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Abstract—The smart grid is a promising solution for mod-
ernizing electrical power systems in a digital world. However,
cybersecurity threats pose significant risks to the grid’s integrity
and resilience. False Data Injection Attacks (FDIA) have shown
serious risks to disrupt the power system infrastructure. SHA-
SARIMAX is a novel framework designed to address these
challenges by combining distinct elements of Secure Hash
Algorithm-256 (SHA256) and SARIMAX. Cryptographic hash-
ing techniques and advanced modelling of SHA-SARIMAX ac-
tively detect and recover corrupted values in time series datasets
affected by FDIA. This approach detects and recovers corrupted
values in time series datasets affected by FDIA, leveraging
cryptographic hashing techniques and advanced modelling.
The proposed framework achieves a 99.90% accuracy rate
from the original corrupted data. Thus, the SHA-SARIMAX
demonstrates its applicability and suitability for implementation
within smart grids, specifically for addressing the recovery of
original data from the corrupted data affected by FDIA.

Index Terms—SHA256, FDIA, SARIMAX, Regeneration,
Cyber security

I. INTRODUCTION

A smart grid is a power distribution system which is
sophisticated that facilitates the two-way transmission of
energy and data using digital communication technology.
Its purpose is to modernize traditional electricity grids by
incorporating information and communication technologies
(ICTs). In contrast to traditional grids, smart grids facilitate
the transmission of large data volumes using digital means,
eliminating the limitations of high-voltage transmission ca-
bles [1]. Smart grid deployment encompasses a range of elec-
trical components, including transmission lines, transformers,
and substations. It also facilitates efficient energy storage
and exploitation of renewable power production and demand
response. [2] [3]. Further, integrating digital communication
in smart grids provides a wide range of benefits, such as
improved reliability, efficient monitoring, and streamlined
electricity transfer [4]. However, the digitalization of smart
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grids has given rise to considerations about data security,
making smart grid security a key challenge. Preserving the
integrity and efficiency of smart grid operations demands the
critical protection of data exchanged between electrical and
digital systems [5].

Among the numerous cybersecurity threats, False Data
Injection (FDI) attacks have risen to prominence due to
their potential to disrupt critical infrastructure [6]. These
attacks involve the injection of false or manipulated data into
the smart grid control systems or data streams, leading to
incorrect decision-making and system instability. The 2015
Ukraine Blackout 2015 [7] was a cyberattack involving a
sophisticated FDIA on the country’s electricity grid. Adver-
saries manipulated sensor data to deceive the power system’s
control mechanisms, leading to widespread power outages.
The attack demonstrated the potential vulnerability of critical
infrastructure to cyber threats. This attack aims to cause the
system operator to take control actions that can negatively
impact the power system’s physical or economic functioning
[8]. The Texas Big Freeze [9] of 2021 significantly impacted
the smart grid, exposing vulnerabilities of physical and cyber
elements. The power grid failures disrupted power supply,
data communication, and control systems, emphasizing the
importance of enhancing smart grid security. [10] Dragonfly
cyber-espionage campaign targeted global energy companies
during 2016. They performed False data injection attacks to
breach energy systems.

The various statistical techniques and models help to
detect anomalies and irregularities in the time series data.
These techniques focus on identifying data points that deviate
significantly from the expected patterns, such as outliers or
unexpected abnormalities in values [11]. Moreover, statistical
analysis aids in demonstrating abnormal trends or sudden
changes in the data, which might signify the presence of false
or manipulated information. The main issue with statistical
analysis for detecting False Data Injection Attacks (FDIA) is
the potential for false truths and false lies. These false truths
occur when legitimate data patterns are mistakenly alerted as
sceptical, guiding to unwanted alerts and possible disruptions
in grid operations [12].

On a different note, machine learning techniques have
emerged as a powerful tool in recent years for identifying
FDIA in smart grid networks due to their ability to estimate
and identify anomalies in complex and dynamic data [13]
[14] [15] [16]. Deployment of machine learning and deep
learning-based models in smart grids encounters challenges
due to the reliance on extensive and high-quality training
datasets. Acquiring labelled data for both normal and attack
situations in smart grids can be difficult, and the data
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may be subject to noise, missing values, or inconsistencies,
which can influence the model’s effectiveness [17] [18].
Additionally, the real-time nature of smart grid operations de-
mands prompt inference from the machine learning models.
However, deploying computationally intensive deep learning
models on resource-constrained devices or edge nodes may
introduce delays, potentially compromising the system’s re-
sponsiveness [19]. Researchers also utilized blockchain for
the identification of potential weakness in the smart grid [20].

In summary, this research focuses on the need of promptly
identifying and recovering from false data injection attacks
(FDIA) in smart grids, in order to maintain the robustness
and dependability of the grid. The study emphasizes the
necessity of real-time datasets to detect FDIA by continu-
ously monitoring grid parameters for anomalies indicating at-
tacks. Consequently, we proposed a novel framework named
SHA-SARIMAX which integrates cryptographic hashing
techniques and advanced modelling to detect and recover
corrupted values in time series datasets. The framework’s
effectiveness is tested using a real-time dataset generated
from CESCOM, Mysuru, Karnataka power grid station.

II. LITERATURE SURVEY

This section summarises the challenges, latest solutions,
and ongoing investigations in the domain of cyber security
for smart grid infrastructure.

The smart grid represents a transformative advancement
in the energy sector, providing numerous advantages such
as enhanced energy management, enhanced efficiency, and
reduced environmental impact. However, the exponential
increase in the interconnectivity and digitization within the
smart grid infrastructure has opened up a new range of
security challenges [21].

Tange et al. [22] examined the problems of state estimation
and false data injection detection in a smart grid setting,
where measurements are affected by colored Gaussian noise.
The noise is modeled using an autoregressive process in
order to assess the condition of power transmission networks.
A spotter based on the Generalized Likelihood Ratio Test
(GLRT) is designed to identify fake data injection assaults.
However the colored Gaussian noise does not fully capture
all real-world noise characteristics. Guangdou et al. [22]
introduced a spatiotemporal detection method for identifying
and assessing false data injection attacks. They utilized the
cubature Kalman filter, while Gaussian process regression
was employed to examine spatial correlations. These tech-
niques were applied to monitor and record the dynamic prop-
erties of the state vector, enhancing the accuracy of false data
attack detection. Nevertheless, many detection approaches
need a significant amount of historical data for practicing
or are strongly impacted by system factors, rendering them
unsuitable for large-scale distribution systems [23].

Wang et al. [24] proposed a reliable two-tier detection
system for FDIA known as Kalman Filter and Recurrent
Neural Network (KFRNN). The first phase involves using
the Kalman filter and RNN to forecast the state, proficiently
capturing both linear and nonlinear characteristics of the
data. In the second step, the results of two base learners
are combined using the fully connected layer and back-
propagation. However, the strategy only concentrates on the

fluctuating temporal variations in the power grid’s condition
[25].

Huang et al. [26] introduced the idea of matrix separation
and a computational approach for identifying FDIA (Fault
Detection, Isolation, and Accommodation). The proposed ap-
proach investigates the low-rank feature of the non-invasive
computation matrix. Additionally, the attack matrix’s struc-
tural sparsity characteristic is used to differentiate between
genuine and altered data [27].

Aladag et al. [28] conducted data corruption attacks on the
MNIST character detection dataset, a widely used benchmark
in the field. A generative model, specifically an AutoEncoder,
is employed to build more secure classification models using
the poisoned dataset. Nevertheless, more examination is
necessary to verify the model’s efficacy in real-life situations
and when confronted with increasingly advanced forms of
assaults. Truong et al. [29] highlight the potential risk of
backdoor poisoning, which leads to the creation of incor-
rect machine learning models that act as causative attacks,
inducing specific errors not only during training but also in
the model’s functioning. The study identifies the adversarial
challenge of distinguishing between the roles of developers
and adversaries when corrupting the dataset.

Kewei et al. [30] proposed a secure two-phase authen-
tication protocol for secured measurements from isolated
intelligent grid devices. The framework employed an intel-
ligent reader as a connector between the lone device and
the advanced grid cloud, taking into account the physical
limitations of the devices. The research incorporates security
analysis to showcase the framework’s efficacy in countering
common threats and to verify its compliance with hard-
ware limitations. However, the method suffers from a lack
of security and real-time implementation [31]. Yuancheng
et al. [32] included a physical model into their study,
which successfully obtains accurate measurements by using
a Generative Adversarial Network. This approach effectively
captures the differences between actual measurements and
their ideal counterparts, enabling accurate recovery of state
estimation data may have been tampered with by FDI at-
tacks. However, Kalman based techniques are susceptible to
adversarial attacks and require extensive training to enhance
their robustness. [33].

Yang et al. [34] generated two deliberate false data in-
jection attacks on the forward and backward parths of a
control system in a cyber-physical system, with the intention
of compromising the smart grid. The controllable parameters
provide flexibility in adjusting the attack’s impact on the
system’s performance. Further, inverse estimation and the
Kalman filtering method are proposed as a defence system to
counter forward and feedback attacks. Sargolzaei et al. [35]
developed a controller to detect FDI attacks using a Kalman
filter to estimate agent states ensembled with Neural Network
architecture to respond to anomalies used by FDI attacks,
which increases accuracy in the detection of FDI attacks.

After analyzing the existing research, it is evident that the
smart grids involve extensive operations and transmissions
of time series data across domains. In real-world scenarios,
protecting data during transmission between information
nodes within the smart grid environment becomes crucial
to ensure data confidentiality and integrity. Additionally, the
system should be able to detect and recover from false data
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injection attacks, ensuring the identification and regeneration
of any corrupted values that may compromise the grid’s
reliability and security.

A. Paper Contribution

The primary contributions of this research study are as
follows:

1) Utilized real time CESCOM dataset for evaluation of
our proposed SHA-SARIMAX algorithm.

2) Building encoded text for transmitting and receiving
node data to identify the files corrupted by FDIA using
SHA-256.

3) Design and Implement a Time series-based SARIMAX
algorithm for recovering the corrupted file.

4) Performance evaluation of proposed SHA-SARIMAX
using different records of CESCOM dataset.

III. BACKGROUND

A. Secured Hashing Algorithm

In this study, the transmission phase involved utilizing the
Hash-based Message Authentication Code (HMAC) Secure
Hashing Algorithm (SHA) framework to create a hash func-
tion capable of generating a 256-bit (32-bytes) hash value,
known as a message digest, from the provided input data.
This message digest served as a crucial means of verifying
the integrity of the transmitted data at the receiver’s end.
Figure 1 illustrates the block diagram of HMAC framework.

To ensure secure data transmission, both the data and
its corresponding message digest were transmitted to the
receiver, utilizing the receiver’s Public-key on the receiving
node. After receiving the data, the receiver creates a new
message digest for the received data. Subsequently, the gen-
erated message digest was compared with the one received
during transmission for identifying the corrupted data.

B. Time Series algorithm and SARIMAX

In this research, we considered Time Series (TS) algo-
rithms to recover the corrupted files. TS algorithm is a
computational technique designed to analyze and model data
points in documented order, specifically for time-dependent
data. In our present scenario of the data collected from
CESCOM, Mysuru, We will utilize the TS algorithm to
forecast the potential value at any point in the middle of the
time series data. Further, we utilised the popular SARIMAX
model of the TS forecasting model in this research work.

SARIMAX is an extension of the traditional SARIMA
model, specifically designed to incorporate exogenous vari-
ables into the forecasting process. Although SARIMA is
efficient in modelling and forecasting data with seasonal
patterns and dependencies, its adequacy might be limited
when external factors influence the time series. SARIMAX
addresses this limitation by introducing exogenous variables
alongside past values and seasonal patterns to capture the
complexity of the time series.

The SARIMAX model includes multiple components such
as seasonal autoregressive (SAR), seasonal moving aver-
age (SMA), non-seasonal autoregressive (AR), non-seasonal
moving average (MA), integration (I), and exogenous vari-
ables (X). with the consideration of all these components,

the model becomes a comprehensive tool for time series
forecasting. It enables analysts to account for both internal
patterns and external influences, making it more robust and
versatile in various real-world scenarios.

IV. METHODOLOGY

Figure 3 depicts the suggested SHA-SARIMAX struc-
ture for detecting and restoring damaged files from FDIA.
The process flow for the working of the proposed SHA-
SARIMAX framework is as follows:

1) In this research, we adopted a hashing approach to
process the data rows.

2) The computed hash values are appended into a file at
the sending node.

3) To ensure data security, a reliable hashing algorithm
is employed to compute the values for each feature,
considering every 30 samples or rows of data.

4) During the data transmission, two files were sent to the
receiving node.

5) One of the files contained the generated values collected
at the node.

6) Another file contains securely encrypted hash values,
intended for decryption at the receiving node.

7) The hash values are regenerated and appended to a new
file at the receiving node.

8) To verify data integrity, the reproduced hash file, con-
taining the regenerated hash values, is compared with
the one received from the transmitter.

9) If any discrepancies are found, the model would apply
the Time Series algorithm to the attribute(s) that exhib-
ited different hash values.

A. Transmission Phase

The transmission node algorithm involves the following
steps: The datafile is read, ensuring proper data. A Hash
file is created to store the hashed values of the features.
A loop processes ’n’ records till the end of the dataset,
generating Hash values for each feature and updating the
Hash file accordingly. Additionally, the algorithm calculates
the minimum, maximum, mean, and median values for the
’n’ records. A Hash value is computed for each row in the
dataset. After processing all ’n’ records, the file is closed.
The original data file and the Hash file are then transmitted
using a private-public key cryptosystem, ensuring secure data
transfer.

B. Receiving Phase

The received data file undergoes another hashing process
to generate a new hash file at the receiver’s end. The complete
steps are discussed in Figure 3. According to Figure 3 the
generated hash file is compared with the received hash file
to ensure data integrity. Employing the TS algorithm, we
examined all the row values associated with the corrupted
feature and processed them with the TS algorithm. The
dataset incorporates the regenerated value. It replaces values
for all features that have changed, and this process continues
until thoroughly examining the last row. After decryption,
the receiver deciphers the received data. Figure 4 compares
sender Hash files at the transmission node and receiver hash
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Fig. 1: HMAC Algorithm

Fig. 2: Proposed SHA-SARIMAX process flow

Fig. 3: Receiving Node infrastructure

files at the receiver node. Further, a comparison between
the message digest and the SHA is obtained for each row.
If a discrepancy is found in the resulting hash value, our
statistical time series model regenerates the affected values.
The complete explanation is depicted in Algorithm 2.

The motive behind employing the TS Algorithm is that
training a Neural model on one dataset may not apply to
another dataset acquired from a different transmission node
or substation. Each substation may have distinct data, such as
Phase Voltage, Active Power, Reactive Power, Current, and
Power Consumption, making it unique. Therefore, knowl-
edge gained from one station cannot be directly applied to

predict or recover values for data from another station.

C. Simulations Results and Discussions

The efficacy of the proposed SHA-SARIMAX frame-
work was assessed in this research work using the real-
time CESCOM, Mysuru dataset. Initially, we investigate
the correlation between each of the features. Notably, we
find correlations between Phase-Voltage on the 66KV Trans-
former and 11KV on the same Y line (’66HV1Y-B PHVOLT
vs ’11LV1Y-B PHVOLT’), as well as correlations between
certain Power values (’11LV1IB’ vs ’11LV1IR’). These
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Algorithm 1 Transmission of secured data

1: procedure DATA TRANSMISSION(A)
2: Read the datafile with columns having proper data.
3: Create a Hash file
4: for every n records do
5: Create Hash values of all the features
6: Update the hash file.
7: Update min, max, mean and median values of the n records
8: Create a hash value for each row
9: end for

10: Close the file
11: Send the original file and Hash file using private-public key cryptosystem.
12: end procedure

Algorithm 2 Receiving and analysing secured data

1: procedure DATA RECEPTION(A)
2: Decrypt the received file
3: Rerun to get or the hash file fthe received datafile
4: for every n records do
5: Compare the two hash files generated vs received file for n rows for each feature.
6: Get the exact feature value which is corrupted.
7: Run the TS algorithm to regenerate the value
8: Update the file.
9: end for

10: Close the file
11: end procedure

findings indicate that changes in Phase voltage (66HV1Y-
B PHVOLT) have an impact on the Current, which, in
turn, affects the (11KVY-BPHVOLT). Figure 5 depicts the
correlation matrix for the regenerated values. This correlation
matrix graph serves as a confirmation that the regenerated
values closely match the original data and remain within
acceptable ranges.

During this assessment, we focused on the last four
corrupted files and compared the observed values with the
algorithm’s predicted values. For this purpose, the CESCOM
dataset is splitted into 50, 100 and 250 records. Table I
illustrates the results obtained from statistical analysis of
the proposed algorithm. The analysis revealed that for the
250-record subset, the proposed SHA-SARIMAX algorithm
exhibited the highest average prediction accuracy, achieving
a remarkable 99.90% prediction accuracy in power units
(p.units). This performance metric surpassed the results ob-
tained for other subsets of records.

Further, to validate the algorithm, the results are plotted
using Standardized residuals. Standardized residuals play a
pivotal role in conducting essential model diagnostics, en-
abling the evaluation of model fit, verification of underlying
assumptions, and detecting outliers or irregularities in time
series data [36]. Notably, in figure 5, the residuals of the
250-record subset are observed to be closer to the prediction
line, signifying the strong goodness of fit achieved by the
proposed SHA-SARIMAX algorithm.

Figure 7 illustrates the histogram representing records of
30, 50, 100, 250, and 1440. These observations interpret the
distribution and density of values within the active voltage
range. The histogram indicates that the dataset under scrutiny
is a real-time dataset, evident from its non-normalized and

skewed distribution. Consequently, the restoration of cor-
rupted values is skewed for certain values within a spec-
ified range. To address this non-normalization in restoring
corrupted values, this research introduces the TS algorithm
utilizing SHA-SARIMAX.

Figure 8 displays a correlogram graph that demonstrates
the alignment of Auto Correlation Function (ACF) values
with the closest observed values. The process of normalizing
the error value depends on the number of records considered.
If the error value is identified within a few record values,
the normalization to the correct value occurs more quickly.
Conversely, if the error is located towards the end of the
records, the normalization process extends over 10 to 20
records. This observation indicates that a smaller number
of records requires more time for the corrected value to be
normalized.

In conclusion, after conducting TA analysis on the
CESCOM, Mysuru dataset data from a substation node,
the following observations were derived: utilizing values
generated within the specified time interval from the dataset
file, the ARIMA model learned from a subset of data
and forecasted the best-fit value for one of the features,
ensuring it fell within the range of the values for that
attribute. The complete simulation diagnosis is presented
in Figure 6a. Following this, the procedure was iteratively
replicated for other modified attributes of the dataset. For
illustration, when we performed the experiment with the
feature ’JTYNGR66HV1Y-B PHVOLT’, the forecasted val-
ues consistently aligned with the expected values. The Mean
Squared Error (MSE) of our forecasts was calculated to be
0.01, while the Root Mean Squared Error (RMSE) stood at
0.09 as shown in Figure 6b.

IAENG International Journal of Computer Science

Volume 51, Issue 8, August 2024, Pages 1112-1121

 
______________________________________________________________________________________ 



Fig. 4: Comparison of a Hash file generated from transmitter and receiver end

V. CONCLUSION

Smart grid introduces a promising solution for modern-
izing electrical power systems to align with the demands
of an increasingly digitized world. However, this transfor-
mation leads to the emergence of FDIA as a significant
cybersecurity threat. To tackle these challenges, we proposed
SHA-SARIMAX, a novel framework specifically designed to
address FDIA in time series data.

The proposed framework combines distinct elements of
SHA and SARIMAX to effectively detect and recover cor-
rupted values in time series datasets affected by FDIA.
This work also outline the process of identifying corrupted
values through the creation of a hash file and subsequently
identifying the corresponding feature and row to regenerate
the lost values. We made certain assumptions, including the
integrity of the sent hash file, the values remaining within
an expected range during the specific time series, and the
absence of data fluctuations. Finally, our regeneration of
values achieves an accuracy level of nearly 100th decimal

places for individual features considered in our proposed
model. Future work will explore alternative ML models
beyond the TS algorithm to regenerate and compare the
accuracy of values, ultimately optimizing the solution for
FDIA detection and recovery in TS data.

REFERENCES

[1] Pankaj Gupta, Ritu Kandari, and Ashwani Kumar. “An introduction
to the smart grid-I”. In: Advances in Smart Grid Power System.
Elsevier, 2021, pp. 1–31.

[2] Ussama Assad et al. “Smart grid, demand response and optimization:
A critical review of computational methods”. In: Energies 15.6
(2022), p. 2003.

[3] Muhammed Zekeriya Gunduz and Resul Das. “Cyber-security on
smart grid: Threats and potential solutions”. In: Computer networks
169 (2020), p. 107094.

[4] Light Zaglago Bashir Jimoh and Jose Rodolpho de Oliveira Leo.
“Drivers of smart grid technology in Ghana”. In: Lecture Notes
in Engineering and Computer Science: Proceedings of The World
Congress on Engineering and Computer Science. 22-24 October
2019, San Francisco, USA, pp. 204–209.

[5] Shahid Tufail et al. “A survey on cybersecurity challenges, detection,
and mitigation techniques for the smart grid”. In: Energies 14.18
(2021), p. 5894.

IAENG International Journal of Computer Science

Volume 51, Issue 8, August 2024, Pages 1112-1121

 
______________________________________________________________________________________ 



TABLE I: Performance analysis of proposed SHA-SARIMAX algorithm for the prediction of corrupted files

Record
Subset

Observed Values
(power units)

Predicted Values
Accuracy

(%)
Average

accuracy (%)

30 records

66.5829 65.53592 98.4274817

98.34246
66.5829 65.52315 98.4083042

66.5829 65.51948 98.4027997

66.6206 65.37563 98.1312375

50 Records

65.9141 65.53592 100.292082

99.90934
66.0509 65.52315 99.6235054

66.0509 65.51948 99.9410394

66.017 65.37563 99.7807157

100 Records

65.6954 65.63 99.9004086

99.36161
65.6954 65.61568 99.8786095

65.6954 65.1712 99.2020297

65.6078 64.60094 98.4654023

250 Record

65.6954 65.67752 99.9727363

99.7681
65.6954 65.63568 99.909053

65.6954 65.6712 99.9631177

65.6078 65.10094 99.2275074

[6] Riyadh Rahef Nuiaa et al. “Enhancing the Performance of Detect
DRDoS DNS Attacks Based on the Machine Learning and Proactive
Feature Selection (PFS) Model.” In: IAENG International Journal of
Computer Science 49.2 (2022), pp. 511–524.

[7] D Alert. “Cyber-attack against ukrainian critical infrastructure”. In:
Cybersecurity Infrastruct. Secur. Agency, Washington, DC, USA,
Tech. Rep. ICS Alert (IR-ALERT-H-16-056-01) (2016).

[8] Gaoqi Liang et al. “The 2015 Ukraine blackout: Implications for false
data injection attacks”. In: IEEE Transactions on Power Systems 32.4
(2016), pp. 3317–3318.

[9] Dan Esposito Gimon and Eric. The texas big freeze: How much were
markets to blame for widespread outages? June 2021. URL: https:
//www.utilitydive.com/news/the-texas-big-freeze-how-much-were-
markets-to-blame-for-widespread-outages/601158/.

[10] TeamSymantec. Dragonfly: Western energy sector targeted by So-
phisticated Attack Group. 2017. URL: https://symantec- enterprise-
blogs . security . com / blogs / threat - intelligence / dragonfly - energy -
sector-cyber-attacks.

[11] Usman Inayat et al. “Cybersecurity enhancement of smart grid:
Attacks, methods, and prospects”. In: Electronics 11.23 (2022),
p. 3854.

[12] Junbo Zhao et al. “Short-term state forecasting-aided method for
detection of smart grid general false data injection attacks”. In: IEEE
Transactions on Smart Grid 8.4 (2015), pp. 1580–1590.

[13] Mohammad Ashrafuzzaman et al. “Detecting stealthy false data
injection attacks in the smart grid using ensemble-based machine
learning”. In: Computers & Security 97 (2020), p. 101994.

[14] Mostafa Mohammadpourfard et al. “Ensuring cybersecurity of smart
grid against data integrity attacks under concept drift”. In: Interna-
tional Journal of Electrical Power & Energy Systems 119 (2020),
p. 105947.

[15] Mario R Camana Acosta et al. “Extremely randomized trees-based
scheme for stealthy cyber-attack detection in smart grid networks”.
In: IEEE Access 8 (2020), pp. 19921–19933.

[16] Shuoyao Wang, Suzhi Bi, and Ying-Jun Angela Zhang. “Locational
detection of the false data injection attack in a smart grid: A
multilabel classification approach”. In: IEEE Internet of Things
Journal 7.9 (2020), pp. 8218–8227.

[17] Mohamed Amine Ferrag and Leandros Maglaras. “DeepCoin: A
novel deep learning and blockchain-based energy exchange frame-
work for smart grids”. In: IEEE Transactions on Engineering Man-
agement 67.4 (2019), pp. 1285–1297.

[18] Hamed Haggi, Meng Song, Wei Sun, et al. “A review of smart grid
restoration to enhance cyber-physical system resilience”. In: 2019
IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia) (2019),
pp. 4008–4013.

[19] Sajjad Khan et al. “Short-term electricity price forecasting by
employing ensemble empirical mode decomposition and extreme
learning machine”. In: Forecasting 3.3 (2021), p. 28.

[20] Ke Yuan et al. “Blockchain Security Research Progress and
Hotspots.” In: IAENG International Journal of Computer Science
49.2 (2022), pp. 433–444.

[21] Jianguo Ding et al. “Cyber threats to smart grids: Review, taxonomy,
potential solutions, and future directions”. In: Energies 15.18 (2022),
p. 6799.

[22] Guangdou Zhang et al. “Spatio-temporal correlation-based false data
injection attack detection using deep convolutional neural network”.
In: IEEE Transactions on Smart Grid 13.1 (2021), pp. 750–761.

[23] Junjun Xu et al. “A secure forecasting-aided state estimation frame-
work for power distribution systems against false data injection
attacks”. In: Applied Energy 328 (2022), p. 120107.

[24] Yufeng Wang et al. “KFRNN: An effective false data injection attack
detection in smart grid based on Kalman filter and recurrent neural
network”. In: IEEE Internet of Things Journal 9.9 (2021), pp. 6893–
6904.

[25] Yinghua Han et al. “False data injection attacks detection with mod-
ified temporal multi-graph convolutional network in smart grids”. In:
Computers & Security 124 (2023), p. 103016.

[26] Keke Huang et al. “False data injection attacks detection in smart
grid: A structural sparse matrix separation method”. In: IEEE Trans-
actions on Network Science and Engineering 8.3 (2021), pp. 2545–
2558.

[27] Yikun Huang and Haolin He. “Advance learning technique for the
electricity market attack detection”. In: Computers and Electrical
Engineering 100 (2022), p. 107865.

[28] Merve Aladag, Ferhat Ozgur Catak, and Ensar Gul. “Preventing data
poisoning attacks by using generative models”. In: 2019 1St Inter-
national informatics and software engineering conference (UBMYK).
IEEE. 2019, pp. 1–5.

[29] Loc Truong et al. “Systematic evaluation of backdoor data poisoning
attacks on image classifiers”. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition workshops.
2020, pp. 788–789.

[30] Kewei Sha, Naif Alatrash, and Zhiwei Wang. “A secure and efficient
framework to read isolated smart grid devices”. In: IEEE Transac-
tions on Smart Grid 8.6 (2016), pp. 2519–2531.

[31] Keyan Abdul-Aziz Mutlaq et al. “Symmetric Key Based Scheme for
Verification Token Generation in Internet of Things Communication
Environment”. In: EAI International Conference on Applied Cryptog-
raphy in Computer and Communications. Springer. 2022, pp. 46–64.

[32] Yuancheng Li, Yuanyuan Wang, and Shiyan Hu. “Online generative
adversary network based measurement recovery in false data injec-
tion attacks: A cyber-physical approach”. In: IEEE Transactions on
Industrial Informatics 16.3 (2019), pp. 2031–2043.

[33] Lei Cui et al. “Detecting false data attacks using machine learning
techniques in smart grid: A survey”. In: Journal of Network and
Computer Applications 170 (2020), p. 102808.

[34] Janghoon Yang. “A controllable false data injection attack for a cyber
physical system”. In: IEEE Access 9 (2021), pp. 6721–6728.

IAENG International Journal of Computer Science

Volume 51, Issue 8, August 2024, Pages 1112-1121

 
______________________________________________________________________________________ 



(a) 30 Records (b) 50 Records

(c) 100 Records (d) 250 Records

Fig. 5: Standard Residuals of CESCOM dataset
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(a) Result diagnostics of proposed SHA-SARIMAX (b) Predicted value at 15th row

Fig. 6: Simulation Analysis of proposed SHA-SARIMAX

Fig. 7: Histogram density of 30, 50, 100, 250 and 1440 records
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Fig. 8: Correlogram of 30, 50, 100, 250 and 1440 records (X-axis: Number of records, Y-axis Reactive Power distribution
of each TS based record)
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