
 

 

Abstract—The establishment of the NOx concentration 

prediction model is a prerequisite for the selective catalytic 

reduction (SCR) flue gas denitrification systems in thermal 

power plants to overcome measurement delays in continuous 

emission monitoring systems and achieve precise control. This 

paper proposes a NOx emission prediction method for thermal 

power plants based on the attention mechanism and the gated 

recurrent unit (Attention-GRU) to address the issues of low 

accuracy and cumbersome feature selection process in NOx 

emission prediction models established for the SCR system 

under complex working conditions. Firstly, this article utilizes 

the GRU to extract data features of NOx emissions from thermal 

power plants at the time scale, in order to establish a long-term 

prediction model. Secondly, the feature dimension clustering the 

k-means algorithm can effectively improve the learning 

efficiency of temporal features and reduce the computational 

complexity of subsequent algorithms. Finally, the parameter 

attention mechanism is introduced to autonomously select 

favorable temporal features for predicting NOx emissions in 

thermal power plants, replacing the complex and 

time-consuming data screening process. This paper has also 

collected historical datasets of the SCR system form a thermal 

power plant under complex and simple working conditions to 
verify the effectiveness of Attention-GRU. The experimental 

results show that compared with existing methods (see, e.g., 

ELM, RF, SVM, BPNN, LSTM, GRU, BiLSTM, and 

CNN-LSTM), our method has higher prediction accuracy of 

NOx emissions from thermal power plants, which helps to 

improve the control performance of SCR systems to reduce 

atmospheric pollution. At the same time, this article has also 

found that the attention mechanism can significantly reduce the 

dependence of existing methods on the feature selection process, 

effectively solve the interference problem of noise data on model 

feature extraction, and further improve the prediction accuracy 

of NOx emissions in thermal power plants. 

Index Terms—selective catalytic reduction flue gas 

denitrification system, NOx emissions prediction, attention 

mechanism, gated recurrent unit, time series prediction 
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I. INTRODUCTION 

Norder to promote economic development and accelerate 

progress in environmental protection, the pollution gas 

emission policies of the thermal power plant are becoming 

increasingly strict [1]. In this context, thermal power plants 

are also continuously improving their pollutant treatment 

technology to respond to environmental policies. Among 

them, the selective catalytic reduction (SCR) flue gas 

denitrification technology is widely used in thermal power 

plants due to its denitrification efficiency exceeding 80% [1], 

in order to meet the atmospheric pollutant emission standards 

of thermal power plants. However, due to the time delay 

problem of the NOx mass concentration signal measured by 

the continuous emission monitoring systems (CEMS) [2], the 

existing SCR denitrification system cannot achieve real-time 

and accurate ammonia injection control. This problem has led 

to the inability of thermal power plants to accurately control 

NOx mass concentration emissions. Therefore, the 

establishment of an accurate NOx emission prediction model 

for the thermal power plant plays a crucial role in improving 

the accuracy of ammonia injection control in SCR 

denitrification systems and reducing NOx emissions. 

At present, mechanism modeling and data-driven modeling 

methods are used to establish predictive models for NOx 

emissions in thermal power plants. Among them, the 

mechanism model is influenced by various factors such as fuel 

combustion features, catalyst activity, and boiler temperature. 

It cannot accurately predict NOx mass concentration in 

practical engineering [2]. The data-driven method gradually 

replaces the mechanism modeling method with a large 

number of practical engineering data training models, and 

becomes a new and popular research direction. Traditional 

data-driven modeling mainly relies on machine learning 

methods. Some researchers [3]-[17] used data analysis 

methods (e.g., the principal component analysis and the 

variational mode decomposition) to manually select data 

features. They also used machine learning methods (e.g., the 

extreme learning machines (ELM) [5]-[8], the support vector 

machine (SVM) [9]-[12], and the random forest (RF) 

[13]-[15]) to learn these features, so as to achieve the NOx 

emissions prediction modeling for thermal power plants. 

Other researchers [18]-[25] used optimization algorithms 

combined with the back-propagation neural networks (BPNN) 

[21]-[24], radial basis function neural networks, or Bayesian 

ensemble algorithms to predict and model NOx emissions. 

These methods outperform mechanism models in terms of 

predictive performance. However, their prediction accuracy 
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is related to manually selected data features and lacks the 

ability to generalize unknown data. In addition, they do not 

consider the temporal features of historical operating data 

from thermal power plants, which results in time delay issues. 

With the rapid development of deep learning, the recurrent 

neural network (RNN), the long short-term memory (LSTM) 

and the gated recurrent unit (GRU) which can process 

temporal data have attracted much attention. Some scholars 

[26]-[35] utilized the temporal feature learning ability of the 

LSTM and the GRU to construct models that can predict time 

series. Scholars [36]-[38] adopted bi-directional LSTM 

(BiLSTM) or bi-directional GRU (BiGRU) with stronger 

fitting ability. They added particle swarm optimization or 

improve whale optimization algorithm to adjust network 

parameters to establish a model with good prediction 

performance. Some scholars [39]-[42] proposed to build a 

NOx emission prediction method based on the CNN-LSTM 

hybrid neural network by using the data feature extraction 

ability of the convolutional neural networks (CNN). Although 

the above methods have achieved high accuracy in predicting 

NOx emissions, they are only applicable to simple datasets 

with limited data information. Such datasets cannot reflect the 

actual impact of various factors on the SCR denitrification 

system in practical engineering and the real situation of 

various operating conditions. The existing methods all need a 

time-consuming feature selection process to ensure good 

prediction results, when using real complex datasets. In 

particular, CNN-LSTM has the problem of extracting 

abnormal features extraction from the CNN in the dataset with 

complex input information. This problem leads in the inability 

of CNN-LSTM to be applied to the SCR denitrification 

system for real-time and accurate ammonia injection control. 

In response to the above issues, this article proposes a NOx 

emissions prediction method for thermal power plants based 

on the attention mechanism and the gated recurrent unit 

(Attention-GRU). The main contributions are as follows. 

(1) In response to the difficulty of existing methods in 

adapting to the complex working condition (CWC) of SCR 

system in thermal power plants for NOx emission prediction, 

which requires an artificial feature selection process, this 

paper introduces an attention mechanism with self-learning 

ability to focus on important temporal features. This 

mechanism enables the GRU to adaptively learn the focus 

weights of different input data, improving the prediction 

accuracy of the model. 

(2) This article also collects two datasets of the SCR system 

of a thermal power plant under simple working conditions 

(SWC) and CWC to verify the effectiveness of our method. 

The results show that compared with existing prediction 

methods (see, e.g., ELM, RF, SVM, BPNN, LSTM, GRU, 

BiLSTM, and CNN-LSTM), the Attention-GRU is more 

suitable for complex data inputs in practical scenarios, which 

is beneficial for precise control of NOx emissions in thermal 

power plants. 

(3) In response to the problem of reduced prediction 

accuracy caused by noise data interference in the feature 

learning process of existing methods, this paper verifies 

through ablation experiments that the attention mechanism 

can significantly improve the prediction accuracy of BiLSTM 

and CNN-LSTM methods in CWC. The experimental results 

show that the mechanism adaptively allocates focus weights 

in the feature extraction stage of these methods, effectively 

solving the above problems. 

The rest of this article is organized as follows. The Section 

II introduces the current SCR denitrification system in 

thermal power plants. The modeling process of NOx 

emissions from thermal power plants is detailed in the Section 

III. The Section IV presents experimental results and analysis, 

verifying the effectiveness of attention mechanism and 

Attention-GRU. The Section V provides the conclusion. 

II. SCR DENITRIFICATION SYSTEM 

In this section, the workflow of SCR denitrification system 

will be introduced. The types of monitoring data collected by 

the SCR denitrification system of thermal power plants under 

real operating conditions collected in this paper will also be 

introduced. 

A. Denitration Process 

As shown in Fig. 1, the SCR denitrification system in 

thermal power plants is usually installed between the boiler 

economizer and air preheater, which is an important means to 

reduce NOx pollution emissions [43]. The denitrification 

process of the SCR system is as follows. 

Step 1 The flue gas from the boiler combustion of thermal 

power plant enters the SCR denitrification system through the 

economizer. The CEMS measures the NOx concentration of 

the flue gas at the inlet of SCR denitrification system, and then 

transmits it to the control system. 

Step 2 The control system uses the NOx concentration in 

the flue gas at the denitrification inlet and the NOx 

concentration in the flue gas at the denitrification outlet to 

calculate the injection amount of NH4 in the SCR. Then, it 

sends a control signal to the control components. 

Step 3 After receiving the command, the ammonia 

injection control valve regulates the flow from the ammonia 

station.  

Step 4 Ammonia and dilution air are injected into the 

reactor of the SCR denitrification system through the mixer. 

They form harmless N2 and H2O with the flue gas from the 

economizer under the action of catalyst reaction, thus 

consuming the harmful NOx. 

Step 5 The CEMS measures the NOx concentration in the 

outlet flue gas of SCR denitrification system again, so as to 

facilitate the follow-up monitoring and control of the system. 
 

 
Fig. 1.  The schematic diagram of SCR denitrification system 
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In the control of traditional SCR denitrification system, the 

delay of the CEMS measurement for NOx concentration leads 

to the delay of the command sent by the control system. This 

phenomenon undoubtedly increases the difficulty of the 

precise control for the SCR denitrification system. Affected 

by this, the stability of the SCR denitrification system has 

seriously deteriorated, leading to a reduction in the 

denitrification efficiency and an increase in consumption 

costs. Under the urgent need of carbon peak strategy and 

increasingly stringent environmental requirements, building 

an accurate prediction model of NOx emissions has become a 

prerequisite for achieving the control of a stable, efficient, and 

low-cost SCR denitrification system. 

B. Data Collection 

This paper takes the SCR flue gas denitrification system of 

a 1000MW unit in a thermal power plant under two different 

working conditions. The research collects historical operating 

data of the SCR denitrification system of the unit from May 

13th to 27th, 2021, and monitors 14 types of data information, 

as shown in Table I. Among them, the CWC dataset contains 

13 types of data information, while the SWC dataset only has 

7 types of data information. 
 

TABLE I 

THE DENITRATION DATA TYPE 

Symbol Data Name 

Cout the NOx concentration in outlet flue gas 

LT the total load 

FT the total fuel quantity 

AT the total air volume 

O2 the oxygen content 

Cin the NOx concentration in inlet flue gas 

CNH4 the control of ammonia inlet regulating valve 

ONH4 the opening of ammonia inlet control valve 

FA the A-layer damper position feedback 

FB the B-layer damper position feedback 

FC the C-layer damper position feedback 

FD the D-layer damper position feedback 

FE the E-layer damper position feedback 

FF the F-layer damper position feedback 

 

III. ATTENTION-GRU PREDICTIVE MODELING OF NOX 

EMISSIONS FROM THERMAL POWER PLANTS 

In this section, the attention-GRU based NOx emissions 

prediction modeling process for thermal power plants will be 

explained from three parts: the GRU, the attention mechanism, 

and the Attention-GRU. This paper theoretically analyzes the 

important role of the attention mechanism in the feature 

extraction of GRU. 

A. The GRU for temporal feature information extraction 

To address the time-dependent problem of RNN caused by 

the disappearance of gradients in long-term sequences, LSTM 

uses three gate structures (e.g., the forget gate, the input gate, 

and the output gate) to remember effective information and 

discard useless interference information [44]. Each gate 

structure represents a cellular state. The LSTM uses these 

cellular states to selectively propagate important information 

backward to maintain the gradient of long time series. On the 

basis of LSTM, the GRU replaces the forgetting gate, the 

input gate, and the output gate with the update gate and the 

reset gate to simplify the network structure. This method 

reduces the parameters of network training, and is easier to 

calculate [45]. The internal structure of GRU is shown in Fig. 

2. 

Step 1 The states of reset gate tR  and update gate tZ  are 

related to the hidden state 1tH   of the previous time step and 

the input tX  of the current time step, and are updated 

according to equations (1) and (2). The reset gate is used to 

determine the amount of information which needs to be 

forgotten in the previous time step, as shown in the green path 

in Fig. 2. The update gate requires determining the amount of 

information transmitted to the current time step, as shown in 

the blue path in Fig. 2. 

 1t t xr t hr rR X W H W b                   (1) 

 1t t xz t hz zZ X W H W b                  (2) 

 
1

1 x
x

e






                            (3) 

where     is the activation function sigmoid, as shown in 

equation (3). The 
xrW  and 

hrW  are the weight of 1tH   and 

tX  in tR . The 
xzW  and 

hzW  respectively represent the 

weights of 1tH   and tX  in tZ . The 
rb  and zb  represent 

the bias of tR  and tZ . 

 

 
Fig. 2.  The schematic diagram of GRU 

 

Step 2 Obtain the candidate hidden state tH   of the current 

time step from the state of tR  and input tX , as shown in 

equation (4). The tR  controls how much 1tH   should flow 

into tH  , as shown in the yellow path in Fig. 2. 1tH   contains 

all important historical information of temporal data. 

Therefore, tR  is used here to discard historical information 

unrelated to the current time step prediction in the previous 

time step, which helps to convey the short-term dependencies 

of the time series. 

  1tanht t xh t t hh hH X W R H W b
             (4) 

 tanh
x x

x x

e e
x

e e









                          (5)  
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where tanh  is the activation function, as shown in equation 

(5). The 
xhW  and 

hhW  is respectively the weight of tX  and 

the “reset” hidden state 1t tR H   in tH  . The hb  is the bias 

of tH  . 

Step 3 Use tZ , 1tH  , and 
tH   to update the hidden state 

tH  of the current time step, as shown in equation (6). tZ  

controls how much information 1tH   and 
tH   should be 

updated to 
tH , as shown in the red path in Fig. 2. This design 

can effectively solve the gradient attenuation problem of the 

RNN and transfer the long-term dependency relationship of 

time series. 

 1 1t t t t tH Z H Z H
                    (6) 

Step 4 Obtain the output 
tY  of the current time step based 

on 
tH , as shown in equation (7). The output 

tY  of GRU is 

determined by the 
tH  of the current time step and affected by 

the important information reserved in the previous time step, 

as shown in the purple path in Fig. 2. 

 t t hy yY H W b                          (7) 

where 
hyW  is the weight of 

tH  in 
tY . The yb  is the bias of 

tY . 

Overall, the GRU can better learn the correlation between 

long-term features and short-term features on the historical 

operating dataset of boilers in thermal power plants. This 

ability helps to establish a more accurate NOx emissions 

prediction model for thermal power plants. However, the 

actual data of thermal power plants are mostly collected under 

CWC. The existing methods face many interference factors 

on these data, resulting in poor prediction accuracy.  

B. The attention mechanism for focusing on key information 

The attention mechanism is inspired by the selective 

attention mechanism of human vision [46]. It selects 

information that is more critical to the current task goal from a 

large number of input information [47]. In autonomous 

learning of data, the attention mechanism focuses on the 

relationship between the output and input information of the 

model. The general equation is as follows. 

   , i if x x x y                          (8) 

where the x  represents the query. ix  represents Keys. 
iy  

represents Values.  , ix x  represents attention weight. 

The current better solution for selecting attention weight 

 , ix x  is Nadaraya-Waston kernel regression, which has 

the following equation. 

 
 

 
1

,
i

i n

ii

K x x
x x

K x x








                       (9) 

where  K  represents the kernel function used to measure 

the distance between x  and ix . The calculation equation for 

non-parametric attention convergence is as follows, when the 

kernel function in equation (10) uses a gaussian kernel. 

 
 

2

, max
2

i

i

x x
x x soft

 
  

 
 

             (10) 

   
1

,
n

i i

i

f x x x y


                     (11) 

where  ix x  is the attention score. The maxsoft  is the 

normalized exponential function. 

In the prediction of NOx concentration in thermal power 

plants, Cout is the independent prompt of the attention 

mechanism and is regarded as the “Query”. At the same time, 

each class of input data is regarded as a prominent feature 

vector and is regarded as the “Keys”. Their own eigenvectors 

are regarded as the “Values” and appear in pairs with the 

“Keys”. The attention mechanism is to realize the distribution 

of the attention weight of the “Values” through the attention 

convergence of “Query” and “Keys”, as shown in Fig. 3. The 

parameter attention mechanism proposed in this article 

cleverly learns the relationship between input information and 

output by setting learnable parameters, as shown in equations 

(12) and (13). The adaptive learning weight allocation 

strategy of this mechanism focuses on important (or highly 

relevant) input information. It helps the GRU select key 

features from complex input information to improve the 

accuracy of the NOx concentration prediction in thermal 

power plants. 

 
  

2

, , max
2

i

i

q k
q k soft


 

 
  
 
 

           (12) 

   
1

, ,
n

i i

i

f x q k v 


                   (13) 

where q  represents the query, which is related to the output 

Cout. The ik  represents the key corresponding to the input 

data (e.g., Cout, LT, and FT). The   is a learnable parameter. 

The iv  represents the value corresponding to the input data. 

 

 
Fig. 3.  The schematic diagram of attention mechanism 

 

In general, the attention mechanism with parameters can 

screen out the time series features that are conducive to the 
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GRU in the learning of a large amount of data, so as to be 

suitable for various working conditions and not be disturbed 

by noise information. The following article will introduce the 

implementation process of the Attention-GRU in detail. 

C. The Attention-GRU for predictive modeling 

The unique reset and update gates of GRU not only 

simplify the cellular structure in LSTM, accelerate the 

training speed of the model, but also endow it with temporal 

feature learning ability comparable to LSTM. Thus, better 

exploring the long-term and short-term dependencies of time 

series data on historical operating datasets is beneficial for 

establishing accurate NOx concentration prediction models 

for thermal power plants. This paper proposes that the 

ATT-GRU can improve the GRU’s ability to learn complex 

time characteristics by introducing attention mechanism into 

its autonomous learning ability. This method not only 

adaptively selects data features based on actual operating 

conditions in the intelligent prediction of NOx emissions from 

thermal power plants, but also eliminates the manual data 

filtering process. 

The Attention-GRU modeling process of NOx emissions 

from thermal power plants is divided into four parts in Fig. 4: 

data preprocessing, feature extraction, clustering 

dimensionality reduction, and attention mechanism. 
 

 
Fig. 4.  The structure of Attention-GRU 

 

Step 1 Data preprocessing: Normalize the input (e.g., Cout, 

LT, and FT) collected at time t. This processing accelerates the 

gradient descent speed and improves training speed. It also 

enables learning of features from different dimensions within 

a unified framework to improve prediction accuracy. On the 

other hand, the transformation of dimensions helps the GRU 

network learn the temporal features of each input information. 

Step 2 Feature extraction: The GRU network uses reset and 

update gates to extract temporal features of input information 

from long time series, and learns them in a way that preserves 

or forgets them. Then, these learned feature information are 

further dimensionally transformed and restored to the original 

time-domain feature dimension, in order to facilitate 

subsequent network learning of the characteristics of input 

information. 

Step 3 Cluster dimensionality reduction: The K-means 

clustering method obtains the “Keys” corresponding to the 

temporal features of each input data, achieving the goal of 

feature dimensionality reduction and improving the training 

speed of the attention parameter  . Then, the fully 

connected layer converts each input feature into a vector 

composed of “Keys” and “Values”, facilitating subsequent 

the attention mechanism to calculate learning weights. 

Step 4 The attention mechanism: The Cout(t) and the 

temporal features of input data (e.g., Cout, LT, and FT) are used 

as inputs (Query, Keys, and Values) of the attention 

mechanism to participate in the learning of the attention 

parameter   and the calculation of attention weights, as 

shown in Fig. 3. Each temporal feature is weighted with its 

corresponding attention weight to obtain the predicted value 

Cout(t+1) at time t+1. The learning process of attention 

weights involves gradually increasing the attention to 

important temporal features and reducing the learning of 

unimportant temporal features. 

In summary, the Attention-GRU can be used not only for 

predicting NOx concentration in thermal power plants under 

SWC, but also for CWC without the need for redundant data 

screening processes. After the theoretical explanation, the 

next section will verify the effectiveness of the method from 

experimental results. Meanwhile, through comparative 

experiments on the CWC dataset and SWC dataset under 

different working conditions, this paper also demonstrates the 

problems of existing methods. 

IV. EXPERIMENTATIONS AND ANALYSIS 

In this section, the effectiveness of the proposed method 

will be verified through ablation experiments and 

comparative experiments. 

A. Experimental Dataset 

In the CEMS system of a thermal power plant, the sampling 

interval is 30 second. The CWC dataset collects 40000 pieces 

of data, while the SWC dataset collects 34000 pieces of data. 

The missing data items are filled in using interpolation 

method. The specific division situation of the dataset is shown 

in Table II. In order to compare the experimental results, this 

paper selects part of the data of the test set for clear and 

intuitive dis·play, as shown in Fig. 5. 
 

TABLE II 

THE SITUATION OF DATASETS PARTITIONING 

Datasets Training set Validation set Test set 

CWC 32000 4000 4000 

SWC 27200 3400 3400 

 

B. Experimental Details 

The experiment in this article is to build a deep learning 

environment on a computer with AMD Ryzen 7 5 800H 

central processing unit and NVIDIA GeForce RTX 3060 

laptop graphics processing unit, as shown in Table III. The 

mean absolute error of the network is set as the loss function. 

The Adam algorithm is used as the optimizer. The epoch is 

100 rounds. 
 

 

 

 

IAENG International Journal of Computer Science

Volume 51, Issue 8, August 2024, Pages 1171-1181

 
______________________________________________________________________________________ 



 

TABLE III 

THE DEEP LEARNING ENVIRONMENT CONFIGURATION 

Environment Configuration 

Anaconda 3.0 

CUDA 11.5 

cuDNN 8.2.4 

Python 3.9 

Tensorflow 1.11.0 

Keras 2.2.4 

Numpy 1.19.5 

Pandas 1.3.5 

Sklearn 1.0.2 

 

TABLE IV 

THE PERFORMANCE COMPARISON OF MODELS ON THE CWC DATASET 

Models RMSE MAPE R2 

ELM 6.249 13.408 0.801 

RF 3.559 5.028 0.836 

SVM 6.385 9.707 0.234 

BPNN 4.113 6.592 0.840 

LSTM 3.048 4.259 0.912 

GRU 3.019 4.432 0.914 

BiLSTM 2.943 4.319 0.918 

CNN-LSTM 3.771 5.780 0.866 

Attention-GRU 2.628 3.627 0.935 

  
(a) on the CWC dataset (b) on the SWC dataset 

Fig. 5.  The partial data display of test sets under different operating conditions 

 

C. Evaluation Indicators 

The modeling comparison (true value: 
iy , predicted value: 

'iy ) on the training set and test set obtained from the same 

dataset in the same division way. 

(1) The root mean square error (RMSE) 

 
2

1

1
RMSE '

n

i i

i

y y
n 

                    (14) 

where the value range of the RMSE is [0, +∞), and it reflects 

the difference between the predicted value and the actual 

value. The smaller the value, the closer the predicted value is 

to the actual value, that is, the better the prediction effect of 

the model. 

(2) The mean absolute percentage error (MAPE) 

1

'100%
MAPE

n
i i

i i

y y

n y


                  (15) 

where the value range of the MAPE is [0, +∞). It reflects the 

difference between the predicted value and the actual value. 

The smaller the value, the higher the accuracy of the 

prediction model. It means that the predicted value is 

completely consistent with the actual value, when the MAPE 

is 0 %. The model is a perfect model. It means that the model 

is a poor model, when the MAPE is greater than 100 %. 

(3) The R-Square (R2) 

 

 

2

2 1

2

1

'
R 1

n

i ii

n

i ii

y y

y y






 







                (16) 

where the value range of the R2 is (-∞, 1]. It reflects the 

quality of the model fitting effect. The larger the value, the 

better the model fitting effect. The closer R2 is to 1 indicates 

that the model fit is more perfect and the closer the prediction 

is to no error. 

D. Experimental Results and Analysis 

(1) Comparative experiment 

In order to verify the modeling effect of the Attention-GRU 

and the problems of existing methods in the feature extraction, 

this paper conducts experimental comparisons with existing 

methods on historical operational datasets of the SCR system 

from a thermal power plant under different working 

conditions. Moreover, existing methods are divided into two 

categories: general regression models that do not have the 

ability to learn temporal features (see, e.g., ELM, RF, SVM, 

and BPNN), and temporal prediction models (see, e.g., LSTM, 

GRU, BiLSTM, and CNN-LSTM). 

 
TABLE V 

THE PERFORMANCE COMPARISON OF MODELS ON THE SWC DATASET 

Models RMSE MAPE R2 

ELM 2.548 5.715 0.838 

RF 2.244 4.943 0.874 

SVM 3.246 8.037 0.737 

BPNN 2.302 4.972 0.868 

LSTM 1.724 3.918 0.926 

GRU 1.728 3.800 0.926 

BiLSTM 2.522 3.420 0.937 

CNN-LSTM 1.535 3.243 0.941 

Attention-GRU 1.521 3.259 0.942 

 

Table IV and Table V show the comparison of the 

Attention-GRU with existing models on the CWC and SWC 

datasets for predictive metrics. They can be seen that the 

Attention-GRU has better predictive performance. Compared 

with general regression models, temporal prediction models  
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(a) on the CWC dataset (b) on the SWC dataset 

Fig. 6.  The comparison of evaluation indicators on different datasets 

 

  
(a) on the CWC dataset (b) on the SWC dataset 

Fig. 7.  The comparison of prediction results between general regression models and Attention-GRU on different datasets 

 

not only have lower RMSE and MAPE, but also have higher 

values of the R2. These results indicate that the difference 

between the predicted and actual values of temporal 

prediction models is smaller, and they can all fit the trend of 

actual values over time well. The predictive ability of general 

regression models is weaker than that of temporal prediction 

models even on the SWC dataset with fewer input data, as 

shown in Fig. 6 (a) and Fig. 6 (b). On the specific time series 

prediction results of the CWC dataset, this phenomenon is 

more pronounced, as shown in Fig. 7 (a). On the SWC dataset, 

although general regression models have improved in 

predicting individual data, they do not fit the overall time 

trend well, as shown in Fig. 7 (b). 

Table V and Fig. 6 (b) demonstrate that the predictive 

performance of the CNN-LSTM on the SWC dataset is not 

only superior to the original LSTM, but also achieves results 

close to the Attention-GRU. As shown in Fig. 8 (a), the 

CNN-LSTM, like the Attention-GRU, can fit actual curves 

well in both individual data predictions and overall time 

trends of the SWC dataset, and even outperform the 

Attention-GRU in some series. These results indicate that in 

scenarios with low noise data, the CNN effectively improves 

the learning ability of the original model for temporal features, 

but this improvement is still weaker than the attention 

mechanism. However, in the CWC dataset, the CNN-LSTM 

shows a performance decline compared to the original LSTM, 

and its predictive performance is far inferior to the 

Attention-GRU, as shown in Table IV and Fig. 8 (a). These 

results indicate that the feature learning process of 

CNN-LSTM will be affected by interference and mislead the 

CNN into extracting abnormal features. This issue does not 

appear in the Attention-GRU proposed in this article, 

indicating that it is not affected by noise data interference and 

is more suitable for predicting NOx emissions in thermal 

power plants under different operating conditions, achieving 

precise control of ammonia injection in the SCR 

denitrification system. As shown in Fig. 8 (a) and Fig. 8 (b), 

the prediction curve of the Attention-GRU is closer to the 
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actual curve in the partially enlarged range of the test data on 

the CWC and SWC datasets. At the same time, it also fits the 

actual situation better in the overall time trend, reflecting the 

operating status of the SCR system. 

Fig. 9 (a) and Fig. 9 (b) show the proportion of the attention 

mechanisms on various input data in different datasets. 

Compared with the equal treatment of the original model, the 

attention mechanism allocates different degrees of attention 

weights to various input data through self-learning of data 

features, in order to filter out highly correlated temporal 

features with output, and thus achieve adaptive adaptation to 

different working conditions. This is an important reason why 

the Attention-GRU can maintain good predictive 

performance for NOx emissions in thermal power plants under 

various operating conditions. This is required for models (e.g.,  

BiLSTM and CNN-LSTM), which have strong feature 

learning abilities but weak feature screening and 

discrimination abilities. The following article will verify this 

result through a reasonable ablation experimental setup. 

(2) Ablation experiment 

In the ablation experiment, this paper compares the 

construction of Attention-BiLSTM and the 

Attention-CNN-LSTM on the CWC dataset  with the original 

model. This article designs the experiment to verify whether 

the ability of the attention mechanism to filter features 

autonomously can improve the accuracy of data feature 

extraction. 

As shown in Table VI, compared with the BiLSTM on the 

CWC dataset, the Attention-BiLSTM respectively reduces 

the RMSE and MAPE by 9.8 % and 15.9 %, and improves the 

R2 by 1.6 %. As shown in Fig. 10 (a), the experimental result 

indicates that the addition of the mechanism enhances the 

original model’s attention to important input data, thereby 

improving the prediction accuracy of the original model for 

NOx emissions from thermal power plants. Moreover, 

compared with the CNN-LSTM on the CWC dataset, the 

Attention-CNN-LSTM respectively reduces the RMSE and 

 

  
(a) on the CWC dataset (b) on the SWC dataset 

Fig. 8.  The comparison of prediction results between time series prediction models and Attention-GRU on different datasets 
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(a) on the CWC dataset (b) on the SWC dataset 

Fig. 9.  The attention level of different input information on different datasets 

 

 
(a) Attention-BiLSTM 

 
(b) Attention-CNN-LSTM 

 

Fig. 10.  The attention level of different input information on the CWC dataset 

 

MAPE by 29.4 % and 36.9 %, and improves the R2 by 7.7 %. 

This improvement is particularly significant on the 

CNN-LSTM, which is more susceptible to noise data 

interference. It fully demonstrates that the autonomous 

learning of input feature attention by the mechanism 

effectively solves the problem of feature extraction anomalies 

in the CNN, as shown in Fig. 10 (b). 
 

TABLE VI 

THE ABLATION EXPERIMENT ON THE CWC DATASET 

Models RMSE MAPE R2 

BiLSTM 2.943 4.319 0.918 
CNN-LSTM 3.771 5.780 0.866 

Attention-BiLSTM 2.656 3.634 0.933 
Attention-CNN-LSTM 2.661 3.648 0.933 

 

As shown in Fig. 11, in the enlarged image of local test data 

in the CWC dataset, it can be seen that the predicted values of 

the Attention-BiLSTM and Attention-CNN-LSTM are both 

closer to the true value than the BiLSTM and CNN-LSTM 

after the autonomous learning of attention mechanism. This 

result indicates that the attention mechanism has the ability to 

autonomously filter complex data features, effectively 

improving the prediction accuracy of existing methods. 
 

 
Fig. 11.  The prediction results of models with the attention mechanism on 

the CWC dataset 
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V. CONCLUSION 

This paper has made contributions to the prediction of NOx 

emissions in the SCR system of thermal power plants under 

CWC. The proposed Attention-GRU enhances the model’s 

adaptability to complex data by incorporating the autonomous 

learning ability of the attention mechanism into the temporal 

features of GRU, thereby reducing the adverse effects of 

noisy data. Meanwhile, this paper demonstrates through 

experiments on two datasets (CWC dataset and SWC dataset) 

of the SCR system in thermal power plants under different 

working conditions that our method achieves better prediction 

accuracy than existing methods in different scenarios and can 

adaptively cope with various complex situations. The 

experimental results also show that the clever application of 

the attention mechanism in the temporal feature learning 

process of existing methods can play a role in self-learning 

feature selection, improving the model’s generalization 

ability and anti-noise data interference ability. However, there 

are still some issues with the application of this method in the 

existing precise control of NOx emissions in thermal power 

plants. In the future, exploring the optimal combination of 

control strategies and deep learning will become our new 

research direction. 
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