
Abstract—The underwater environment is complex and
diverse, making it challenging to locate aquatic organisms
accurately. The precise identification of underwater animals is
crucial for ecological research and fisheries management.
Addressing the issue of inaccurate localization of small
underwater targets, this study introduces a novel model,
YOLOv8-2PCC, based on the YOLOv8 algorithm with
improvements. First, to improve the efficiency of the YOLOv8
network, the C2F module in the original YOLOv8 network
model was replaced with convolution to reduce the
computational load of the model. Secondly, the up-sampling
operator CARAFE is employed, which excels in capturing
features at various scales. Finally, a small target detection layer
has been incorporated to extract additional shallow features,
effectively enhancing the model's ability to detect small targets.
Utilizing the URPC dataset for training and testing, the results
indicate that our proposed algorithm achieves a mean Average
Precision (mAP) of 85.9%. Compared to YOLOv8n, there is a
4.4% improvement, effectively enhancing the accuracy of
underwater organism detection in complex underwater
environments.

Index Terms—YOLOv8, C2F module, CARAFE, small
target detection layer

I. INTRODUCTION
underwater biological target detection holds significant
value in current research and application domains.

Firstly, underwater organisms are vital components of marine
ecosystems. By detecting and understanding the distribution,
quantity, and behavior of underwater organisms, we can
deepen our understanding of Marine ecosystems, providing a
scientific basis for preserving marine biodiversity and
ecological balance. Secondly, underwater organism target
detection is crucial for fisheries management. Accurate
identification of underwater targets enables effective
monitoring of fishery resources, formulation of scientific
fisheries management strategies, and prevention of
overfishing, ensuring the sustainable development of
fisheries. Additionally, underwater organisms' target
detection finds extensive applications in marine
environmental monitoring, ecological research, marine
scientific exploration, and other fields, offering robust
technological support for humanity's better understanding,
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protect, and utilize marine resources. Therefore, in-depth
research on underwater organisms' target detection
technology holds paramount significance in advancing
marine science and sustainable utilization of the ocean.[1-3].
Early target detection methods primarily relied on

manually designed features and machine learning-based
classifiers. These methods include Haar features with cascade
classifiers HOG [4] features with SVM [5] classifiers, and
others. While these methods performed well in certain
scenarios, their effectiveness was limited in complex
backgrounds and situations involving multiple target classes.
With the development of deep learning, especially the
emergence of Convolutional Neural Networks (CNNs),
significant progress has been made in target detection. The
R-CNN [6] series methods (including Fast R-CNN, Faster
R-CNN) introduced mechanisms such as Region Proposal
Networks (RPN) [7] and Region of Interest (RoI) Pooling,
greatly improving detection speed. Single-stage detectors
such as YOLO and SSD [8-10] further simplified the target
detection process by simultaneously handling target
localization and classification within a single network,
achieving real-time performance. In recent years, end-to-end
detectors like RetinaNet and YOLOv4/v5 have become
research hotspots. RetinaNet [11] addressed class imbalance
issues by introducing Focal Loss, while YOLOv4/v5
achieved significant improvements in speed and accuracy
through enhanced network structures and optimized training
strategies.YOLOv8 typically exhibits improvements in target
detection performance. Each generation's enhancements are
often accompanied by more accurate detections and lower
false positive rates, contributing to a more reliable
application across diverse real-world scenarios. YOLOv8 is
committed to maintaining real-time performance while
enhancing detection accuracy. By refining network structures,
optimizing algorithms, and leveraging more efficient
hardware, YOLOv8 may achieve increased processing speed
and operational efficiency to a certain extent. Each iteration
of YOLO introduces new technologies and features.
YOLOv8 may incorporate novel concepts, layers, or training
strategies to enhance the algorithm's overall performance and
adaptability. Therefore, YOLOv8 was chosen as the
fundamental model for this study [12-13].
To better address the demands of detection in complex

underwater environments, this paper proposes an algorithm
based on the improved YOLOv8, named YOLOv8-2PCC.
incorporating the concept of partial convolution into the
network. To enhance the detection capability for small targets,
a small target detection layer detection is added. The
lightweight upsampling operator CARAFE is introduced to
aggregate contextual information within a larger receptive
field, improving both the detection speed and accuracy.
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II. PRINCIPLES OF YOLOV8
Among various object detection algorithms, the YOLO

series stands out for its outstanding balance between speed
and accuracy. It accurately and swiftly identifies targets,
making it suitable for deployment on various mobile devices.
YOLO has been widely applied in various fields, including
object detection, tracking, and segmentation. YOLOv8 is the
most advanced object detection algorithm, offering
exceptional performance, and is particularly well-suited for
underwater organism detection. Its network structure is
illustrated in Fig. 1.
To meet various requirements, YOLOv8 is divided into

different versions based on the depth and width of the
network, namely YOLOv8n, YOLOv8s, YOLOv8m,
YOLOv8l, and YOLOv8x. These versions demonstrate
superior performance on the COCO dataset when compared
to other YOLO versions. In this study, considering the issue
of model size, YOLOv8n [14] was chosen as the research
subject.
The YOLOv8 model consists of four main parts: Input,

Backbone, Neck, and Head. For the input, the Mosaic data
augmentation method is employed, and certain
hyperparameters are modified for different-sized models.
Notably, larger models enable MixUp and CopyPaste data
augmentation to enrich the dataset, enhancing the model's
generalization and robustness. The Backbone is responsible
for extracting information from images and providing it to
Neck and Head. It comprises multiple Conv, C2F modules,
and the SPPF module at the end. The Conv module consists
of a single Conv2d, BatchNorm2d, and an activation function
to extract and organize features. YOLOv8 incorporates the
C2F structure, inspired by the C3 module's residual structure
and YOLOv7's [15] ELAN concept, ensuring lightweight
while obtaining richer gradient flow information. The SPPF,
which is the spatial pyramid pooling, is capable of fusing
features from different scales. The Neck section primarily
facilitates feature fusion by utilizing features extracted by the
backbone network. It adopts an FPN [16] + PAN [17]
structure, enhancing semantic expression and localization
capability across multiple scales. The Head section outputs
information about the categories and positions of detected

targets, using the processed features from the previous
sections. It employs a decoupled head structure, separating
classification and detection heads to address the different
focus points of classification and localization.
Moreover, it employs anchor-free object detection, which

enhances detection speed. In terms of loss calculation, the
dynamic allocation of positive and negative samples is
adopted. It utilizes VFL Loss for classification and DFL Loss
+ CIOU Loss for regression. In summary, YOLOv8
incorporates advanced components and strategies aimed at
enhancing detection performance, with a primary focus on
improving speed and accuracy.
In different terms, the Conv module in YOLOv8 is a

composite module composed of Conv2d (2D convolution),
BN (batch normalization), and SiLU (Sigmoid-Linear Unit).
The convolutional layer performs convolution operations on
input data by applying a set of learnable filters (also known as
convolution kernels or matrices) to extract feature
information. These filters have different capabilities for
extracting features, effectively capturing features such as
edges and shapes in the input data. To enhance the network's
expressive power, the output undergoes activation through
the non-linear activation function SiLU. However, the Conv
module has a large number of parameters, requiring
substantial computational resources. Additionally, due to the
local nature of convolution operations, the Conv module still
has limitations in understanding global context information,
leading to insufficient comprehension of global information.
The C2F module integrates design concepts from the C3

module and ELAN (Efficient Lightweight Attention
Network), ensuring model lightweightness while obtaining
rich gradient flow information. It comprises components
such as Conv, Split, and BottleNeck.
The SPPF (Serial Parallel Pooling Fusion) is a method

proposed based on SPP (Spatial Pyramid Pooling) to enlarge
the receptive field. It achieves this by serially using multiple
5×5 max-pooling layers, thereby reducing the number of
parameters and significantly lowering computational load.
The SPPF module takes the feature map as input, processes it
through the ConvBNSiLU module, and performs
max-pooling downsampling operations. Finally, the

Fig. 1. YOLOv8 model
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downsampling results from different layers are concatenated
to form the output feature map. By utilizing SPPF, an
effective enlargement of the receptive field is achieved,
enabling the extraction of global contextual information with
fewer parameters and reduced computational load.

III. IMPROVED MODEL

This section introduces improvements made upon
YOLOv8 to propose a new network model suitable for
underwater organism detection. Firstly, the introduction of
the PConv convolutional module is employed to reduce
model complexity. Secondly, the upsampling operator
CARAFE is introduced to enhance the network's regression
accuracy and convergence speed. Lastly, the addition of a
small target detection layer is implemented to improve the
detection performance for small targets. The network
architecture of the proposed model is illustrated in Fig. 2.

A. The C2F module incorporates Partial Convolution
(PConv)
The YOLOv8 backbone network primarily utilizes

conventional convolutions and the C2F module, enabling
high-quality feature extraction from images. Recognizing
that the detected images encompass complex scenarios, a
simpler convolutional approach is chosen to replace certain
conventional convolutions, simplifying the model. NVIDIA
introduced a novel convolutional method called PConv,
aimed at efficiently extracting features by reducing
computations and memory access. PConv [18] selectively
applies conventional convolutions to specific input channels,
allowing more flexible convolutional calculations when
dealing with images containing missing or irregular regions.
The characteristics of partial convolutions may contribute to
a better capture and integration of contextual information.
The following is the formula for PConv.As defined in (1).

(1)

X is the input feature map, W is the convolution kernel, M
is the input mask (0-1 distribution), b is the bias for

convolution operation, and X and M represent pixels within
the current operation area. The notation sum (1) refers to a
matrix of the same size as the convolution kernel (e.g., 3×3),
with all elements being 1. In the first layer of PConv, M
contains 1 for undamaged areas and 0 for damaged areas. To
enhance the model's capability to handle images with
complex scenarios, PConv is introduced into the C2F module,
replacing the two original convolutional modules in C2F with
PConv. The newly introduced PC2F is capable of replacing
the C2F component of the original model. The structure is
illustrated in Fig. 3.

Fig. 3. The structure of PC2F

B. Integrate a small object detection layer
The deep-layer feature maps are suitable for

coarse-grained image classification, while the shallow-layer
feature maps are more focused on providing detailed
positional information [19]. In this study, the detection layers
of YOLOv8n have been expanded from the original P3, P4,
and P5 layers to include P2, P3, P4, and P5 layers. P2, P3, P4,
and P5 are obtained by extracting features at different stages
of the Convolutional Neural Network (CNN). Generally, P2
is located in the earlier stages of the network with higher
resolution, while P5 is positioned in deeper stages with lower
resolution and a larger receptive field. Due to its higher
resolution, P2 can more effectively capture details in the
images. For small objects, the higher resolution makes it
easier to differentiate between the target and the background,
thus improving detection accuracy. Conversely, P5 and
similar layers have a larger receptive field, which is suitable
for detecting larger objects. A larger receptive field can cover
a more extensive area, capturing more contextual
information.
The term "parameter count" refers to the number of

learnable parameters in a target detection model, which
primarily consists of the model's weights and biases. These
parameters are adjusted during the training process based on
the training data, allowing the model to adapt its behavior to
specific tasks. In target detection tasks, the model must learn

�′ = �� � ⊙ �
sum 1
sum �

+ �, if sum � > 0

0, otherwise

Fig. 2. Improved YOLOv8
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to extract information about the location, shape, and class of
objects from input images. This adaptation process enables
the model to effectively identify and classify objects within
the images. The quantity of parameters directly influences the
complexity and capacity of the model. Having more
parameters usually implies a more complex model with the
ability to learn more intricate patterns and representations.
However, an excessive number of parameters may lead to
overfitting, where the model becomes too tailored to the
training data and performs poorly on unseen data. In target
detection, finding an appropriate parameter count involves
striking a balance in the model design process. On one hand,
the model needs sufficient capacity to learn complex
representations for the task at hand. On the other hand, an
excessive number of parameters may lead to overfitting,
diminishing the model's generalization ability. Therefore,
managing the parameter count is a crucial consideration in
the design and training of deep learning models.

C. Introducing the upsampling operator CARAFE
Upsampling is a common operation in image processing

and computer vision, primarily used to increase the size or
resolution of images or feature maps. In deep learning and
neural networks, upsampling is employed to enlarge
low-resolution images or feature maps to higher resolutions,
thereby capturing more detailed information. This operation
is crucial for preserving details and spatial information in
images, playing a significant role in tasks such as object
detection and image segmentation. By using upsampling,
models can more accurately restore downsampled features,
thus enhancing overall processing accuracy and
effectiveness.
Content-Aware ReAssembly of FEatures (CARAFE), is a

universal, lightweight, and highly effective operator to fulfill
this goal. CARAFE has several appealing properties,
including a Large field of view. Unlike previous works that
only exploit subpixel neighborhoods, CARAFE can
aggregate contextual information within a large receptive
field. Content-aware handling. Instead of using a fixed kernel
for all samples, CARAFE [20] enables instance-specific
content-aware handling, which generates adaptive kernels on
the fly. Lightweight and fast to compute, CARAFE
introduces little computational overhead and can be readily
integrated into modern network architectures. We conducted
comprehensive evaluations on standard benchmarks in object
detection. The introduction of CARAFE brings new
possibilities to upsampling operations in image processing
and computer vision tasks, particularly suitable for scenarios
with high semantic information requirements, providing
models with a more comprehensive understanding of context.
Therefore, adding the CARAFE upsampling operator in this
paper enables the extraction of more abundant feature
information.

IV. EXPERIMENT AND ANALYSIS

A. Datasets
This study employs the underwater target detection dataset

URPC. The dataset is divided into three parts: 1334 test
images, 667 validation images, and 4469 training images.
The images encompass four object categories: holothurian,

echinus, scallop, and starfish. Some examples of this dataset
are illustrated in Fig. 4.

Fig. 4. URPC dataset example

B. Evaluation Indicators
In this study, precision, recall and mean average precision

(mAP) were employed as evaluation metrics to assess the
model's performance.
Precision: Precision refers to the ratio of true positives to

the sum of true positives and false positives, where TP is true
positives (the number of correctly predicted positive
instances) and FP is false positives (the number of instances
incorrectly predicted as positive). As defined in (2).

(2)

Recall: Recall is the ratio of true positives to the sum of
true positives and false negatives, where FN is false negatives
(the number of instances incorrectly predicted as negative).
As defined in (3).

(3)

mAP (mean Average Precision) is a metric used for the
comprehensive evaluation of model performance in object
detection tasks. It represents the average precision (AP)
across all categories. In object detection, each category has an
associated AP, indicating the average precision for that
category at different confidence thresholds. mAP is the
average of AP values for all categories and serves as a holistic
measure to assess the model's performance across different
classes. The calculation involves summing the AP values for
each category and then dividing by the total number of
categories. This provides a comprehensive evaluation of the
model's overall performance in the entire detection task,
while individual class AP values offer insights into the
model's performance on specific classes. As defined in (4).

(4)

In the PR curve, the horizontal axis represents recall, and
the vertical axis represents precision. Each point on the curve
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corresponds to the precision and recall of the model at a
specific probability threshold. By plotting these points at
different thresholds, the performance of the model at various
operating points can be observed. Therefore, to
comprehensively compare performance, the PR curves
before and after the modifications were compared, as shown
in Fig. 5 and Fig. 6.

To more clearly show the data comparison, Table I
presents the comparison between the YOLOv8 model and the
YOLOv8-2PCC model, indicating an overall improvement of
4.4%. Holothurian and scallop show significant increases,
with growth rates of 6.7% and 8%, respectively. Echinus and
starfish also experience certain improvements, with increases
of 0.8% and 1.7%, respectively. Overall, there is a substantial
enhancement in detection performance.

C. Experimental environment and configuration
The specific experimental environment is shown in Table

II. The development language of this model is Python.
During training, the input images are set to 640 × 640, and the
SGB function is used as the optimizer. The model is trained
for 200 epochs with a batch size of 16. The momentum and
decay parameters are set to 0.937 and 0.0005, respectively.
The learning rate is set at 0.01, and the cosine annealing
algorithm is utilized. Mosaic augmentation is applied during
the last 10 epochs.

D. Experimental results and analysis
This study qualitatively evaluates the detection

performance of YOLOv8 and YOLOv8-2PCC using images
from two different scenarios. The experimental setup
includes images sized at 640×640 pixels with a confidence
threshold of 0.25. The results are depicted in Fig. 7. (The
above is the result image of YOLOv8, and below is the result
image of YOLOv8-2PCC.). In scenario a, where underwater
creatures exhibit diversity, YOLOv8-2PCC, and YOLOv8
demonstrate improved detection accuracy, indicating their
ability to extract richer features from the input images and
enhance precision. In scenarios b and c, where the underwater
environment is complex and organisms are often obscured,
YOLOv8-2PCC outperforms YOLOv8 in detecting more
small targets. Overall, YOLOv8-2PCC demonstrates a
generally superior detection performance compared to
YOLOv8, highlighting the network's capability to extract
more comprehensive semantic information, leading to
improved performance.

Fig. 5. YOLOv8 P-R curve

Fig. 6. YOLOv8-2PCC P-R curve

(a)

TABLE I
THE MAP CHANGES FOR EACH CLASS

class YOLOV8 YOLOv8-2PCC
all 0.815 0.859

holothurian 0.794 0.861

echinus 0.934 0.942

scallop 0.605 0.685

starfish 0.928 0.945

TABLE II
EXPERIMENTAL ENVIRONMENT

Environment Configuration
Operating system Ubuntu 22.04.3 LTS

CPU Intel® Xeon(R) CPU E5-2650
V4

GPU GeForce GTX 1080 Ti

Internal memory 96.0 GiB

Python 3.9

Pytorch 1.8.1
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Fig. 7. The comparison between YOLOv8 and YOLOv8

E. Ablation Experiment
To comprehensively evaluate the detection performance of

the proposed YOLOv8-2PCC algorithm, ablation
experiments were meticulously designed based on the
YOLOv8 framework. All experiments were conducted under
the same experimental environment configuration and using
identical hyperparameters, and the resulting data is presented
in Table III. In the table, PC2F represents the improved C2F
module proposed in this paper, CARAFE represents the
upsampling operator, P2 represents the added small target
detection layer, and '√' indicates the introduction of the
module in that experiment group.
From Table III, it can be observed that compared to the

original algorithm, in the second and fourth experiment

groups, after introducing PC2F, respectively adding the
CARAFE upsampling operator and the small target detection
layer led to an increase in the number of parameters.
mAP@0.5 and mAP@50-0.95 both increased, with a
significant improvement in the fourth group, demonstrating
that adding the small target detection layer is an effective
means to enhance detection performance. In the third
experiment group, introducing the CARAFE upsampling
operator and P2 small target detection layer resulted in a
slight increase in parameters, but both mAP@0.5 and
mAP@0.5:0.95 showed varying degrees of improvement.
This indicates that these modules can effectively enhance
model detection accuracy without significantly changing the
model's complexity. In the fifth experiment group,
introducing PC2F, CARAFE upsampling operator, and P2
small target detection layer simultaneously led to a slight
increase in parameters. mAP@0.5 increased by 4.4%, and
mAP@50-0.95 increased by 6.7%, striking a balance
between detection accuracy and parameter count. This
demonstrates that the experimental approach in this paper can
significantly improve algorithm detection performance with a
modest change in parameters, making it more suitable for
underwater organism detection tasks.

F. Ablation Experiment
As shown in Table IV, a comparison of the data between

YOLOv5n, YOLOv6n, YOLOv7-tiny, YOLOv8, and
YOLOv8-2PCC was conducted. The detection accuracy
(mAP) of the YOLOv8-2PCC network is respectively 5.4%,
6.3%, and 3.2% higher than the faster YOLOv5n, YOLOv6n,
and YOLOv7-tiny networks. In comparison to YOLOv8, the
enhanced network demonstrates a 4.4% increase in detection
accuracy (mAP) accompanied by a minimal increase in
inference speed. Moreover, the mAP@50-95 has experienced
respective increases of 11.4%, 8.8%, 7.9%, and 6.7%. It can
be seen that YOLOv8-2PCC is effective.

(
(b)

TABLE III
EXPERIMENTAL ENVIRONMENT

group PC2F CARA
FE P2

Param
eters(
M)

mAP
@0.5

mAP
@50-9

5

1 3.01 0.815 0.609

2 √ √ 7.56 0.826 0.625

3 √ √ 3.18 0.829 0.632

4 √ √ 29.06 0.849 0.662

5 √ √ √ 7.73 0.859 0.676

TABLE IV
EXPERIMENTAL COMPARISON

Model runtime(h) mAP@0.5 mAP@50-95

YOLOv5n 41.129 0.805 0.562

YOLOv6n 6.503 0.796 0.588

YOLOv7-tiny 61.597 0.827 0.597

YOLOv8 10.245 0.815 0.609

YOLOv8-2PCC 13.618 0.859 0.676

(c)
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V. CONCLUSION
In this experiment, we introduced a series of improvements,

including incorporating PConv convolution into C2F,
forming a new module called PC2F, using the CARAFE
upsampling operator, and adding a dedicated small object
detection layer. These enhancements aim to improve the
performance of the object detection algorithm, particularly in
handling small objects and upsampling semantic information.
We observed that these improvements played a positive role
in enhancing detection accuracy and effectiveness. The
newly introduced small object detection layer excelled in
detecting small objects, while the CARAFE upsampling
operator contributed to better capturing semantic information.
Overall, these enhancements make our object detection
model more suitable for complex scenarios and small object
detection tasks.
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