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Abstract—Sea fog poses risks to coastal activities, necessi-
tating effective monitoring and early warning systems. This
study introduces a deep learning approach tailored for sea fog
segmentation, considering its nonlinear multiscale variability,
textural patterns, and temporal aspects. The U-Net model
serves as the foundational network, enhanced by asymmetric
multi-scale convolution modules to create the DAU-Net. This
improved model effectively identifies sea fog features in images.
Integrating the DAU-Net with ConvLSTM results in the DAU-
Net-ConvLSTM model, which uses bidirectional ConvLSTM
for processing temporal sequence data and refining segmenta-
tion outcomes. Comparative testing against seven segmentation
models on augmented sea fog datasets revealed our model’s su-
periority, achieving a 90.4% Kappa score and 86.4% MIOU. It
outperforms existing CNN models like U-Net, U-Net++, Deeplab
v3, and temporally-focused models like RNN, STGRU, 3D CNN-
LSTM. This highlights its robust segmentation capabilities and
potential for real-world applications.

Index Terms—Sea fog image; image segmentation; U-Net;
DAU-Net; ConvLSTM

I. INTRODUCTION

EA fog introduces considerable hazards to maritime
S operations, including industrial and tourist activities,
potentially causing extensive harm to human life and prop-
erty. Therefore, it is of utmost importance to research the
real-time monitoring and predictive warning of sea fog
by utilizing advanced and efficient technologies from two
aspects practical demands and safety requirements. Contrary
to land fog detection, sea fog detection is predominantly
dependent on remote sensing satellites, due to geographical
limitations. These satellite-acquired remote sensing images
of maritime areas are then analyzed, either manually or
technologically, to confirm the presence of sea fog during
specific intervals. If sea fog is identified, subsequent region
segmentation is necessary for further analysis. Conventional
methods involving manual inspection and segmentation of
remote sensing images suffer from evident inefficiencies,
struggling to fulfill real-time requirements and provide ef-
fective warning and prediction services. However, with the
development of machine learning, particularly deep learning,
methods based on deep learning have been widely applied
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in image detection, classification, and segmentation. These
methods show remarkable competence in addressing non-
linear issues inherent to semantic segmentation, allowing for
a superior grasp of sea fog features, and consequently en-
abling more precise predictions and segmentation. Therefore,
exploring the implementation of deep learning techniques for
sea fog segmentation in remote sensing images is not only
viable and cutting-edge but also offers substantial academic
and practical value.

Liu [1] introduced the Multidimensional Attention and
Feature Enhancement (MA-FE) method, which significantly
improves the accuracy and feature representation in remote
sensing image scene classification by integrating multidi-
mensional attention and feature enhancement modules. Kim
[2] employed VGG19 and ResnNet50 as pre-trained models,
with the training and testing dataset extracted from six
days of GOCI images of the coastal region of the Korean
Peninsula in March 2015. This model adopted a trans-
fer learning method, moving convolutional neural networks
pre-trained on natural image datasets to maritime datasets,
achieving a match accuracy rate of 96.3% with both VGG19
and ResNet50 for CNN-TL training data. Addressing the
challenges posed by the limited resolution and spectral
information in RGB preview images for cloud detection
in remote sensing, a recent study introduced GANet[3],
a novel system with an encoder-decoder architecture that
efficiently fuses semantic and spatial features, demonstrat-
ing competitive performance on multiple datasets. The Ran
team [4] introduced a fog detection method based on a
deep learning algorithm, called DDF-Net, which leverages
digital elevation model (DEM) data as auxiliary information
to separate fog and low-level clouds, integrating squeeze-
and-excitation networks (SE-Net) to optimize information
extraction under different solar zenith angles (SZA), elim-
inating spectral feature differences within large regions.
This study used the advanced Himawari 8 imager (AHI)
data from the Himawari 8 (HS8) satellite as the primary
data source and compared the proposed model with the
traditional threshold-based brightness temperature difference
(BTD) method. Results revealed that the DDF-Net method
achieved an average POD, FAR, and CSI of 84.0%, 16.4%,
and 72.0%, respectively, during dawn and dusk, as well as
83.7%, 15.8%, and 72.6%, outperforming the BTD method.
However, due to the characteristics of passive sensor images,
it is challenging to detect fog below the clouds; additionally,
due to the lack of ground observation points, it is difficult
to thoroughly evaluate different types of fog. Chunyang et
al. [5] employed the U-Net deep learning model to construct
a sea fog detection model for MODIS multispectral images,
proving to be more flexible and intelligent than traditional
threshold methods, improving the accuracy of sea fog detec-
tion. The kappa score on the test set reached 0.972, and the
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overall accuracy was 0.98. However, only visible light images
were used, and the atmospheric information contained in the
infrared channels was not effectively utilized. The method
of processing small blocks of images and simple splicing
led to obvious mosaic traces, and the judgment accuracy of
sea fog and cloud edges still needs improvement. In 2022,
Chen et al. [6] conducted a study on sea fog detection in the
Arctic region based on CALIOP and MODIS data, aiming
to solve how to improve the accuracy of sea fog detection in
polar regions. They used the Deep Neural Network (DNN)
model to invert the cloud top height and judged whether
it was sea fog based on the cloud height. Mean absolute
error (MAE) and root mean square error (RMSE) were used
as evaluation indicators and compared with the inversion
results of MODIS’s cloud height product and BP neural
network. The results showed that the MAE of using DNN
to invert cloud top height was about 701.140 m, better than
the result of MODIS cloud height product (lower by about
1774.280 m), better than the result of BP neural network
(lower by about 781.005 m), indicating that using DNN
model can better invert cloud top height, improving the
accuracy of sea fog detection. However, due to the time and
location differences of CALIOP and MODIS observations,
erroneous matching data may be introduced into the training
dataset, affecting the model’s generalization ability.Zhuo Li
et al. [7] developed the MRBU-Net-WD model, an enhanced
version of U-Net that effectively segments lung nodules by
integrating residual 3D convolutions and multiscale dense
connections, addressing pixel imbalance with a weighted
Dice loss function, and evaluated it using the LUNA-16
dataset, showing superior performance over existing models.

In summary, while deep learning methods have been
applied to remote sensing images for sea fog detection and
segmentation research, the study of sea fog detection and
segmentation based on deep learning is still in its infancy.
Many issues require further exploration and resolution. For
example, there is a lack of a shared dataset for evaluating sea
fog segmentation performance. There is a need for effective
construction of deep learning models to segment sea fog
images during the day, night, and in all weather conditions.
Questions also exist around how to construct models that
can effectively segment clouds and sea fog, how to detect
sea fog obscured by clouds, and how to fully utilize the
spatiotemporal properties of sea fog images. It’s clear that
while some progress has been made, much work remains in
this area of study.

This study explores deep learning models for sea fog
segmentation in remote sensing images, aiming at the char-
acteristics of sea fog data. In this study, after comprehensive
consideration of several relatively advanced models based on
deep learning, the U-Net model is chosen as the foundation
model to be improved into the proposed sea fog segmentation
model. The selected U-Net model is then optimized by
introducing asymmetric multi-scale convolution modules to
enhance the model’s feature representation capability and
enable more effective extraction of multi-scale features of sea
fog. Finally, in order to make full use of the temporal char-
acteristics of sea fog, a sea fog segmentation model based
on deep learning is proposed by combining the optimized
U-Net model and ConvLSTM.

II. REMOTE SENSING SEA FOG IMAGE DATASETS

Firstly, we collect an original dataset of remote sensing
images of sea fog. These images are sourced from the
geosynchronous orbit meteorological satellite “Himawari-
8,” capturing images from 117°E to 128°E longitude and
29°N to 41°N latitude. To reduce the workloads of manual
annotations and ensure the precision of labels, we first use the
SLIC superpixel segmentation algorithm [8] to segment the
pseudo-color images, and then manually annotate the images
based on the segmented superpixels. The labeled sea fog
dataset contains only 2,562 images, including 1,501 foggy
and 1,061 non-foggy images.

Secondly, we enhance the original dataset through data
augmentation. Considering the relatively small number of
original images, traditional data augmentation methods and
DCGAN[9] (Deep Convolutional Generative Adversarial
Networks) are utilized to enhance the generalizability of the
model trained on this limited dataset. By traditional methods,
1,501 foggy and 1,061 non-foggy images are added to the
original dataset, and by the DCGAN method, 1,365 foggy
and 1,085 non-foggy images are generated.

Finally, the training dataset for the model consists of the
original images, the generated images by traditional data
augmentation methods, and the DCGAN method, a total of
7,574 images. There are 4,367 foggy and 3,207 non-foggy
images.

III. A DAYTIME SEA FOG IMAGE SEGMENTATION
MODEL INCORPORATING CONVLSTM MECHANISM IN
DAU-NET

A. The DAU-Net Model and the ConvLSTM Model

1) The DAU-Net Model: The U-Net architecture has
become a prominent solution in the field of image seg-
mentation, widely acclaimed for its robust generalization
capabilities and elegantly simplistic design. Despite these
strengths, U-Net still has challenges, notably including lim-
itations in feature extraction capacity and suboptimal uti-
lization of multi-scale features. The appearance of DAU-
Net addresses these issues. By integrating principles from
residual learning[10], dense learning[11], hybrid attention
mechanisms[12], and multi-scale feature handling, the DAU-
Net redesigns the down-sampling and up-sampling branches
of the model to achieve a richer representation and deeper
understanding of image features. Furthermore, the appli-
cation of unique training techniques for segmentation has
contributed to a noticeable boost in segmentation accuracy.
This approach contributes to the superior performance of
DAU-Net compared to other traditional segmentation models
which demonstrates its potential as a general tool applied in
complex image analysis tasks. Figure 1 presents the detailed
structure of DAU-Net which maintains U-Net’s foundational
architecture, and consists of an encoder and a decoder. In the
encoder, four down-sampling layers are performed, including
asymmetric multi-scale convolution functions alongside 2x2
max-pooling operations. This design aids in not only the
effective extraction of relevant features but also the spatial
compression of the image.

Conversely, the decoder performs four corresponding up-
sampling layers, employing a unique fusion of asymmetric
multi-scale convolution with deconvolution techniques. This
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Fig. 1. DAU-Net Network Structure.

creative approach facilitates the precise restoration of the
image’s original resolution.

A further innovation lies in the incorporation of atten-
tion modules within the skip connections that mirror each
layer between the decoder and encoder. Feature maps input
into these attention modules are from the current down-
sampling layer and the preceding up-sampling layer. The
resulting attention weight coefficients are then multiplied by
the features obtained from the preceding up-sampling layer.
The merging of these processed features results in a refined
feature map, optimized by the strategically implemented
attention mechanism. This multifaceted construction shows
the DAU-Net’s advanced capability to efficiently analyze and
interpret complex image data.

2) The ConvLSTM Model: ConvLSTM (Convolutional
Long Short-Term Memory) represents an innovative model
that synergistically integrates convolutional neural networks
(CNNs) and long short-term memory (LSTM) networks. This
fusion serves the specialized purpose of processing image
data within temporal sequences.

By embedding convolutional layers within the LSTM
framework[13], ConvLSTM exhibits an enhanced capability
to discern and interpret spatial features in images. The
structure of ConvLSTM is marked by a complex arrangement
of input gates, forget gates, output gates, and convolutional
layers. In the input gate, a convolutional layer is harnessed
to confirm the relationship between the current and previous
time steps’ inputs and hidden layers. This dynamic correla-
tion actively guides and regulates the information intake of
the current time step.

Similarly, the forget gate employs a convolutional layer
to evaluate the correlation between the current input and
the hidden layer of the preceding time step, effectively
determining which prior information is retained or forgotten.
In the output gate, a convolutional layer is conducted for
exploring the relationship between inputs of the current time
step and information of the preceding hidden layer, which
in turn determines the transmission of information of the
current hidden layer.

In this way, ConvLSTM overcomes conventional limi-
tations and exhibits the flexibility to concurrently analyze
spatial and temporal features within time-sequenced image
data. The unique design of ConvLSTM shows its potential
applications in various areas that needs the integration of
spatial and temporal data and presents its significance in
contemporary machine learning research.

The computational process for each ConvLSTM unit can
be delineated as follows:

iy = 0(xe % Wi + hy—1 x Wi + by) (1)

Je=0(xy * Wap 4+ hy1 x Why + by) 2)

¢t = 10 ft+itOTanh(xt«Waxe+ht—1xWhe+be) (3)
0y = U(xt * Wzo + htfl * Who + bo) (4)

ht = oy © Tanh(ct) 5)

In this framework, the symbol * signifies convolution,
while ©® refers to element-wise multiplication, and o(-) is
indicative of the Sigmoid activation function. The variables
i_tf tc_t, and o_t correspond to the input gate (i), forget
gate (f), cell state (c), and output gate (0), respectively. The
notation W and b are used to represent the convolution kernel
and the biases associated with each gate, whereas x_t and
h_t denote the input and output feature maps, respectively.
The equation formulates that the output at a given time point
t, expressed as h_t, is ascertained by the current input x_t,
in conjunction with the preceding states c_(t-1) and h_(t-
1). This mechanism allows ConvLSTM to leverage historical
data during the prediction phase.

B. Integration of ConvLSTM Mechanism with DAU-Net for
the Segmentation of Daytime Sea Fog Images

In remote sensing images, sea fog exhibits significant
variations in scale and diverse textural shapes, and its for-
mation and evolution follow specific temporal patterns. In
a short time, the changes in appearance and motion of sea
fog in preceding moments can provide a valuable reference,
assisting in determining the current location. To achieve
optimal segmentation effects in the developed model based
on deep learning for sea fog, it is imperative to consider
strategies for the efficient extraction of sea fog features and
the comprehensive utilization of its temporal information.

DAU-Net, by leveraging asymmetric multi-scale convolu-
tion and attention mechanisms, optimizes the U-Net model,
proficiently addressing the challenges of the inadequate ex-
traction of sea fog features and the need to concentrate on
particular sea fog image attributes. Through the application
of ConvLSTM, it becomes possible to effectively extract
inter-sequence features from a series of images. In light of the
inherent characteristics of sea fog data, this study introduces
the DAU-Net-ConvLSTM model, built upon the DAU-Net
as the primary architecture and integrated with ConvLSTM,
aiming to enhance the segmentation performance of sea fog
images.

In the DAU-Net-ConvLSTM, the DAU-Net model is first
utilized for the initial segmentation of the sea fog image.
Subsequently, ConvLSTM, as a post-processor, extracts inter-
regional sea fog feature information from pre-segmented
images of adjacent fog areas. Ultimately, the DAU-Net-
ConvLSTM model leverages temporal sequence information,
studying the dynamic variations of sea fog and evolutionary
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patterns to enhance the accuracy of the segmentation of
the target area. More specifically, ConvLSTM is designed
to capture contextual information within the time series,
synthesizing both past and future image features during
predictions. This integration serves to increase the accuracy
of the segmentation model across the time series. Prior to
the final activation function within the backbone model, pre-
segmentation outputs are retrieved from the feature maps,
functioning as input data within the DAU-Net-ConvLSTM
model. These feature maps consist of two channels: channel
1 corresponds to the background label, and channel 2 is
associated with the sea fog label. Consequently, each pixel
within the feature map can be interpreted as representing the
possibility of belonging either to the background or sea fog,
depending on the respective channel values. For instance, a
higher value in channel 1 implies that the model perceives
the pixel as a more likely part of the background, whereas
a greater value in channel 2 signifies a higher probability of
belonging to the sea fog region.

As depicted in Figure 22, the DAU-Net-ConvLSTM model
architecture receives an input comprising the image sequence
at time point t denoted as [ = I;|t = 1,2,...t,and produces
an output of the predicted label mapping sequence L =
Lijt =1,2,...¢.This method integrates two core compo-
nents: DAU-Net and ConvLSTM. During prediction, DAU-
Net meticulously assesses the spatial features of each input
image I; to generate segmented result images x;, which are
subsequently used as inputs for ConvLSTM that capitalizes
on both time-series information and pre-segmented images
from adjacent sea fog regions. This integration allows for
precise extraction of inter-fog area features, as well as sub-
sequent refinement of the target area’s segmentation results.
A bidirectional ConvLSTM is deployed here for its ability to
concurrently harness both past and future information during
prediction. This design enhances the capture of dynamic
fluctuations and context in the time series. The forward
and backward flows within the model demonstrate distinct
directional roles, with the former facilitating information pas-
sage from past to future and the latter inversely transmitting
information from future to past. This bidirectional scheme
enables ConvLSTM to delve deeper into the temporal series
features, augmenting both the precision and robustness of sea
fog segmentation.

In a more detailed view, the output of ConvLSTM consists
of per-pixel feature maps hy, at each time point t. To

formulate the probabilistic label mapping Et the outputs from
both the forward and backward ConvLSTM flows are con-
catenated, followed by a convolution operation, culminating
in the final segmentation result. This approach ensures a
nuanced representation of the image sequence, leading to
a more accurate model.

IV. MODEL TRAINING, COMPARATIVE EXPERIMENT,
AND RESULT ANALYSIS

A. Model Training Parameter Configuration and Segmenta-
tion Effect Evaluation Metrics

1) Parameter Configuration: Hardware Environment: The
processor used in the experiments of this paper is AMD
Ryzen 5 5600X 6-Core Processor, with a clock frequency
of 3.7 GHz, RAM of 32GB, and GPU of GTX 1080Ti.

Software Environment: The operating system is Windows
10, and the training environment is Python3.7.

Throughout the training process in this study, we em-
ployed the gradient-based optimizer, Adam[14], a tool that
dynamically adjusts the learning rate for each parameter
by leveraging estimates of the gradient’s first and second
moments. Considering time constraints, the total number of
epochs was established at 100 for each iteration. We set an
initial learning rate of 0.001 and standardized the batch size
to 210, meaning that each training batch consisted of 210
individual images. Given that the dataset selected 7 images
of sea fog a day, and each batch contained the number of
images for a month, the value of the temporal window was
configured to 7 which corresponded to the quantity acquired
during a continuous daily interval.

Given that the challenge of sea fog segmentation pertains
to pixel-level segmentation, the current study employs the
Dice loss function[15] instead of the more conventional
cross-entropy loss function. The mathematical representation
of the Dice loss function is articulated below:

N
23 v
N N, 2

where y denotes the true value labels, 3 symbolizes the
predicted value labels, and N corresponds to the total number
of pixel points.

2) Evaluation Metrics: In order to evaluate the perfor-
mance of the model for sea fog segmentation, this study
establishes a set of criteria as follows:

(1) Kappa

A method for evaluating the performance of image
segmentation tasks involves measuring the agreement
between predicted and actual classifications beyond
chance. The Kappa score quantifies the level of agree-
ment between the predicted segmentation and the true
segmentation, accounting for the agreement that could
occur by random chance. The mathematical definition
for this metric is articulated below:

DICE (y,y') = 1 (6)

Precision = L
T TP+ FP
Recall — — TP
A= TPIFN
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Within this context, TP denotes true positives, FP sig-
nifies false positives, TN stands for true negatives, and
FN designates false negatives. Additionally, P, is the
observed agreement between the predicted and actual
classifications, while P, is the expected agreement
by chance. By employing the Kappa score, one can
encapsulate the outcomes derived from both observed
agreement and chance agreement, thereby arriving at
a more balanced and comprehensive metric for evalu-
ating the effectiveness of segmentation.
(2) Mean Intersection over Union

Among the prevalent metrics employed in the area of
image segmentation, the Mean Intersection over Union
(MIOU) stands as a prominent measure[16].

Within the given equation, K represents the total num-
ber of distinct classes contained within the set C, while
I0U_c refers to the Intersection over Union for the
specific class c.

B. Ablation Study and Analysis of Results for the Model

To assess the influence of the enhancements introduced in
this study on the overall performance of the model, ablation
experiments were conducted on three integral components:
the asymmetric multi-scale convolution module, the attention
mechanism module, and the temporal module. The results
of these ablation studies, including Precision, Recall, Kappa
Score, and Mean Intersection over Union (MIOU) for each
modified model, are detailed in Table 1. Within this context,
DI’ is indicative of the asymmetric multi-scale convolution,
while A’ symbolizes the attention mechanism.

An examination of Table 1 reveals a 4.7% enhancement
in precision and a 2.3% increase in MIOU for the U-Net

model equipped with an attention mechanism. This demon-
strates that the incorporation of the attention mechanism can
augment the U-Net’s capability to precisely segment crucial
targets within an image, while meanwhile minimizing wrong
segmentation within background regions. The U-Net model
employing asymmetric multi-scale convolution exhibits a
2.1% improvement in the Kappa score (from 81.2 to 83.0)
and a 1.4% rise in MIOU, signifying that the integration
of the asymmetric multi-scale convolution module facilitates
the model’s capacity to detect features across multiple scales
in the image, thus enhancing segmentation accuracy and
robustness. Moreover, the hybrid U-Net model, which blends
asymmetric multi-scale convolution with the attention mech-
anism, has shown enhancements in all evaluated metrics,
illustrating that the synergistic optimization of these two
aspects significantly contributes to the model’s augmented
performance in image segmentation tasks.

Aiming at the temporal information in sea fog images, the
novel DAU-Net+ConvLSTM model, integrating ConvLSTM
and DAU-Net, has manifested marked improvements across
all four assessment indicators. Compared to the original
U-Net model, the Kappa score and MIOU increased by
9.2% (from 81.2 to 90.4) and 5.1% respectively; compared
to the non-temporally sensitive DAU-Net, these gains were
2.3% and 1.5% respectively. This illustrates that combining
ConvLSTM and DAU-Net not only assimilates temporal
information but also improves the capacity for sea fog
segmentation. This boost stems from the DAU-Net model’s
superior extraction of sea fog features coupled with ConvL-
STM’s efficient exploitation of the time-series information
embedded within the sea fog images. Such a fusion allows
for a more precise partition of the sea fog region, enhancing
both the accuracy and reliability of sea fog segmentation.
Figure 4 illuminates the sea fog segmentation results derived
from testing a sea fog image using the above five disparate
models. The superior segmentation efficacy of the proposed
DAU-Net+ConvLSTM model is apparent.

C. Comparative Experiments and Results Analysis of Differ-
ent Models

To assess the effectiveness of the DAU-Net+ConvLSTM
model, we performed comparative experiments with seven
leading image segmentation models on a sea fog dataset,
using five evaluation metrics. The models were divided into
two groups: traditional image segmentation models (CNN,
U-Net++, DeepLab v3, R2U-Net) and models incorporat-
ing temporal data for image sequence segmentation (RNN,
STGRU, 3D CNN-LSTM). The first group was trained on
individual images, while the second group processed daily
image sequences. Results comparing DAU-Net+ConvLSTM
with the first and second groups are detailed in Tables 2 and
3, respectively.

Table 2 demonstrates the superior performance of the
DAU-Net+ConvLSTM model in sea fog segmentation. It
exceeds the CNN model by 16.9% in Kappa score (from
73.5 to 90.4) and 12.6% in MIOU, and surpasses the highly
effective R2U-Net by 4.8% in Kappa score (from 85.6 to
90.4) and 3.3% in MIOU[17]. These results emphasize the
benefits of incorporating temporal information for improved
segmentation accuracy.
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TABLE I
ABLATION STUDY RESULTS.

Methods Precision Recall Kappa MIOU Accuracy
U-Net 84.5% 85.6 % 81.2% 81.3% 85.2%
U-Net+A 89.2% 88.3% 83.1% 83.6% 89.1%
U-Net+DI 87.4% 86.8% 83.9% 85.7% 86.4%
DAU-Net 90.6% 89.6% 88.1% 85.9% 87.1%
DAU-Net+ConvLSTM 92.5% 91.6% 90.4% 86.4% 87.5%

TABLE I
THE EXPERIMENTAL RESULTS OF THE COMPARISON WITH THE FIRST CATEGORY OF MODELS.

Methods Precision Recall Kappa MIOU Accuracy
CNN 78.6% 79.3 % 73.5% 73.8% 77.6%
U-Net++ 86.5% 85.1% 81.8% 82.6% 80.3%
Deeplab v3 82.7% 83.4% 80.5% 80.5% 86.4%
R2U-Net 85.5% 86.7% 85.6% 83.1% 87.9%
DAU-Net+ConvLSTM 92.5% 91.6% 90.4% 86.4% 87.5%

TABLE III
PRESENTS THE EXPERIMENTAL RESULTS OF THE COMPARISON WITH THE SECOND CATEGORY OF MODELS.

Methods Precision Recall Kappa MIOU Accuracy
RNN 79.1% 79.8 % 78.4% 75.1% 78.4%
STGRU 87.2% 86.9% 83.5% 83.6% 82.6%
3D CNN-LSTM 88.6% 89.8% 85.2% 85.3% 86.4%
DAU-Net+ConvLSTM 92.5% 91.6% 90.4% 86.4% 87.5%

DAU-
Input Ground Truth U-Net U-Net+A U-Net+DI DAU-Net IS\I;;;COHVL

Fig. 4. Comparison of Segmentation Results in the Ablation Study.

U-Net++

Input Ground Truth CNN Deeplab
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Fig. 5.

A comparison of the evaluation metrics in Table 3 with
those in Table 2 reveals that on the sea fog dataset, image se-
quence segmentation models display better performance than
traditional single-image segmentation models. This improve-
ment is attributed to the ability to utilize the relationships
between individual images in a sequence, effectively captur-
ing the temporal information of sea fog, thereby enhancing
the model’s accuracy. Therefore, employing the temporal
information of sea fog images is essential and can provide
more effective results for sea fog detection.

Compared to the STGRU[18] and 3D CNN-LSTM[19],
which also effectively utilize the temporal information of
sea fog images, the DAU-Net+ConvLSTM model proposed
in this paper exhibits a higher Kappa score by 6.9% (from
83.5 to 90.4) and 5.2% (from 85.2 to 90.4), and MIOU
by 2.8% and 1.1%, respectively. This indicates that the
DAU-Net+ConvLSTM model delivers superior sea fog seg-
mentation results when temporal information is similarly
considered, fully validating the effectiveness of integrating
asymmetric multi-scale convolution and attention mecha-

Comparison of the testing segmentation results on the same hazy image by different models

nisms for improving the U-Net. Figure 5 shows the sea
fog segmentation effects of the proposed model compared
to the other seven models using a test sea fog image. The
results visibly demonstrate that the DAU-Net+ConvLSTM
model proposed in this paper achieves better segmentation
performance.

V. CONCLUSIONS

Drawing on the unique characteristics of sea fog, including
many scale variations, diverse texture patterns, and temporal
dynamics, this study conducts research on a deep learning
method for sea fog segmentation. We propose a DAU-Net
model to extract features across variable scales and hier-
archies by employing asymmetric multi-scale convolution
modules and attention mechanisms into the backbone U-Net
model. Then, the ConvLSTM is integrated into the DAU-
Net model to leverage spatio-temporal information of sea fog
for obtaining more accurate detection and prediction results
of sea fog phenomena. Our proposed DAU-Net-ConvLSTM
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model demonstrates improved performance in sea fog seg-
mentation compared to other deep learning methods, with
a 90.4% Kappa score and 86.4% MIOU. In the future,
the study needs to be further perfected from the expansion
of the dataset scale, the enhancement of the generalization
capability of the model, the research on sea fog detection for
nighttime or all-weather, and the improved design for feature
extraction and segmentation of sea fog.
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