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Abstract—Training a robust classifier for a motor 

imagery-based brain-computer interface (MI-BCI) system 

typically requires a substantial amount of time to collect 

calibration data, which can be a burdensome task for 

participants. To enhance the classifier performance while 

reducing the effort during the training phase, this paper 

proposes a domain adaptation algorithm based on manifold 

embedding (eSPDA) by combining the domain adaptation 

approach with a dimensionality reduction framework derived 

from the common spatial patterns (CSP). Specifically, the CSP 

spatial filtering theory is construed as the dimensionality 

reduction in Riemannian manifold with maximum intra-class 

variance or maximum inter-class distance. Based on the 

principle of maximum inter-class distance, the labeled source 

data is embedded into a more discriminative submanifold, where 

the principal characteristics of the unlabeled target subject are 

preserved by the rule of maximum intra-class variance. 

Meanwhile, the joint distribution alignment is integrated into 

the framework to minimize the distribution divergences across 

subjects. The results on two datasets demonstrate that eSPDA 

outperforms several state-of-the-art domain adaptation methods, 

with the average accuracies 70.35% and 80.67% on BCI 

Competition IV dataset IIa and BCI Competition IV dataset IVa, 

respectively. This research indicates that eSPDA has potentials 

to reduce the labeling effort, resulting in calibration time and 

effort savings. 

 
Index Terms—small training sets, common spatial patterns, 

domain adaptation, Riemannian manifold, dimensionality 

reduction 

 

I. INTRODUCTION 

otor imagery-based brain-computer interfaces 

(MI-BCI) is technology that enable individuals to 

control devices or interact with the environment solely 

through their imagination. [1]. Generally, motor imagery is 

associated with changes in neural oscillation known as 
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event-related desynchronization and event-related 

synchronization [2], and the intended motion can be predicted 

by decoding these rhythmic activities [3]. With a 

well-designed algorithm, these motor intentions can be 

converted into recognizable computer commands to control a 

wheelchair [4] or an artificial limb [5]. However, one of the 

challenges in MI-BCI systems is the time-consuming 

collection of sufficient training samples, coupled with the 

mental burden on the subjects, which may hinder the 

widespread adoption and practicality of MI-BCI applications. 

Since each motor imagery-based sample typically consists of 

a task prompt, task execution, and rest period, a complete 

sample takes around 9 seconds. Furthermore, the collection 

process requires the subject to be remain fully engaged, silent, 

and avoid conscious eye blinks and physical movements, 

which may be mentally burdensome. Therefore, the 

development of powerful decoding algorithms to reduce the 

calibration burden is a prominent area of research in the 

MI-BCI field. 

The common spatial patterns (CSP) algorithm is widely 

used as an efficient feature extraction method in decoding 

MI-associated EEG signals [6],[7]. As a supervised method, 

CSP extracts the discriminant information of EEG recordings 

by assuming that the sample covariance matrices differ 

significantly between different classes. However, the CSP 

filter is prone to overfitting with a small training set [8],[9]. 

To improve the generalization ability, various regularized 

CSPs have been developed by incorporate a-priori 

information to the estimation of the inter-class covariance 

matrix [10]. The regularization matrix can be either an 

identity matrix [11], a diagonal matrix [12], or a generic 

covariance matrix. The generic covariance matrix is 

constructed as a weighted sum of covariance matrices using 

data from other subjects, where the weights can be determined 

based on metric like Kullback-Leibler divergence [13], 

information entropy [14], or cosine similarity between 

subjects [15].  

Although regularized CSPs have undergone some 

advancement in alleviating the noise sensitivity and 

overfitting of spatial filters, the effects are not necessarily 

satisfying when only limited training data are available. This 

is because most existing regularized CSPs are finely 

parameterized, and the parameters are data-dependent and 

subject-specific, which makes it difficult to search for the 

optimal parameters in small labeled training sets, and even 

more challenging for unlabeled training data [16]. For this 

problem, domain adaptation methods offer a potential 

solution by leveraging knowledge from multiple subjects and 

transferring it to new subjects with limited labeled training 

samples [17]. These methods aim to find a shared feature 
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representation of different subjects through subspace learning, 

allowing a classifier trained on labeled source data to be 

applied to the target data [18]. 

Since the covariance matrices of EEG recordings, being 

symmetric positive definite (SPD), can be used as a feature 

descriptor and analyzed by Riemannian metrics. Covariance 

matrices with geometric information provide a novel 

approach for BCI data analysis [19],[20],[21]. Barachant et al. 

[22],[23] were among the first to introduce Riemannian 

geometry into the classification of EEG covariance matrices 

and proposed two widely used classifiers, the minimum 

distance to the Riemannian mean (MDRM) algorithm and the 

support vector machine classifier in tangent space (TSVM). 

Capitalizing on the geometric properties of SPD matrices, 

several domain adaptation techniques have been proposed to 

enable the time-series data across sessions or subjects 

comparable. Zanini et al. [24] proposed a Riemannian 

alignment method that normalizes the covariance matrices of 

sessions or subjects with respect to the reference matrix in the 

resting state. Yair et al. [25] provided a domain adaptation 

method using parallel transport on the SPD manifold, which 

projects the symmetric matrices onto a shared tangent space 

to alleviate the domain shifts. Rodrigues et al. [26] proposed a 

Riemannian Procrustes analysis that estimates the statistical 

characteristics of datasets with the geometric means of the 

SPD matrices and matches statistical distributions through 

simple geometric transformations like translation, scaling, 

and rotation. Cai et al. [27] developed a manifold embedding 

transfer learning method that leveraged the geometric 

properties of the Riemannian manifold and joint distribution 

adaptation technique to learn a shared feature presenting 

across domain. Zhang et al. [28] introduced a manifold 

embedded knowledge transfer (MEKT) framework, which 

centers covariance matrices of subjects with respect to their 

Riemannian mean and then performs domain adaptation by 

minimizing distribution divergence between domains while 

preserving geometric structure. Xu et al. [29] presented a 

feature selection method for tangent space, where tangent 

vectors of aligned covariance matrices are extracted as 

features and selected through the sequential forward floating 

search method. However, many existing domain adaptation 

algorithms rely heavily on exponential/logarithmic maps for 

transitioning back and forth to the tangent space, leading to 

high computational costs. Besides, the tangent space is only a 

first-order approximation of the Riemannian manifold and 

does not scale well with the number of training samples. 

Moreover, the high dimensionality of tangent vectors can 

potentially lead to overfitting, as the dimension of tangent 

vector expands rapidly with an increase in the number of 

recording electrodes, causing the dimension of tangent vector 

becomes too high compared to the number of available 

training samples [30],[31]. 

The paper presents a domain adaptation method based on 

manifold embedding (eSPDA) to address the issue of a 

shortage of labeled target training data. The proposed method 

aims to learn a more discriminative submanifold across the 

target and other subjects, where the projected features from 

the target subject have a similar distribution to those of other 

subjects, thus enables the classifier trained on auxiliary data 

from other subjects to be applied to the target data. To this end, 

the covariance matrix of each EEG trial is treated as a feature 

descriptor in Riemannian manifold, and then a subspace 

learning framework combining the CSP principle and the 

joint distribution alignment technique is used to project the 

raw covariance matrix into a more discriminative 

submanifold. In concretely, the CSP filtering is interpreted as 

dimensionality reduction that maximizes inter-class distance 

and intra-class variance in the Riemannian manifold. The 

labeled source data are embedded into a more discriminative 

submanifold space based on the maximization of interclass 

distance while the principal characteristics of the unlabeled 

target data are preserved based on the maximization of 

intra-class variance. Additionally, the joint distribution 

alignment method is incorporated to minimize the distribution 

divergence between the target and source data.  

The rest of the article is as follows. Section 2 introduces the 

related work based on distribution alignment and CSP theory; 

Section 3 describes our proposed framework; Section 4 

provides a detailed description of the experimental design and 

the results on two datasets. Section 5 concludes the study. 

II. BACKGROUND 

In this paper, 
nS  is the space spanned by the n n  SPD 

matrices, nI  denotes an n n  identity matrix. 
n t

iE   

denotes a trial of EEG signal recorded with t  time samples 

and n  channels. iC  represents a covariance matrix in 

Euclidean space, and iX  denotes the covariance matrix 

descriptor in the Riemannian manifold. ix  represents a 

vectorized feature in the Euclidean space. ( )T

F
X Tr X X  

represents the Frobenius norm, where (.)tr  is the sum of the 

diagonal elements, and (.)T
denotes the transpose operator. 

1{( , )}s Ns

i i iX y   denotes Ns  labeled samples from other 

subjects (referred to as ‘sources’, denoted as sD ), where 

{1,..., }iy l  denotes the tag. 1{ }t Nt

iX is a collection of 

unlabeled data from target subject (denoted as tD ). It 

assumes that feature space and label space between domains 

are same, while the conditional and marginal probability 

distributions are different however due to domain shifts, 

i.e. { }={ }s t

i iX X , s ty y , ( | ) ( | )s t

s s i t t iQ y X Q y X ,

( ) ( )s t

s i t iP X P X . 

A. Domain Adaptation based on Distribution Alignment 

The aim of domain adaptation is to find an underlying 

feature subspace across domains where the data distributions 

across domains are similar, ensuring the classifier trained on 

the source domain to be effectively applied to the target. 

Borgwardt et al. [32] proposed a parameterless metric, 

maximum mean discrepancy (MMD) to estimate the 

discrepancy via the empirical mean between domains: 
2

1 1

1 1
( , ) ( ) ( )

Ns Nt
s t

s t i i

i i

dist D D x x
Ns Nt

 
  

    (1) 

where   refers to the reproducing kernel Hilbert space 

(RKHS), and (.)  is a nonlinear map that embeds the features 

onto the RKHS.  
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Equation (1) calculates the distribution difference between 

domains without labels. Capitalizing on the concept of MMD, 

Pan et al. [33] formulated a feature transfer component 

analysis (TCA) algorithm, aiming to find a transformation 

matrix to minimize the discrepancy between the projected 

features across domains. Long et al. [34] introduced the joint 

distribution adaptation (JDA) method, an extension of TCA 

algorithm that aims to minimize the difference in both 

conditional and marginal probability distribution across 

domains in the subspace. Based on the JDA framework, the 

balanced distribution adaptation (BDA) sets a distribution 

weight factor to adaptively weigh the importance of the 

difference between conditional and marginal distributions 

[35]. JDA incorporates both the conditional and marginal 

distributions in its adaptation process where the labels from 

both source and target domains are considered to align the 

conditional distributions, while TCA is an unsupervised 

domain adaptation method that focuses on aligning the 

marginal distributions between the source and target domains. 

Moreover, JDA iteratively trains a weak classifier on the 

projected source data and updates the feature transformation 

and classifier iteratively to minimize the divergence between 

the conditional distributions.  

In JDA, the difference in marginal distribution in the 

subspace is expressed as: 
2

1 1

1 1
( ( ), ( ))

Ns Nt
s t T s T t

i i

i i F

Dist P x P x A x A x
Ns Nt 

    (2) 

The discrepancy in conditional probability distribution is 

expressed as:  

( ) ( )

2

( ) ( )

1 1
( ( ), ( ))

s c t c
i i

s t T s T t

i ic c

X Ds X Dt
F

Dist Q x Q x A x A x
Ns Nt 

    (3) 

where n mA   is an orthogonal transformation matrix. 

Based on joint distribution adaptation theory, Zhang et al. 

[36] proposed a discriminative joint probability maximum 

mean distribution adaptation (DMJP-MMD) method, which 

simultaneously minimized the joint probability distribution 

discrepancy in the same class between different domains for 

transferability and maximizes the joint probability 

distribution discrepancy between different classes of different 

domains for discriminability. Wang et al.[37] proposed 

domain adaptation with manifold embedded distribution 

alignment (MEDA), where the source and target domains are 

treated as two points on a Grassmann manifold, their features 

are then projected onto a common manifold using geodesic 

flow kernel (GFK)[38], and a shared classifier is then learned 

by minimizing the joint distribution discrepancies across 

domains.  

In this paper, a domain adaptation method based on SPD 

manifold embedding (eSPDA) is proposed to address the 

challenge of domain adaptation when dealing with symmetric 

positive definite (SPD) matrices. Unlike the aforementioned 

algorithms that assume features are in vector form, eSPDA 

exploits the geometric information of SPD matrices. 

B. Common Spatial Patterns (CSP)  

( , )

n t

c iE   denotes an EEG record of class {1,2}c , and 

the covariance matrix ( , )c iC  is computed as:  

( , ) ( , )

( , )

( , ) ( , )

.

( . )

T

c i c i

c i T

c i c i

E E
C

tr E E
  (4) 

The CSP filters aim at maximizing the variance of EEG 

recordings from one class while minimizing their variance 

from the other class. This optimization objective can be 

formalized as: 

1

1 2

( ) arg max
T

T T
J



 


   




  
 (5) 

where 1  and 2  denote the means of the inter-class 

covariance matrices and   represents a spatial projection 

shared by the two classes.  

The optimization of (5) amounts to 

1 1 2arg max .T T T

ms t I          , i.e., it solves a 

projection matrix   that maximizes the intraclass variance 

under the restriction of 1 1

T T

mI       . Formula (5) 

indicates that CSP filters aim to find a subspace where the 

variance within each class is maximized, and the variance 

between classes is maximally separated. After filtering by  , 

the most distinguished information in the raw EEG signal is 

preserved. In the context of the covariance matrix, it is 

observed that a high-dimensional covariance matrix is 

embedded into a more discriminant low-dimensional 

manifold, which implies that the CSP filtering can be 

interpreted as a discriminant dimensionality reduction on 

Riemannian manifolds. 

III. DOMAIN ADAPTATION BASED ON SPD MANIFOLD 

EMBEDDING 

The eSPDA is designed to learn a latent submanifold 

underlying the domains where the classifier trained by the 

labeled source data is adapted to the unlabeled target data. To 

this end, the subspace needs to satisfy two requirements: (1) 

the distribution discrepancy between domains is minimized, 

and (2) the discriminant information is maximumly preserved. 

To satisfy these requirements, the eSPDA method follows a 

two-step process, as illustrated in Fig. 1 In the first beginning, 

an unsupervised Riemannian alignment is used to align the 

Riemannian means of the source and target datasets to ensure 

that the principal component directions of the two domains 

are similar, thus reducing the marginal discrepancy between 

the domains. Subsequently, a subspace learning is performed 

to embed the high-dimensional SPD manifold into a more 

discriminative submanifold that preserves the maximum 

discriminant information while simultaneously reducing the 

conditional difference between the source and target domains. 

A. Riemannian Alignment 

The correlation alignment (CORAL) [39] mitigates the 

domain shift by aligning the second-order statistics of features. 

Inspired by CORAL, a Riemannian alignment method (RA) is 

formulated to align the Riemannian means of source and 

target features. 

In RA, the first step is to decorrelate the source domain by 

centering it to an identity matrix, i.e., removing the 

correlations of the source domain by: 
' 1/2 1/2( ) ( )s s s s

i iX X X X   (6) 

Then, the source is recorrelated with correlations of the 
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target domain. 
1/2 ' 1/2( ) ( )st t s t

i iX X X X  (7) 

where sX  and tX  denote the Riemannian mean of the 

source and target features, respectively, and 
st

iX  represents 

the source matrix after re-correlation. Equation (7) 

reconstructs the source matrices by the target Riemannian 

mean, i.e., regenerating the source SPD matrices using all 

eigenvectors and eigenvalues of the target, which results in 

similar principal axes and the same Riemannian mean 

between regenerated source and target. RA is conducive to 

alleviating the domain shift caused by electrode installation 

position, environmental factors, and individual differences. 

B. Dimensionality Reduction of Riemannian Manifold 

The feature extraction of CSP is expressed as a general 

dimensionality reduction on the SPD manifold, : n mg S S  : 

( ) Tg X X   (8) 

where X  denotes any point on the SPD manifold 

( 0 nX S ). To guarantee that the result of ( )g X  lies in 

the submanifold of 
mS , the transformation matrix 

n mR  ( m n ) must be full rank, i.e. subject to 
T

mI   . 

An effective subspace should preserve the principal 

characteristics of target data and avoid projecting the features 

into irrelevant dimensions. For unlabeled matrix data, the 

most discriminative information can be expressed with its 

variance: 

2

1

1

1
max ( ) ( )

max ( ( ) )

. .

Nt
t t

i F
i

T

T

m

g X g X
Nt

tr F

s t I




  

 











 (9) 

where 1

1

1
( ) ( ) ( )

Nt
t t T t t T

i i

i

F X X X X
Nt

 


   . tX  is the 

Riemannian mean of target matrices.  

In (9), the variance of projected matrix-based data is 

evaluated by considering the maximum Riemannian distance 

to their Riemannian mean, and the optimal project matrix 

strives to preserve the maximum dispersion on the 

submanifold, rather than the maximum variance of the EEG 

records. 

Additionally, the transformation matrix should maximally 

preserve the discriminative information of the labeled source 

data in the submanifold. In CSP, the optimal projection is 

determined by maximizing the ratio of inter-class variance, 

i.e., the difference between the filtered means of different 

classes (i.e., 1

T   and 2

T  ). In eSPDA, discriminative 

information is evaluated by maximizing the distance between 

the inter-class Riemannian means:  

o

2

1 2

2

max ( ) ( )

max ( ( ) )

. .

st st

F

T

T

m

g X g X

tr F

s t I




  

 







 (10) 

where 2 1 2 1 2( ) ( ) ( )st st T st st TF X X X X    , 
st

cX  represents 

the Riemannian mean of the reconstructed c-class source 

matrices.  

C. Joint Distribution Alignment  

Similar to (2), the marginal distribution difference 

( argmMMD ) is estimated by the MMD on the submanifold: 

2

arg

1 1

1 1
( ) ( )

Ns Nt
st t

m i i

i i F

MMD g X g X
Ns Nt 

    (11) 

By substituting (8) into (11), (11) is further simplified as: 
2

arg

1 1

3

1 1
( ) ( )

( ( ) )

Ns Nt
st t

m i i

i i F

T

MMD g X g X
Ns Nt

tr F  

 

 



 
 (12) 

with 3

1 1

1 1 1 1
( ) ( ) ( )

Ns Nt
st t T st t T

i j i j

i j

F X X X X
Ns Nt Ns Nt

 
 

    

According to (3), the conditional distribution difference 

( condMMD ) in the embedding manifold can be estimated as: 

( ) ( )

2

( ) ( )
1

( )

4

1

1 1
( ) ( )

( ( ) )

st c t c
i i

l
st t

cond i ic c
c X Ds X Dt

F

l
T c

c

MMD g X g X
Ns Nt

tr F  

  



 



  



 (13) 

( ) ( )

( )

4 ( ) ( ) ( ) ( )
1 1

1 1 1 1
( ) ( ) ( )

c cNs Nt
c st t T st t T

i j i jc c c c
i j

F X X X X
Ns Nt Ns Nt

 
 

   

    Therefore, the joint distribution alignment is obtained by:  
2

argmin (1 )m cond F
MMD MMD W      (14) 

Combining all of the optimization objectives (9), (10) and 

(14), the overall objective function of the proposed eSPDA 

method is formulated as: 

* 1 2

( ) 2

3 4

1

( ( ) ) ( ( ) )
max

( ( ) ) (1 ) ( ( ) ) || ||

. .

n m

T T

l
W T T c

F

c

T

m

tr F tr F

tr F tr F

s t I

       


         

 








  



  

(15) 

where   and   are the trade-off parameters to balance the 

importance of the source and target;   is the balance factor, 

which is used to weigh the importance of conditional and 

marginal distribution; and   is the regularization parameter 

to guarantee a well-defined optimization problem. Due to the 

distribution difference across domains and the uncertainty of 

the target conditional distribution, the conditional and 

marginal distribution between domains have different effects 

on the domain alignment. Therefore, a balance factor   is 

designed to quantitatively estimate the weight between the 

conditional and marginal distribution. Here,   is estimated 

by the inter-class and intraclass distances between domains.  

The inter-class distance between the domains is defined as 
2

s t

m F
d X X  , and the intra-class distance is expressed as 

2
( ) ( ) ( )c c c

m s t F
d X X  , where 

( )c

sX  and 
( )c

tX  denote the 

c-class Riemann mean of the source and target, respectively. 

Eventually, the balance factor is estimated as 
( )1 2 (2 )c

m m md d d    , and   is re-estimated at each 

iteration.  

Equation (15) involves the pseudo-labels of the target, 

which are initially predicted by a classifier trained on the 

labeled source data and then updated by the learned 
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projection matrix with the labelling quality iteratively 

improved until convergence. It is worth noting that existing 

standard machine learnings are primarily designed for 

Euclidean space and may not perform well when directly 

applied to manifold-valued data. To address this issue, several 

studies have explored extending kernel methods to 

Riemannian manifolds by defining appropriate distance 

metrics and kernel functions [40],[41]. This paper defines a 

kernel SVM classifier based on the log-Euclidean metric 

(LEM) Gaussian RBF kernel [40], with the Euclidean 

distance replaced by the log-Euclidean geodesic distance on 

the manifold. Thus, a given target sample in the submanifold 

(
mX S ) is determined by: 

1

( ) ( )

( , )

T

Ns

i i i

i

f X X b

y X X b

 

 


 

 
 (16) 

where   is the weight of the feature vectors, b  is the bias, 

  is the dual coefficient, and   is a positive definite kernel 

defined on the Riemannian manifold.  

Training with a LEM-based kernel SVM is equivalent to 

solving the standard kernel SVM problem with a kernel 

matrix generated by  . This means that any existing SVM 

software package can be utilized for training and 

classification task. 

D. Optimization 

Since ( )nF   is an explicit function of  , equation (15) 

usually does not have a closed-loop solution. An iterative 

generalized eigendecomposition optimization solution is 

presented to approximate or optimize the   value. 

In the k-th iteration, 1( )F  , 2 ( )F  , 3 ( )F   and 4 ( )F   are 

calculated by using the projection matrix of the k-1-th 

iteration, and the projection matrix of the k-th iteration is 

expressed as: 

( )
arg max . .

( )n m

T

Tn

k mT
W d

tr L
s t I

tr L

 
  

 

   

with 
( )

3 1 4 1

1

( ) (1 ) ( )
l

c

d k k

c

L F F I     



     

1 1 2 1( ) ( )n k kL F F       

(17) 

The optimization problem of (17) is transformed into a 

generalized eigen decomposition of ( , )n dL L , and k  is 

composed of eigenvectors corresponding to m largest 

eigenvalues. The iteration is repeated until a relatively stable 

classifier is obtained, and the execution process is described 

in Algorithm 1. 

Algorithm 1: Iterative optimization of eSPDA 

Input: labeled training set from the sources
1{( , )}s Ns

i i iX y 
, 

unlabeled target data
1{ }t Nt

iX , iterations M , convergence 

threshold  , parameters  ,  ,  . 

Output: transformation matrix *  

1.    Initialize 0 n mW I   

2.    for k=1,2,… M  

3.        Calculate the low-dimensional SPD matrices of the 

source and target domains by (8). 

4.        Train the TSVM, obtain the pseudo-labels of the target, 

and then estimate  . 

5.         Repeat: 

6.           Calculate 1( )F  , 2 ( )F  , 3 ( )F   and 4 ( )F  terms 

of (9) (10) (12) (13). 

7.           Obtain the projection matrix k  by generalized 

eigendecomposition of (17). 

8.            if 1| |k k     

9.               Break; 

10.           end if 

11.        Until convergence 

12.     end for 

11.     Obtain transformation matrix *  

IV. EXPERIMENTS AND RESULTS 

A.  Dataset Description 

A series of experiments were performed on two public 

datasets to validate the effectiveness of the proposed eSPDA. 

BCI Competition III Dataset IVa contains two-class EEG 

signals, a total of 280 cue-based trials recorded by 118 

channels at a 100Hz sampling rate. BCI Competition IV 

Dataset IIa is composed of the four-class cued motor imagery 

data from nine subjects (A1A9) recorded by 22 EEG 

channels with a 250Hz sampling rate. Please refer to [42] for 

more information about these two datasets. 

Fig. 2 shows the cue timing schedule and event-related 

desynchronization (ERD) brain topography of DatasetIVa 

and DatasetIIa, respectively. It figures out that each task 

induces a unique ERD distribution, and the energy 

distribution exhibits significant individual differences, 

indicating the presence of domain drift. In the perspective of 

electrode-based feature representation, each electrode is 

considered as a dimension of the feature, and the 

corresponding energy value represents the feature value. In 

this context, the CSP spatial filter is interpreted as a 

mechanism to reduce the influence of irrelevant electrodes 

and enhance the discriminative power of relevant electrodes 

by emphasizing the electrodes carrying more discriminative 

information and de-emphasizing irrelevant electrodes. 

In our experiments, the two datasets were first filtered by a 

six-order 8-30Hz bandpass filter and then segmented into 

trials. For DatasetIIa, the trials were captured from 3.5s to 

5.5s, and DatasetIVa was captured using a window of 3s after 

a cue onset of 0.5s, yielding trial size of 22×500 and 118×300, 

respectively. 

B.  Experimental Setting 

This paper verified the merits of the proposed eSPDA on 

above datasets, and compared it with other state-of-art 

domain adaptation algorithms. Table 1 gives the descriptions 

of the competing methods. 

Feature extract: eSPDA extracted reduced covariance 

matrices as features, while the features of the competing 

methods were represented by tangent vectors with respect to 

the Riemannian means. Since the tangent vector size 

corresponding to DatasetIVa was 1×7021, which was 

excessively high considering the limited number of samples, 

principal component analysis (PCA) was employed to reduce 

the dimensionality to 200 in the experiment. 
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Classifier: All domain adaptation algorithms used SVM as 

the basic classifier. 

Settings for the sources: Preliminary experiments on 

DatasetIIa revealed that subjects A3, A7, A8 and A9 

performed better in motor imagery tasks than the other 

subjects. In DatasetIVa, subject AL was the best, AV was the 

least skilled, and AA, AW and AY performed well. Therefore, 

the transfer scenarios for DatasetIIa were set as A8->A1, 

A8->A2… A3->A8, A8->A9, and AY->AA, AY->AL… 

AW->AY for DatasetIVa. All experiments were conducted 

using the calibration data. 

Measurement: The performance of DatasetII and 

DatasetIV was evaluated by classification accuracy (Acc), 

positive precision (Pre), positive recall (Rec), and F-measure 

(F1). F-measure is defined as the mean of the precision and 

recall indicators, providing a balanced measure of both 

indicators. 

Accuracy measures the overall correctness of the 

classification results, defined as: 

TP TN
Acc

TP FP TN FN




  

 

(18) 

where TP and TN represent instances that are correctly 

classified as positive and negative, respectively. FP and FN  

are misclassified as positive and negative instances, 

respectively. 

Precision measures the ratio of correctly classified true 

positives instances out of all samples predicted as positive: 

TP
Pre

TP FP




 

(19) 

Recall measures the proportion of correctly classified true 

positive samples out of all actual positive samples: 

TP
Rec

TP FN




 
(20) 

 

 

C.  Results 

1)  Visualization of Riemannian Alignment Method 

This section visualized the process and effect of the 

proposed Riemannian alignment algorithm on two sets of 

generated SPD matrices in 
2S . The steps of the synthetic 

datasets are as follows: 

Generate a base SPD matrix 
1 sin( )1

sin( ) 12

i

i

i

X




 
  

 
 

1, ,100i  , where iX  is governed by a one-dimensional 

variable i  and i  is uniformly drawn from [ 2,0] . 

Generate the target subset 
T

i iT R X R   , where R  is 

randomly chosen. 

Generate the source subset s s

T

i iS R X R   , where 

s

1 0
1.5

0 1
R R

 
  

 
. 

For further explanations of the parameters involved in the 

datasets, please refer to [25]. 

Fig. 3 depicts the two subsets marked by i  (left), and 

domain category (right), where the black points indicate the 

boundaries of the cone manifold, the center point indicates the 

identity matrix, and the red line, an extension of the identity 

matrix indicates the center of the cone. Fig. 3(a) visualizes the 

raw 2×2 SPD matrices of the target and source in 3 , which 

highlights the significant differences between the two subsets 

in terms of scope, directional distribution, and structure. Fig. 

3(b) presents the source subset after de-correlation, where the 

Riemannian mean of the de-correlation source is approximate 

to the identity matrix. Fig. 3(c) depicts the source subset 

reconstructed with the eigenvectors of the target. It shous that 

the Riemannian mean and the principal component directions 

of the source are nearly close to those of the target subset, 

which indicates that the proposed Riemannian alignment 

method effectively eliminates the discrepancy caused by R  

and sR  while preserving the inherent structure determined by 

i . It is worth noting that the Riemannian alignment 

completely preserves the intrinsic distribution characteristics 

of the target. 

2)  Visualization of the Feature Transfer 

Fig. 4 shows the feature distribution of TCA, JDA, BCD, 

MEDA, MEKT, and eSPDA in the scenario of A8->A3. As 

shown in Fig. 4(a), the raw features differ in both conditional 

and marginal distributions between the A8 and A3. TCA 

successfully aligns the marginal distributions but fails to align 

the conditional distribution, leading to a significant 

distribution discrepancy (Fig. 4(b)), which indicates that only 

considering the marginal distribution between domains is not 

enough to reduce the domain shift. JDA and BDA improve the 

alignment effect of both conditional and marginal 

distributions compared to TCA (Fig. 4(c) and (d)). However, 

an apparent distribution discrepancy can still be observed in 

these methods, indicating that they do not completely 

eliminate the domain shift. MEDA further reduces the 

divergence in both conditional and marginal distribution, but 

there is still a large distance between the intraclass features, 

suggesting that MEDA ignores variations within class (Fig. 

4(e)). Both MEKT and eSPDA minimize the distribution 

differences and reduce the intraclass distance. However, 

MEKT results in identically and uniformly distributed 

features in both the source and target domains, which destroys 

the structure of the target domain (Fig. 4(f)). By contrast, 

eSPDA reconstructs the source covariance matrices using the 

Riemannian mean of the target, preserving the distribution 

TABLE 1.  

DESCRIPTIONS OF COMPETING ALGORITHMS AND PARAMETERS. 

Methods Descriptions Parameters 

TCA Minimizing the marginal probability distribution 

difference in RKHS [33] 

none 

JDA Minimizing the joint distribution difference of 

marginal and conditional probability in RKHS [34] 
0.1   

BDA The principle of subspace learning is similar to JDA, 

but BDA can adaptively adjust the weight of 

marginal distribution and conditional distribution 

[35] 

0.1   

MEDA Aligning the source and target features in Grassmann 

manifold and then learning a classifier to minimizing 

the dynamic distribution discrepancy and preserving 

the geometrical property of nearest points in 

manifold [37] 

10    

0.1  , 

1   

MEKT Whitening the covariance matrices of source and 

target in Riemannian manifold, and learning two 

subspaces to reduce the domain divergences [28] 

0.01   

0.1  , 

20   
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characteristics of the target and minimizing the domain shift 

as well (Fig. 4(g)).  

3)  Visualization of Projected Matrix 

The projection matrix of eSPDA is similar to the spatial 

filters of CSP, with each column corresponding to a principal 

axis. The elements of each column are the weights of the 

electrodes, which reflects the importance of electrode in the 

mental task. Fig. 5 describes the topographical maps of the 

largest spatial filter corresponding to CSP and our method in 

typical transfer scenarios. It is observed that the distribution 

of eSPDA is similar to that of the CSP, suggesting that 

eSPDA achieves a similar effect as the CSP method. In 

eSPDA, despite the absence of target labels, the 

discriminative features of the target data are still captured by 

leveraging the labeled source data and the inherent structure 

of the target data.  

 

 

 

4)  Classification Effect 

Tables 2 to 5 report the classification results of the TCA, 

JDA, BDA, MEDA, MEKT, and our algorithms on the two 

datasets. Overall, eSPDA performed best, with an average of 

70.35% on DatasetIIa and 80.67% on DatasetIVa. MEDA 

had an average accuracy of 67.58 and 78.51% on the two 

datasets, second only to eSPDA, and even higher than eSPDA 

in scenarios A8->A1, A8->A5, AY->AV and AY->AW. 

However, as a feature matching algorithm, MEDA has the 

problem of being unable to eliminate the inherent features 

biases, and there is interference caused by redundant 

information in the features during the domain adaptation. In 

contrast, eSPDA is a transfer approach based on feature 

representation that learns a latent feature subspace across 

domains while extracting the most discriminative features, 

reducing information redundancy between features. 

Wilcoxon’s signed-rank test (one-sided) was performed to 

verify the significant improvement of eSPDA over other 

methods on DatasetIIa. The results show that eSPDA 

significantly outperformed the other algorithms, except 

MEDA (p < 0.05).  

 

 

5)  Convergence and Time Complexity 

This section explored the convergence and computational 

costs of TCA, JDA, BDA, MEDA, MEKT, and our methods. 

The classification accuracy and training costs of 15 iterations 

were recorded under the scenarios of AW->AY and A3->A8. 

As depicted in Fig. 6, eSPDA achieves convergence within 

six iterations, suggesting that by iteratively adjusting the 

target pseudo-labels, the difference in eSPDA conditional 

distribution gradually decreases, leading to an improvement 

in classifier performance. TCA does not require iterations, 

and accuracy tends to be low when the raw conditional 

distributions of the source and target differ significantly. 

Nevertheless, TCA is considered a simple and fast method 

that serves as an effective preprocessing technique to alleviate 

domain shifts in conjunction with other transfer methods. 

Table 6 summarizes the time complexity of different 

domain adaptation algorithms and the training time under the 

A3->A8 and AW->AY scenarios. In table 6, n  and m  

respectively denote the dimensionality of the covariance 

matrix of an EEG trial and the tangent feature space, N  

represents the total number of target and source training 

samples, q  is the dimension of the learned subspace, T  

indicates the number of iterations, and M  indicates the 

number of iterations to obtain the optimal transformation 

matrix in the eSPDA algorithm. It is observed that eSPDA has 

the largest computational complexity and longest training 

time among the considered algorithms. The reasons are 

TABLE 2.  

CLASSIFICATION ACCURACY OF DIFFERENT DOMAIN ADAPTATION 

ALGORITHMS ON DATASETIVA. 

 TCA JDA BDA MEDA MEKT Ours 

AY->AA 63.65 70.45 71.87 74.13 72.07 80.5 

AY->AL 87.57 91.63 93.71 93.71 91.63 95.71 

AY->AV 60.3 63.36 67.64 63.91 63.46 67.32 

AY->AW 62.2 68.22 71.69 76.07 70.27 74.41 

AW->AY 72.22 69.39 77.78 84.72 74.31 85.42 

Average 69.19 72.61 76.54 78.51 74.35 80.67 

 

TABLE 4. PRECISION, RECALL AND FI VALUES FOR POSITIVE 

INSTANCES OF DATASETIVA. 

  TCA JDA BDA 
MED 

A 

MEK 

T 
Ours 

P 

r 

e 

AY->AA 63.38  70.50  70.75  78.15  79.61  76.07  

AY->AL 86.21  93.94  94.59  98.41  89.73  93.79  

AY->AV 61.29  65.29  69.60  66.10  64.12  65.58  

AY->AW 62.14  67.83  73.44  76.47  66.09  69.54  

AW->AY 73.48  69.57  70.16  92.38  71.52  85.61  

R 

e 

c 

AY->AA 64.29 70.00 74.29 66.43 58.57 88.57 

AY->AL 89.29 88.57 89.74 88.57 93.57 97.14 

AY->AV 54.29 56.43 62.14 55.71 60.00 72.14 

AY->AW 62.14 69.29 67.14 74.29 82.14 86.43 

AW->AY 69.29 68.57 95.71 73.48 80.71 85.00 

F1 

AY->AA 63.83 70.25 72.47 71.81 67.49 81.85 

AY->AL 87.72 91.18 92.11 93.23 91.61 95.44 

AY->AV 57.58 60.54 65.66 60.47 61.99 68.71 

AY->AW 62.14 68.55 70.15 75.36 73.25 77.07 

AW->AY 71.32 69.06 80.97 81.86 75.84 85.30 

 

TABLE 3. 

CLASSIFICATION ACCURACY OF DIFFERENT DOMAIN ADAPTATION 

ALGORITHMS ON DATASETIIA. P-VALUES ARE DERIVED BY WILCOXON 

SIGNED-RANK TEST BETWEEN RESULTS OF ESPDA AND OTHER 

METHODS. 

  TCA JDA BDA 
MED

A 

MEK

T 
Ours 

A8->A1 62.49 68.13 69.37 73.7 69.64 73.21 

A8->A2 50.4 56.32 54.04 60.81 56.76 63.33 

A8->A3 65.42 68.63 70.32 77.06 75.34 80.12 

A8->A4 51.48 52.73 51.48 56.76 53.33 60.81 

A8->A5 51.9 55.17 52.39 57.04 52.73 56.76 

A8->A6 49.96 51.64 53.7 57.28 53.32 58.73 

A8->A7 59.09 61.33 63.63 67.7 65.33 69.59 

A3->A8 64.58 61.11 73.61 78.86 73.56 88.89 

A8->A9 66.2 67.17 65.33 78.97 70.1 81.28 

Average 57.95 60.25 61.54 67.58 63.35 70.35 

p-value .0054 .0298 .0304 .4953 .0382 -- 
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twofold: (1) eSPDA involves more matrix multiplication and 

decomposition operations 
3 2

6 6( ( ( )O T M n q n during 

optimization; (2) in each iteration, it is necessary to 

re-estimate the Riemann mean of the target, which involves 

the transformation of flattening the covariance matrix into a 

tangent vector 
3

6 ( )( )cO T Nt n . The computational burden of 

other algorithms is primarily attributed to the generation of 

tangent vectors (
3( )O Nn ), and the higher the dimension of 

covariance matrix, the greater the computational cost of 

tangent vector features. Although eSPDA method may not be 

competitive in term of training time, it has advantages in 

maintaining the geometric structure of SPD matrix-value 

features. In the testing phase, the covariance matrix of the 

EEG signal can be directly used as input without the need for 

tangent vector transformation, greatly improving the testing 

speed. Therefore, considering the performance of the model 

comprehensively, the eSPDA method has significant 

advantages in application scenarios without considering 

training time. 

 

 

 

 

6)  Balance Factor 

This section investigated the influence of the balance factor 

in the eSPDA algorithm in scenarios A8->A1, A3->A8, 

AY->AA and AW->AY. Fig. 7(a) illustrates how the 

accuracy varied with different values of balance factor  . It 

is observed that the optimal   value varied across the 

TABLE 6.  

COMPARISON OF COMPUTATION COMPLEXITY AND TRAINING TIME IN AW 

-> AY AND A3 -> A8 SCENARIOS. 

Methods Computational Complexity 
Training Time (s） 

A3->A8 AW->AY 

TCA 
3 2

1( )O Nn q N  0.54 7.23 

JDA 
3 2 2

2 2( ( ))O Nn T q m N mN    1.4 7.92 

BDA 
3 2 2

3 3( ( ))O Nn T q m N mN    1.29 7.82 

MEDA 
3 2 2 2

4 4 4( ( ))O Nn q N T N q N    1.36 8.01 

MEKT 
3 2 2 2

5 5 5( ( ))O Nn q N T N q N    1.99 8.44 

Ours 
3 3 2 2

6 ( ) 6( ( ( ) ))cO T Nt n M n q n N    3.05 25.04 

 

TABLE 5. PRECISION, RECALL AND FI VALUES FOR POSITIVE 

INSTANCES OF DATASETIIA. 

   TCA JDA BDA 
MED 

A 

MEK 

T 
Ours 

P 

r 

e 

A8->A1 59.36  74.07  68.21  72.67  67.07  70.63  

A8->A2 50.40  54.89  53.90  58.86  55.69  62.84  

A8->A3 68.03  68.28  70.14  74.21  73.38  76.22  

A8->A4 51.67  53.93  51.35  56.46  53.02  61.48  

A8->A5 52.81  56.60  52.24  55.38  51.85  58.88  

A8->A6 49.64  51.92  53.29  57.14  52.41  56.41  

A8->A7 59.70  61.43  65.35  64.88  60.28  65.22  

A3->A8 73.03  60.40  74.10  78.62  76.80  87.84  

A8->A9 68.25  65.61  62.64  77.12  70.50  80.82  

R 

e 

c 

A8->A1 77.08  55.56  71.53  75.69  76.39  78.47  

A8->A2 43.75  70.14  52.78  71.53  64.58  64.58  

A8->A3 57.64  68.75  70.14  81.94  78.47  86.81  

A8->A4 43.06  33.33  52.78  57.64  54.86  57.64  

A8->A5 32.64  41.67  48.61  71.53  68.06  43.75  

A8->A6 47.22  37.50  56.25  55.56  68.06  76.39  

A8->A7 55.56  59.72  57.64  75.69  89.58  83.33  

A3->A8 45.14  62.50  71.53  79.17  66.67  90.28  

A8->A9 59.72  71.53  75.69  81.94  68.06  81.94  

F1 

A8->A1 67.07  63.49  69.83  74.15  71.43  74.34  

A8->A2 46.84  61.59  53.33  64.58  59.81  63.70  

A8->A3 62.41  68.51  70.14  77.89  75.84  81.17  

A8->A4 46.97  41.20  52.05  57.04  53.92  59.50  

A8->A5 40.34  48.00  50.36  62.42  58.86  50.20  

A8->A6 48.40  43.55  54.73  56.34  59.21  64.90  

A8->A7 57.55  60.56  61.25  69.87  72.07  73.17  

A3->A8 55.79  61.43  72.79  78.89  71.38  89.04  

A8->A9 63.70  68.44  68.55  79.46  69.26  81.38  

 

 

 
(a) Convergence in AW->AY scenario 

 
(b) Convergence in A3->A8 scenario 

 
(c) Convergence of eSPDA 

Fig. 6. Convergence analysis of TCA, JDA, BDA MEDA, MEKT, and 

eSPDA. 
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different scenarios, which validates the necessity and 

effectiveness of dynamically adjusting the weight of 

conditional and marginal distribution differences. It is also 

found that the optimal   is not unique, instead, the best 

choice is [0.4 1] , indicating that eSPDA can achieve 

satisfactory performance with a wide range of values of  . 

According to the estimated   value in each iteration in Fig. 

7(b), it is observed that the   gradually converges to the 

range of (0.8 1) , meanwhile, the classification accuracy 

gradually converges. This indicates that eSPDA assigns 

greater weight to the conditional distribution. This result can 

be explained by the proposed Riemannian alignment method 

aligning the principal components of the target and the source, 

thereby making subspace learning more constrained by 

differences in conditional distributions. 

V. CONCLUSIONS 

This paper introduces a domain adaptation algorithm based 

on manifold embedding (eSPDA) for cross-subject feature 

transfer. In eSPDA, the rationale of CSP is formulated as a 

dimensionality reduction that maximizes the inter-class 

distance and intraclass variance in a Riemannian manifold. 

Two dimensionality reduction frameworks in Riemannian 

manifold are defined: one for extracting discriminative 

information from labeled source data by maximizing the 

inter-class distance, and another for preserving the principal 

characteristics of the unlabeled target data by maximizing the 

intra-class variance. The domain adaptation techniques are 

then integrated to align the distribution of source and target to 

ensure the classifier trained on the labeled source domain be 

suitable for the target. Extensive experiments on two public 

BCI datasets demonstrated the effectiveness of eSPDA in 

cross-subject transfer. The results suggests that eSPDA 

overcomes the need for a large-scale target training set and 

reduces the calibration time of the MI-BCI system. It is worth 

noting that this paper focuses on the classification of target 

data in a transductive setting, where the unlabeled data is 

available. Future work will explore the effectiveness of 

eSPDA in the inductive transfer setting, where the learned 

subspace will be adjusted using the target data to make it more   

suitable for unseen target data. 
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Fig. 5. Topographic map of the CSP and eSPDA 

 

(a) classification accuracy w.r.t.   

 

(b)   w.r.t. iterations 

Fig. 7. Parameter sensitivity of eSPDA in different scenarios. 
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Fig. 1 Schematic diagram of eSPDA. 
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Fig. 2. ERD distributions and the timing schedules of the datasets, (a) ERD distribution and timing schedule of DatasetIVa; (b) ERD distribution and 

timing schedule of DatasetIIa. 

IAENG International Journal of Computer Science

Volume 51, Issue 8, August 2024, Pages 985-997

 
______________________________________________________________________________________ 



 

 

 

-20
50

-15

-10

-5

3

0

0

5

20

10

0 10

15

0

20

-10
-20

-50 -30

 

-40
50

-30

-20

-10

10

0

10

5

20

0

30

0

40

-5
-50 -10

 

-50
40

20 40

0

300 20
10-20 0

50

-10-40 -20
-30

-60 -40

 

-40
40

-30

-20

-10

20 50

0

10

20

0

30

0

40

-20

-40 -50

-40
50

-30

-20

-10

0

50

10

20

30

0

40

0

50

-50 -50

-60
40

-40

-20

20 50

0

20

0
0

40

-20

-40 -50

(e)MEDA(d)BDA

(b)TCA (c)JDA

(g)ours(f)MEKT

A3-class1

A3-class2

A8-class1

A8-class2

(a) Raw feature 

distributions of A3 and A8

50

-30
50

-20

-10

0

10

0
0

20

-50 -50

A8
A3

 

Fig. 4. The visualization of transferring source data to classify the unlabeled target data by TCA, JDA, BDA, MEDA, MEKT and KMDA under A8->A3 

scenario. 
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