
Abstract—Prediction of grain consumption is crucial for
analyzing the changing trend and balancing the grain supply
and demand in China. Recently, the use of generative
adversarial networks (GAN) to capture the distribution of
historical data for generating future data has gained attention
in time-series prediction. In order to enhance prediction
performance and address model instability, an improved
Wasserstein GAN with gradient penalty, referred to as
IWGAN-GP, is proposed. The IWGAN-GP utilizes a
bidirectional long short-term memory neural network
(BiLSTM) as the generator and a convolutional neural network
(CNN) as the discriminator, combining the memory capabilities
of LSTM with the nonlinear feature extraction capabilities of
CNN. Specifically, the loss function of the generator
incorporates the mean square error (MSE) between real and
generated samples to optimize the LSTM network, while the
loss function of the discriminator includes the L1 norm as the
gradient penalty term to enhance sparsity and robustness, in
contrast to the L2 norm used in existing WGAN-GP models.
Experimental results on grain consumption data from 1981 to
2020 demonstrate that the proposed IWGAN-GP improves
prediction accuracy compared to BiLSTM, GAN, and
WGAN-GP models.

Index Terms—grain consumption prediction, BiLSTM,
WGAN-GP, L1 norm; EEMD

I. INTRODUCTION
CCURATELY understanding the evolving trend of

grain consumption is crucial for strengthening the macro
strategic control of grain and ensuring the balance of grain
supply and demand. Grain consumption data typically
follows a time series pattern. Among deep learning
techniques, long short-term memory (LSTM) [1, 2, 3], gate
recurrent unit (GRU) [4], and Transformer [5], have shown
promise in time series prediction. The emerging generative
adversarial networks (GAN) performs better to explore time
series prediction [6]. GAN consists of a generator and a
discriminator, which will be trained against each other [7].
GAN has been effective in image generation but nor yet in
time series prediction. Given the linearity and stationarity of
grain consumption data, GAN for time series prediction is
theoretically feasible. In 2021, an emotion-guided stock price
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prediction model using conditional generative adversarial
network (CGAN) is introduced [6]. The CGAN incorporates
LSTM and multilayer perceptron (MLP) in the generator and
discriminator, respectively, along with the emotional
information from daily tweets as a conditional input,
enhancing stock prediction accuracy. Additionally,
researchers have proposed various GAN-based models for
financial time serious prediction. Lin H. C et al. [8] proposes
a Wasserstein GAN with gradient penalty (WGAN-GP)
network with a GRU as the generator and a convolutional
neural network (CNN) as the discriminator to investigate
whether adversarial systems can help improve time series
prediction performance. Experiments have demonstrated that
the adversarial network outperforms the traditional LSTM
network. Wang Jing et al. [9] introduces an empirical mode
decomposition generative adversarial network
(EMD-WGAN) for financial time series prediction. The
generator consists of empirical mode decomposition (EMD)
and multiple LSTM networks, while the discriminator adopts
CNN. The data after EMD exhibit similar frequency and
good regularity, reducing the complexity of the generated
model and enhancing the prediction accuracy [10].
Furthermore, the EMD-WGAN utilizes the loss function of
WGAN-GP to address the instability of the original GAN
[11]. Shuntaro Takahashi et al. [12] proposes the financial
time series model FIN-GAN, where the generator and
discriminator combine MLP and CNN. Therefore, GAN
shows potential advantages in time series prediction.
However, for specific applications, the network structure,
loss function, etc., have an impact on prediction performance,
which is also related to the characteristics of nonlinearity and
non-stationarity in historical data series.
To enhance prediction performance and address model

instability in grain consumption prediction, an improved
WGAN-GP (IWGAN-GP) is proposed. The IWGAN-GP
incorporates bidirectional long short-term memory neural
network (BiLSTM) as generators and CNN as the
discriminator, with a new loss function introducing mean
square error (MSE) to optimize the generator and ensure
generated data closely resemble real data. Furthermore, the
discriminator loss function in WGAN-GP is modified to use
L1 norm instead of L2 norm, enhancing sparsity and
robustness while reducing model complexity.

II. THE PROPOSED IWGAN-GP
The proposed IWGAN-GP architecture is illustrated in

Figure 1, consisting of a data preprocessing module for data
smoothing and a GAN for predicting future data. The
generator of IWGAN-GP utilizes BiLSTM to generate the
predicted value  ' 1tx  at time t+1; then, it combines real data
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Fig. 1 The proposed IWGAN-GP architecture.
' ' '
2 1, ,t t tx x x  at the first three points with  ' 1tx  to produce fake

data  '' ' '
12 1, , , tt t tx x x x  
. similarly, real data ' ' ' '

2 1 1, , ,t t t tx x x x   is
denoted as data at time t. Both fake data and real data are
inputted into the discriminator to capture the correlation and
time series information between '

1tx  、  ' 1tx  and
' ' '
2 1, ,t t tx x x  .The discriminator of IWGAN-GP employs CNN,

where its output value Q represents the discrepancy between
real data and generated data. The generator and discriminator
are trained through alternating iterations until the output
value of the discriminator converges close to zero or
fluctuates slightly around zero. The “  ” in Figure 1 signifies
vector concatenation.

A. Stabilization processing
The dataset used in this study is sourced from the official

website of the National Bureau of Statistics and the China
Statistical Yearbook. China’s grain consumption is
categorized into food grain and non-food grain [13], with
food grain including rations and feed grains, and non-food
grain including industrial grain, seed grain and loss grain.
The trend chart depicting China’s total grain consumption
from 1981 to 2020 is illustrated in Figure 2, with the ordinate
unit being 10,000 tons. The stationarity of grain consumption
data is evaluated using the Augmented Dickey-Fuller (ADF)
unit root test method, with the calculated significance test
statistics indicating non-stationary with a P value of 0.887
[14]. Globally, the grain consumption displays the
characteristics of non-linearity, non-stationary, and an overall
increasing trend, as evident from Figure 2.
To address the non-linearity and non-stationary of the

grain consumption data, stabilization processing is crucial to
ensure the processed data with the same distribution. A
stationary time series refers to patterns in the series that
remain constant over time, which are essential for subsequent
prediction. Normalization and ensemble empirical mode
decomposition (EEMD) are employed to smooth the original
data, as depicted in Figure 3. Normalization restricts the data
with a specific range (e.g., [0,1]) to mitigate the adverse
effects of singular sample data. Max-min normalization is
utilized to preprocess the original time series, defined as:

' min

max min

X XX
X X





(1)

where 1 2( , ,... )nX x x x represents the historical grain
consumption series, minX and maxX represent the minimum

and maximum value of X , respectively, and
' ' ' '

1 2( , ,..., )nX x x x is the normalized series. Considering the
non-stationarity in 'X , EEMD is used to smooth 'X .
The EEMD algorithm, proposed by Huang [15], involves

multiple empirical mode decomposition with Gaussian white
noise to adaptively decompose the signal and avoid the mode
mixing. The EEMD decomposition process includes:
1) Providing sequence 'X and the number of processing
times m;

2)Adding m groups of random white noise 1 2, ,..., mW W W

to sequence 'X to form ' ' '
1 2, ,..., mX X X ;

' ' ( 1, 2,..., )j jX X W j m   (2)

3) Decomposing ' ' '
1 2, ,..., mX X X using EMD to obtain a

series of Intrinsic Mode Function (IMF) components
,1 ,2 ,, ,...,i i i ma a a ;

4) Averaging the corresponding IMF components to
perform EEMD decomposition.

,
1

1 ( 1,2,..., ; 1, 2,..., )
m

i i j
j

a a i N j m
m 

   (3)

where N is the number of IMF components after
decomposition. As shown in Figure 3, the sequence 'X
undergoes EEMD to obtain four IMF components and one
residual component RES, so 5N  . Let

1 2 3 4 5 *5 1 2( , , , , ) ( , ,..., )T
n n E a a a a a e e e , then ne can be

considered as the five features associated with '
nx . Before

inputting into the generator, these data need to be reshaped
into three dimensions, including total number of samples,
time step and feature number. In the experiment, the data
from the previous three years will be used to predict the grain
consumption for the next year, with the three-dimensional
values are n-3, 3, 5, respectively.

Fig. 2 Trend of total grain consumption (1981 to 2020).
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Fig. 3 The stabilization processing

B. The Timing generator based on BiLSTM
As previously mentioned, the generator utilizes BiLSTM,

a type of recurrent neural network (RNN) that is able to retain
information from previous time points to calculate the
information at the current time point [16]. RNNs have shown
great performance in handling time series data. However,
RNNs suffer from a significant long-term dependency issue
[3], where the neural network nodes may fail to capture
features from earlier time points after multiple computation
stages due to gradient disappearance and gradient explosion
caused by cyclic multiplication of RNN weight matrix. This
is a main challenge in training RNN models. To address these
issues, LSTM introduces a gate structure to regulate the
storage and forgetting of features, including the forget gate
ft , the input fate i t and the output gate to [17]. The LSTM
update can be summarized as follows:

1( [ ; ] )t f t t f  f W h k b (4)

1( [ ; ] )t i t t i  i W h k b (5)

1( [ ; ] )t o t t o  o W h k b (6)

1 1tanh( [ ; ] )t t t t s t t s   s f s i W h k b  (7)
tanh( )t t th ο s (8)

where 1[ ; ]t th k is a concatenation of the previous hidden
state 1th and the current input tk ; ts is a memory cell at

time t ; fW , iW , oW , sW and fb , ib , ob , sb are learning
parameters;  and  represent a logistic sigmoid function
and element-wise multiplication, respectively.
In theory, reversing data in the dataset can help LSTM
uncover pattern related to grain consumption. Therefore, the
generator implements BiLSTM.

A single-layer BiLSTM essentially consists of two LSTMs:
one processes the forward sequence, and the other processes
the reverse sequence. The outputs of the two LSTMs are then
concatenated. As illustrated in Figure 4, the forward LSTM
generates an output vector after three-time steps, while the
reverse LSTM produces another output after three-time steps.
These two output vectors are combined to form the final
output of the BiLSTM [18, 19].
The generator includes a BiLSTM layer with 128 neurons,

followed by two Dense layers with 64 and 1 neurons,
respectively. The number of neurons in the last layer matches
the output step. Figure 4 depicts the generation process of a
single sample input into the generator and defines the overall
output of the generator as ' ' ' '

4 5( , ,..., )nX X X X    .

C. CNN-based Discriminator
CNN can automatically extract deep features and obtain

widely application in image classification or text analysis.
For instance, when processing an image of a dog, the initial
convolution layer detects edges, followed by the detection of
shapes in the second layer, and the identification of specific
features like the nose in the third layer. In the context of time
series data, individual data points form small trends, which in
turn contribute to larger patterns, ultimately revealing
consumption trends. The ability of CNN to identify patterns
can be leveraged to extract valuable information on grain
consumption fluctuations [20]. Additionally, CNN is adept at
handling data with local spatial correlations. In contrast to
scattered data points, adjacent data points exhibit stronger
correlations, a phenomenon also observed in time series
data.Given that grain consumption data points are collected
annually, it is reasonable to assume that data points from
consecutive years will exhibit stronger correlations [21].

Fig. 4 The timing generator based on BiLSTM
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The discriminator in the proposed IWGAN-GP consists of
three one-dimensional (1D) convolutional layers, each with 3,
2, and 1 convolution kernels respectively, with a uniform step
size of 2. To maintain the size of the features during
convolution, the zero-padding method is applied. For
one-dimensional data, P rows of zeros are added before the
first row and after the last row, with the number of filled rows
P determined by

( 2* ) / 1output inputn n K P S    (9)

where input and output sizes are denoted by inputn and outputn ,

respectively. From Figure 1, 4inputn  , K is the convolution
kernel, P is the number of filled rows on each side, S is the
step size. In the TensorFlow implementation, the output
shape is calculated by

input
output

n
n

S
 

  
 

(10)

where    represents rounding up. Following the
convolutional layers, three additional dense layers with 220,
and 1 neuron are included. The Rectified Linear Unit (ReLU)
serves as the activation function between these layers, except
for the final layer. Figure 5 is for a visual representation of a
single sample input into the CNN.

D. The Improved Wasserstein Distance Loss
The loss function of the original GAN is based on KL-JS

divergence. When training, cross-entropy loss is utilized to
minimize the difference between the real data distribution
and the generated data distribution, which is equivalent to
minimize the KL-JS divergence. The objective function for
the discriminator is defined as

~ ~[lg ( )] [lg(1 ( ))]
r gx P x PE D x E D x   (11)

and the loss function for the generator is
~ [lg( ( ))]

gx PE D x (12)

where E denotes expectation, gP represents the generated

data distribution, and rP is real data distribution. A
significant issue with JS divergence arises when the two
distributions have minimal or no overlap, leading to JS
divergence being fixed at a constant value of log2. This
results in the gradient descent information of the generator
being 0 [22], rendering it unreasonable to represent the loss
function using this information. WGAN-GP is introduced to
stabilize and enhance the training of GAN [11]. WGAN-GP
employs Wasserstein distance (or Earth-Mover distance
(EMD)), which calculates the minimum cost of transporting
mass to convert one data distribution to another. The
Wasserstein distance between rP and gP is mathematically
defined [23] as

( , ) ( , )~( , ) inf [|| ||]
r gr g P P x yW P P E x y   (13)

Fig. 5 The discriminator based on CNN.

where ( , )r gP P denotes the set of all joint distributions
between rP and gP ,  contains all the possible transport
plans  . By utilizing the Kantorovich-Rubinstein duality, the
calculation can be simplified to

|| || 1 ~ ~( , ) sup [ ( )] [ ( )]
L r gr g f x P x PW P P E f x E f x  (14)

where sup is the least upper bound and f is a 1-Lipschitz
function following Lipschitz constraint as

1 2 1 2| ( ) ( ) | | |f x f x x x   (15)
The WGAN-GP introduces a gradient penalty to enforce

the Lipschitz constraint. A function f is considered
as1-Lipschitz if its gradients have a norm at most
1( 2|| || 1f  ) everywhere. If the gradient norm deviates from
the target norm value of 1, the model will be penalized.
Comparison to the basic GAN, the WGAN-GP network lacks
the sigmoid function and outputs a scalar score rather than a
probability. This score indicates the authenticity of the input
data. In the discriminator and generator, the loss function is
represented respectively as




2
~ ~ 2~
[ ( )] [ ( )] [(|| ( ) || 1) ]

g r x
x P x P xx P
E D x E D x E D x    (16)

~ [ ( )]
gx PE D x (17)

where x represents the intermediate value between the real
and generated sample space. The proposed IWGAN-GP
introduces two enhancements to the basic WGAN-GP loss
function. Firstly, it adopts the L1 norm instead of the L2 norm
in the gradient penalty section of the discriminator loss
function. The L1 norm exhibits better tolerance to outliers
compared to the L2 norm. This is because the L2 norm squares
the error, the proposed IWGAN-GP will be more sensitive to
outliers, sacrificing many normal samples. When the dataset
contains outliers, L1-norm is more effective than L2-norm.
Additionally, L1 regularization leads to sparser parameter
settings compared to L2 regularization, reducing model
complexity. The discriminator loss function in the proposed
IWGAN-GP is:




2
~ ~ 1~
[ ( )] [ ( )] [(|| ( ) || 1) ]

g r x
x P x P xx P
E D x E D x E D x    (18)

Secondly, the Mean Squared Error (MSE) between real
samples and the generated samples is incorporated into the
generator’s loss function. This addition aims to improve the
model stability by adjusting the generator based on the MSE
when the discriminator makes incorrect judgments. The
generator’s loss function for enhancing WGAN-GP is given
by:

2
~ [ ( )] [( ) ]

g r gx P P PE D x E x x   (19)
Table I compares the loss functions of generators and

discriminators in the basic GAN, basic WGAN-GP, and
proposed IWGAN-GP.

III. EXPERIMENTS

A. Evaluation index
Similar to the classical evaluating metrics of regression

algorithms, Mean Squared Error (MSE), Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE) are utilized to evaluate the
performance of the proposed IWGAN-GP.
In Section 2.2, the output of the generator
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   ' ' ' '
4 5( , ,..., )nX x x x is denormalized to obtain the predicted

values 4 5( , ,..., )nY y y y ; given the original data

4 5( , ,..., )nX x x x . These metrics are calculated as follows
1) Mean Squared Error (MSE): A commonly used metric

in regression analysis, defined as the average of the squared
differences between predicted data and original data.

2

4

1 ( )
3

n

t t
t

MSE y x
n 

 
  (20)

2) Root Mean Squared Error (RMSE): The square root of
the average of the squares of prediction errors, which
considers the magnitude of the prediction errors and
penalizes larger errors more.

2

4

1 ( )
3

n

t t
t

RMSE y x
n 

 
  (21)

3) Mean Absolute Error (MAE): The average of the
absolute differences between predicted data and original data.
The smaller MAE represents the better predictive
performance.

4

1
3

n

t t
t

MAE y x
n 

 
  (22)

4) Mean Absolute Percentage Error (MAPE): The
average of the percentage differences between predicted data
and original data, often used to measure relative error size.

4

| |1
3

n
t t

t t

y xMAPE
n x




  (23)

B. Settings
In evaluating the proposed IWAGN-GP, the BiLSTM, the

basic GAN and the basic WGAN-GP are also be
implemented for comparison, of which Both the GAN and
the WGAN-GP adopt the BiLSTM as the generator and CNN
as the discriminator. All models utilize Adam’s optimization
algorithm with learning rates selected from 0.0001, 0.0003,
0.001, to 0.003. Through experiments, it is found that lower
learning rates lead to smoother loss function changes and
improved prediction results. Therefore, the optimal learning
rate is set to 0.0001, the number of cycles is determined by
the stability of the loss function curve, and the random
number seed for IWGAN-GP is set to 5.

C. Results
The prediction results of BiLSTM, GAN, WGAN-GP, and

IWGAN-GP are depicted in Figure 6. Figure 6 illustrates that
it can be seen that the predicted data trend aligns with the
actual data trend. However, the proposed IWGAN-GP
(Figure 6 (d)) demonstrates a better fit to actual data
compared to the other three models. In Figure 6 (a), the
BiLSTM prediction results show a nearly straight line, which
contradicts the non-stationary and non-linear characteristics
depicted in Figure 2. Comparing Figure 6 (b) and Figure 6 (c),
the prediction results of GAN and WGAN-GP are similar
before 2009, but WGAN-GP performs worse than GAN after
2009. The proposed IWGAN-GP shows better fitting to the
actual data compared to the other models.
To objectively evaluate the predictive performance of

IWGAN-GP, four evaluation metrics-MSE, RMSE, MAE,
MAPE are utilized to compare three models. Table II is the
predictive performance of the proposed IWGN-GP for train-

TABLE I
LOSS FUNCTIONS OF THE DISCRIMINATOR AND GENERATOR OF

DIFFERENT GAN MODELS
Model Discriminator Generator

basic GAN
~

~

[lg ( )]

[lg(1 ( ))]
r

g

x P

x P

E D x

E D x



  ~ [lg( ( ))]
gx PE D x

basic
WGAN-GP 



~ ~

2
2~

[ ( )] [ ( )]

[(|| ( ) || 1) ]
g r

x

x P x P

xx P

E D x E D x

E D x



   ~ [ ( )]
gx PE D x

Proposed
IWGAN-GP 



~ ~

2
1~

[ ( )] [ ( )]

[(|| ( ) || 1) ]
g r

x

x P x P

xx P

E D x E D x

E D x



  

~

2

[ ( )]

[( ) ]
g

r g

x P

P P

E D x

E x x



 

ing datasets and Table III for test datasets, with the best
results highlighted in bold. The analysis reveals that
IWGAN-GP shows the best predictive performance,
followed by WGAN-GP, while GAN performs the weakest.
A comparison of the four metrics shows that IWGAN-GP
demonstrates lower predictive errors, reducing MSE, RMSE,
MAE, and MAPE on the test set by 72.33%, 70.87%, 72.72%,
and 46.62% respectively compared to GAN; and by 66.33%,
41.12%, 47.17%, and 41.34% respectively compared to
WGAN-GP.
Table IV displays the grain consumption forecasts

obtained by different methods from 2016 to 2020. The bolded
results indicate the values closest to the actual values. From
Table IV, the proposed IWGAN-GP, which includes
BiLSTM and CNN, effectively captures both long-term and
short-term characteristics of grain consumption trends,
resulting in improved fitting performance. Table V presents
the relative errors calculated from the actual and predicted
grain consumption from 2016 to 2020 using different
methods, with the smallest errors highlighted in bold. The
average errors for the basic GAN, basic WGAN-GP, and
IWGAN-GP over these five years are 7.40%, 7.95%, and
3.70%, respectively. IWGAN-GP has increased the
prediction accuracy by 50% and 53.46% compared to the
GAN and WGAN-GP, respectively.

IV. CONCLUSION
A new WGAN-GP model is proposed for grain

consumption prediction, involving the following key aspects:
1) construction of a new WGAN-GP using BiLSTM as the
generator and CNN as the discriminator to enhance the
extraction of time series features; 2) introduction of
predictionMSE in the generator loss function to minimize the
difference between generated and real data; 3) adoption of the
L1 norm instead of the L2 norm in the gradient penalty term of
the discriminator loss function to enhance model sparsity and
robustness. It is verified by experiments that the proposed
IWGAN-GP enhances prediction performance compared to
existing models, and the concept of the proposed WGAN-GP
can be applied to other time series forecasting tasks.
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(a) BiLSTM

(b) GAN

(c) WGAN-GP

(d) Proposed IWGAN-GP
Fig. 6 Prediction results of the proposed IWGAN-GP

TABLE II
PREDICTIVE PERFORMANCE OF THE PROPOSED IWGAN-GP

ON TRAINING SET
Evaluation
metrics

GAN WGAN-GP IWGAN-GP

MSE 0.0031 0.0080 0.0006

RMSE 0.5522 0.0896 0.0253

MAE 0.0426 0.0833 0.0221

MAPE (%) 12.7532 19.5332 5.3200

TABLE III
PREDICTIVE PERFORMANCE OF THE PROPOSED IWGAN-GP

ON TEST SET
Evaluation
metrics

GAN WGAN-GP IWGAN-GP

MSE 0.0365 0.0300 0.0101

RMSE 0.1910 0.1733 0.1003

MAE 0.1785 0.1634 0.0943

MAPE (%) 21.4223 19.4265 11.4357

TABLE IV
PREDICTIVE VALUES OF THE PROPOSED IWGAN-GP FOR

THE YEARS 2016-2020 (THE THOUSAND TONS)

Year
Actual

values

Predicted Values

GAN WGAN-GP IWGAN-GP

2016 53012.2906 49929.9152 49232.3567 51440.8984

2017 53340.04034 49794.9574 49835.3661 51967.0522

2018 54348.09278 50640.7640 50236.8975 52425.5705

2019 54801.2475 50760.6806 50484.1072 52812.3368

2020 56566.0091 50499.2780 50552.3718 53296.7498

TABLE V
RELATIVE ERROR OF THE PROPOSED IWGAN-GP FOR THE

YEARS 2016-2020 (THE THOUSAND TONS)

Year
Relative Errors

GAN WGAN-GP IWGAN-GP

2016 5.81% 7.13% 2.96%

2017 6.65% 6.57% 2.57%

2018 6.82% 7.56% 3.54%

2019 7.37% 7.88% 3.63%

2020 10.73% 10.63% 5.78%
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