL ACCURACY WITH STATE-OF-THE-ART

Comparison of Model accuracy with state-of-the-art
Dataset 1

Method and
Feature Extraction Dimension Classifier Accuracy

M. Moghaddari [13] Frequency band separation
making RGB images (19,512,3) CNN 98.48%

Our Proposed Models

Higuchi Fractal dimension (HFD) 19 MLP 99.23%
Approximate entropy,
Singular Value Decomposition
entropy (SVD),
Spectral entropy,
Petrosian FD, Katz FD

114 MLP 98.10%
72

(Model 2) MLP 98.45%

72
(Model 1) MLP 97.35%
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TABLE V
RESULTS OF VARIOUS METRICS FOR DATASET 2 OF PROPOSED MODEL2

Dataset 2
Proposed Model 2

21 channels with 6 nonlinear Features 8 Channel with 6 nonlinear Features
Dimension: 126 Dimension: 48

Classifier Accuracy Precision Recall Accuracy Precision Recall
KNN 71 0.85 0.66 71.66 0.73 0.7
SVM (RBF) 59.33 0.59 1 59.33 0.59 0.93
Linear SVC 73 0.78 0.74 71.66 0.77 0.68
Random forests 78.33 0.77 0.74 78.33 0.72 0.8
Logistic 75 0.77 0.77 70 0.72 0.74
DT 67.99 0.72 0.72 61 0.62 0.59
NB 69.33 0.72 0.59 69.66 0.75 0.59
MLP 72 0.76 0.71 73 0.81 0.725

TABLE VI
RESULTS OF VARIOUS METRICS FOR DATASET 3 FOR PROPOSED MODEL2

Dataset 3
Proposed Model 2

64 channels with 6 nonlinear Features 13 Channels with 6 nonlinear Features
Dimension:384 Dimension:78

Classifier Accuracy Precision Recall Accuracy Precision Recall
KNN 53.49 0.7 0.5 51 0.59 0.78
SVM (RBF) 61 0.61 1 61 0.61 1
Linear SVC 60.5 0.61 0.766 61 0.63 0.9
Random forests 57.77 0.568 0.6 68.88 0.56 0.78
Logistic 55.99 0.601 0.833 61 0.61 0.1
DT 59 0.666 0.733 58.5 0.37 0.58
NB 41.5 0.416 0.466 61 0.61 0.68
MLP 49.5 0.508 0.65 55.4 0.625 0.666
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(a) (b)

(c)

Fig. 6. ROC Curve and AUC mean for different classifiers with different dimensions for Dataset1 with comparison of Proposed Model1 and Model2
(a) Multi-Layer Percepton Classifier ROC curve of Dataset 1 (b) Random forest classifier ROC curve of Dataset 1 (c) Support Vector Machine classifier
ROC curve of Dataset 1
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(a) (b)

(c)

Fig. 7. ROC Curve and AUC mean for different classifiers with different dimensions for Dataset2 with the comparison of Proposed Model2 (a) GaussianNB
ROC curve of Dataset 2 (b) KNN ROC curve of Dataset 2 (c) SVM ROC curve of Dataset 2
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(a) (b)

(c)

Fig. 8. ROC Curve and AUC mean for different classifiers with different dimensions for Dataset3 with the comparison of Proposed Model2 (a) GaussianNB
ROC curve of Dataset 3 (b) MLP ROC curve of Dataset 3 (c) Random forest ROC curve of Dataset 3
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AVAILABILITY OF DATASET

The data which was used in this research is publicly
available on the following website:
Dataset1:https://nbml.ir/fa/scientific-tournament/First-Irani
an-EEG-competition
Dataset2:https://doi.org/10.6084/m9.figshare.c.4933326
Dataset 3: https://osf.io/4285y/
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