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Abstract—The paper suggests a hybrid numerical method
to price barrier options under Lévy processes. As the main
ingredient of our approach, we model the values of the Wiener-
Hopf factors using artificial neural networks in the exact
formula for the solution. The numerical Wiener-Hopf factor-
ization typically reduces the problem to the factorization of the
polynomial of exp(iξ), which is interpreted as the characteristic
function of the random variable that approximates the Lévy
process at the exponentially distributed time moment. We design
and train a feedforward neural network with one hidden
layer that approximates the coefficients of factors based on
the input vector of the factorized polynomial coefficients. We
implemented in the software a training data generator and a
generalized loss function to factorize a polynomial of arbitrary
degree. We demonstrate the performance of our approach using
examples of factorization of second-, sixth- and 254th-degree
polynomials. It takes a fraction of a second for our trained
artificial neural networks to calculate the factors.

Index Terms—Wiener-Hopf factorization, numerical meth-
ods, option pricing, Lévy processes, artificial neural networks

I. INTRODUCTION

COMPUTATIONAL finance serves as the driver for de-
veloping numerical methods. In this paper, we consider

the problem of numerical pricing barrier options under Lévy
processes, which are popular jump models in a broad range
of applications, including finance (see, e.g., [1]–[3] the main
approaches to jump model calibration). For an introduction
to these models, we refer to [1].

The option pricing problem under stochastic processes is
crucial for computational finance. Recall that a barrier option
pays the specified amount on its expiration date T , provided
that during the option’s lifetime, the price of the underlying
asset does not cross a fixed constant barrier H (knockout
barrier options). If the underlying price crosses the barrier,
the option becomes worthless.

From a probabilistic perspective, the price of the barrier
option in the Lévy model can be expressed in terms of
the conditional expectation of the payoff function, which
depends on the Lévy process and its supremum (or infimum).
In financial practice, the fast speed and algorithmizability
of computational methods are of great importance. Unfortu-
nately, in this sense, pricing problems in Lévy models are
still a challenge for researchers.

The main groups of “traditional” numerical methods for
pricing options in Lévy financial models include:
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• Monte Carlo methods (classical Monte Carlo methods,
multilevel Monte Carlo algorithms, Monte Carlo algo-
rithms combined with Wiener-Hopf factorization, see,
e.g., [4]–[6]);

• Numerical methods for computing the correspondent
expectation (backward induction and Fourier transform,
projection methods, Wiener-Hopf factorization method
in combination with the Laplace transform, see, e.g.,
[7]–[11])

• Numerical methods for solving integrodifferential par-
tial differential equations (method of multinomial trees,
finite difference method, Wiener-Hopf factorization
method, see, e.g., [12]–[19]).

A detailed review can be found in a recent article [20].
Recently, research in the field of computational finance has

made great strides through the use of machine learning tech-
niques. Typically, machine learning methods have been used
to analyze and model financial markets. Currently, there is
a trend towards the development of hybrid methods of com-
putational mathematics using machine learning methods and
classical numerical methods. In the field of computational
finance, these methods have been used to solve problems of
pricing European options in Lévy models in relatively simple
cases. Hybrid methods, combining “traditional” numerical
methods with machine learning algorithms, can help solve
this problem and significantly influence the development of
computational finance.

The ability to price options using machine learning meth-
ods follows from Cybenko’s theorem presented in [21],
which states that an artificial feedforward neural network
without cycles, with one hidden layer, can approximate any
continuous function of many variables with any accuracy.
Unfortunately, direct training of such networks can cause a
number of practical difficulties, both due to the complexity
of collecting and analyzing statistical data necessary to
construct a training set and of a computational nature (the
required training time to achieve satisfactory accuracy and
the amount of memory occupied). In [22], to speed up and
refine modeling, initial assumptions about the dynamics of
the process are used, expressed in the form of a “universal
differential equation,” which is defined in full or part by a
universal approximator (a neural network, a random forest
or another model).

An approach to solving multidimensional option pricing
problems in models with stochastic volatility and/or jumps
described in [23] is based on the use of deep neural networks.
In the paper mentioned, the neural network is trained to
handle the values of the emerging differential operator and
the initial-boundary conditions of the problem. The algorithm
used (called the “Deep Galerkin method” by the authors
of the article for its ideological similarity to the Galerkin
method) is trained on data sets randomly located in time
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and space meshes and is capable, in some cases, of solving
equations of up to 200 variables. In addition, as shown in
[24], it is also possible in some cases to obtain irregular
solutions using deep neural networks. This property can be
useful for pricing barrier options using operator techniques,
where functions whose derivatives are discontinuous may
appear during the calculations. Finally, for the case of Lévy
models, in [25] the neural network is applied to exponential
Lévy processes (e.g., Kou [26] and CGMY [27] models) for
pricing European options.

The use of machine learning methods to price barrier
options and other path-dependent derivatives is a case that
is currently not examined in detail in existing publications.
The most promising approach can be to use neural networks
to handle typical subproblems in the framework of some
classical numerical methods.

A Wiener-Hopf method is a universal tool for solving two-
dimensional initial boundary value problems for pricing path-
dependent options under Lévy processes. However, in the
case of general Lévy models, the Wiener-Hopf factors are
not available in a closed form and should be approximated
by using special numerical tricks. In the current paper, we
study the possibility to approximate Wiener-Hopf factors
with artificial neural networks as the main ingredient of the
fast, accurate and universal numerical method for pricing
barrier options under Lévy models.

Artificial neural networks (ANN) have already shown
their practical effectiveness and are very popular in solving
problems using machine learning methods. ANNs are used
in modern software applications for pattern recognition [28],
[29], medical data analysis [30], [31], stock rate prediction
[32], and the solution of computational finance problems
[25]. Universal approximation theorems have been proven
for neural networks [21], [33]–[35] to show the effectiveness
of a neural network in approximating functions of various
classes.

The work [36] examines the optimal Kolmogorov approx-
imation of a function using deep neural networks. Deep
networks are shown to provide exponential accuracy in the
approximation of the multiplication operation, polynomials,
sinusoidal functions, and some smooth functions. The re-
search in [37] is devoted to studying the precision, computa-
tional efficiency, and complexity of neural network training.
The potential to develop more effective solutions is identified
by carefully designing network architectures and training
strategies.

Fast numerical algorithms in combination with machine
learning methods to price options can become the basis for
the implementation of risk management trading systems in
the financial market. A combined approach using machine
learning methods to select an effective trading strategy on
the exchange is presented in [38]. The mentioned approach
uses the calculation of the linear regression slope coefficient
using logarithmic return indicators and the determination of
the trend of quotes of the BTC/USD currency pair in the
next period based on the calculated sign of the coefficient.

The goal of the current paper is to suggest a hybrid numer-
ical method to price barrier options under Lévy processes.
The main advantage of the method is to apply an efficient
approximation of the Wiener-Hopf factors with artificial
neural networks in the exact formula for the solution. In

the present work, we use a fully connected feedforward
neural network with one hidden layer to find an approximate
solution to the Winner-Hopf factorization problem.

II. THEORETICAL BACKGROUND

A. Pricing barrier options under Lévy processes

In short, Lévy processes are stochastically continuous
processes with stationary independent increments (further
details can be found in [39]). According the Lévy-Khintchine
formula, the characteristic exponent ψ of a one-dimensional
Lévy process Xt is defined by:

ψ(ξ) =
σ2

2
ξ2− iγξ+

∫ +∞

−∞
(1−eiξy+ iξy1[−1;1](y))F (dy),

(1)
where σ2 ≥ 0 and µ are the variance and the drift of the
Gaussian component, 1[−1;1] is the indicator function of the
interval [−1; 1], and the Lévy measure Π(dy) satisfies∫

R\{0}
min{1, y2}Π(dy) < +∞.

Recall that Xt is completely specified by its characteristic
exponent by the equality E[eiξX(t)] = e−tψ(ξ).

In applications to finance, the following non-Gaussian
Lévy models are among the popular ones.

Example 1. [CGMY] The characteristic exponent of a pure
jump CGMY process [27] is given by

ψ(ξ) = −iγξ + CΓ(−Y )[GY − (G+ iξ)Y ] (2)
+ CΓ(−Y )[MY − (M − iξ)Y ],

where C > 0, µ ∈ R, G > 0, M > 1, and Y ∈ (0, 2), Y 6=
1.

Example 2. [Kou model] The characteristic exponent of Kou
model introduced in [26] is of the form

ψ(ξ) =
σ2

2
ξ2 − iγξ +

ic+ξ

λ+ + iξ
+

ic−ξ

λ− + iξ
, (3)

where c± ≥ 0 and λ− < −1 < 0 < λ+.

Example 3. [Compound Poisson process with binomial
distribution of jumps] The characteristic exponent of the
compound Poisson process with binomial distribution of
jumps has the following form

ψ(ξ) = λ · (1− preidξ − ple−idξ), (4)

where λ, d > 0 and 0 < pr, pl < 1, pr + pl = 1.
Let T,H,G(S) be the maturity, strike, and pay-off func-

tion. Assume that the riskless rate r is constant and, under
a risk neutral measure chosen by the market, the underlying
asset dynamics is modeled with the exponential Lévy process
St = exp(Xt). The characteristic exponent ψ(ξ) then admits
the analytic continuation in the strip =ξ ∈ (−1, 0) and the
continuous continuation in the closed strip =ξ ∈ [−1, 0],
since E[exp(Xt)] < +∞.

Introduce the supremum process Xt = sup0≤s≤tXs and
the infimum process Xt = inf0≤s≤tXs, which are of great
importance in pricing barrier options.

Then the no-arbitrage down-and-out option price at t = 0
is defined as follows (see, e.g. [9]):

Vdo(x, T ) = E
[
e−rTG(exp(x+XT ))1exp(x+XT )>H

]
, (5)
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where G(S) is the payoff at time T , and 1Y >H is equal to
1 if the condition Y > H is satisfied, and 0 – otherwise.

The no-arbitrage price of up-and-out option at t = 0 writes
analogously, but in the terms of the supremum process:

Vuo(x, T ) = E
[
e−rTG(exp(x+XT ))1exp(x+XT )<H

]
, (6)

The universal tool (see, e.g., [9], [11], [18], [40]) that
allows calculating expectations (5) and (6) is the Wiener-
Hopf method that leads to factorization of the characteristic
function E[eiξXTq ] = q/(q+ψ(ξ)), where Tq is an exponen-
tially distributed random variable with intensity parameter
q > 0. Carr’s randomization or the Laplace transform reduces
the pricing problem to the calculation of the appropriate
sequence of expectations of the following kind

Vq(x) = E
[
G
(
exp(x+XTq )

)
1x+XTq>lnH

]
. (7)

The expectation of the form (7) can be easily computed using
the Wiener-Hopf factorization method and the Fast Fourier
Transform algorithm when the factors are known. According
to the state-of-the-art implementation of the Wiener-Hopf
method (see, e.g., [10]), we have

Vq(x) = F−1
ξ→xφ

−
q (ξ)Fx→ξ1x>lnHF−1

ξ→xφ
+
q (ξ)Fx→ξG(x),

(8)
where Fx→ξ is the Fourier transform of the function from
spatial domain (x) to frequency domain (ξ), F−1

ξ→x is the
inverse Fourier transform of the function from frequency
domain to spatial domain, φ+

q (ξ), φ−q (ξ) are the characteristic
functions of the random variables XTq , XTq , respectively,
that factorize the characteristic function q

q+ψ(ξ) of XTq .
However, when considering general Lévy models, it is

not possible to obtain explicit formulas for the characteristic
functions φ±q (ξ) in the Wiener-Hopf factorization identity

q

q + ψ(ξ)
= φ+

q (ξ)φ−q (ξ), ∀ ξ ∈ R. (9)

Evaluating the Wiener-Hopf factors φ±q (ξ) numerically re-
quires advanced numerical methods, which complicates the
implementation of the Wiener-Hopf method for practitioners.
In the paper, we suggest a new approach that simplifies the
factorization technique by using artificial neural networks for
the approximation of the Wiener-Hopf factors in the exact
formula (8) for expectation (7). In the next subsection, we
briefly give the main definitions and facts on feedforward
neural networks.

B. A short introduction to artificial neural networks

A feedforward artificial neural network (ANN in short)
consists of three types of computational block called layers
(the input layer, hidden layers, and the output layer) and
determines a nonlinear function:

f : Rd → RM , (10)

where d is the number of neurons at the input (first) layer
and M is the number of neurons at the output (last) layer.
Let L be the number of hidden layers in the network, Nl
be the number of neurons in the lth layer, the vector x =(
z0

1 , . . . , z
0
d

)
be the input layer 0, and let zlj denote the output

of the j -th neuron in the layer l, wli,j be the weight of the arc
that connects the neuron i of the lth layer and the neuron
j of the layer l + 1, let blj denote the bias of the neuron

j in the layer l, and y =
(
zL+1

1 , . . . , zL+1
m

)
be the output

(L + 1)th layer. Then the outputs zl+1
j between the current

(l+ 1)th and previous lth layers in the feedforward network
are determined by the following relation.

zl+1
j = σl

(
Nl∑
i=1

wli,jz
l
i + bl+1

j

)
, (11)

0 < l < L, 1 ≤ j ≤ Nl+1.

where where σl (·) is the activation function. In this work,
we consider only two types of activation function:
• linear activation function: σl (z) = z,
• sigmoid activation function: σl (z) = 1

1+e−z .
Using the relations (11), one can define a non-linear

function (10) that expresses the output layer y via the input
layer x.

The number of layers in a neural network determines its
depth, and the number of neurons in the network determines
its size.

The universal approximation theorem, proven by George
Cybenko (Cybenko’s theorem), states that a feedforward
artificial neural network with a single hidden layer can
approximate any continuous function of many variables on
a compact with any accuracy [21]. Thus, it is important to
define a sufficient number of neurons in the hidden layer,
weights between the input neurons and neurons of the hidden
layer, weights between connections from neurons in the
hidden layer and the output neuron, and biases.

In Figure 1 we present the architecture of a simple
feedforward neural network with four neurons in the input
layer, three neurons in the only single hidden layer, and two
output neurons.

Figure 1. The architecture of a feedforward neural network with one hidden
layer

In this article, we will design a feedforward network
with one hidden layer to obtain an approximation of the
factorization of the polynomial function. The number of
neurons in the hidden layer will be chosen empirically to
obtain a practically significant precision.

When training a neural network, the loss function is of
great importance. It is used to calculate the error between
the ground-truth labels (values that we want to predict) and
the predicted values. The main goal of ANN training is to
minimize this error.
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The mean absolute error (MAE) and the mean square error
(MSE) are the most common loss functions. To calculate
MAE, one needs to take the absolute difference between the
predicted values yi and the ground truth labels ỹi and average
them over the entire data set:

MAE =
1

N

N∑
k=1

M∑
i=1

∣∣yki − ỹki ∣∣ ,
where N is the number of samples in the train or test datasets,
and M is the dimension of the output layer. MAE evaluates
how close the predictions of the ANN are to the actual
values. This metric is less sensitive to outliers and can give
a generalized estimate of the quality of the model.

To calculate MSE, you need to take the difference between
the predicted values and the ground truth labels, square it,
and average it over the entire data set:

MSE =
1

N

N∑
k=1

M∑
i=1

(
yki − ỹki

)2
. (12)

The metric (12) is useful for identifying anomalies.
In this paper, we do not use standard loss functions when

training a neural network to find polynomial factors for
a given polynomial. In formulas such as (8), we are not
interested in the proximity of the actual and predicted values
of the coefficients of the polynomial factors, but in the
identity of the original and factorized polynomial. Therefore,
we will propose using our custom loss function that takes this
specifics into account using the forward and inverse discrete
Fourier transforms to evaluate factorization accuracy.

III. FACTORIZATION OF POLYNOMIALS USING NEURAL
NETWORKS

A. The problem setup of polynomial factorization using a
neural network

According to [5], [9], for a given positive d and a large
M(= 2N , N ∈ N) we can approximate φ+(ξ), φ−(ξ) and
q(q+ψ(ξ))−1 in (9) with the following kind of Fourier series.

q(q + ψ(ξ))−1 ≈
M/2−1∑

k=−M/2+1

pke
iξkd, (13)

M/2−1∑
k=−M/2

pk = 1, pk ≥ 0; (14)

φ+
q (ξ) ≈

M/2−1∑
k=0

p+
k e

iξkd, (15)

M/2−1∑
k=0

p+
k = 1, p+

k ≥ 0; (16)

φ−q (ξ) ≈
M/2−1∑
k=0

p−k e
−iξkd, (17)

M/2−1∑
k=0

p−k = 1, p−k ≥ 0; (18)

Since {pk}, {p−k }, and {p+
k } approximate the probability

distributions of XTq , XTq and XTq , respectively, we assume
that

i both sequences {p−k }
k=M/2−1
k=0 and {p+

k }
k=M/2−1
k=0 are

strictly decreasing.
ii the numbers pk do not decrease as k increases from
−M2 + 1 to 0, and do not increase as k increases from
0 to M

2 − 1.

If the number M is not large, we can rewrite the formula
(8) in explicit form on the grid xn = nd, n ∈ Z:

Vq(nd) =

M/2−1∑
k=0

Wq((n− k)d)p−k , nd > lnH, (19)

Wq(nd) =

M/2−1∑
k=0

G((n+ k)d)p+
k , nd > lnH, (20)

Wq(nd) = 0, nd ≤ lnH (21)

Notice that the decomposition (13) can be found using the
following formulas. Set for each k = −M/2 + 1,−M/2 +
2, . . . , 0, . . . ,M/2− 1 :

pk =
d

2π

∫ π/d

−π/d

(
q(q + ψ(ξ))−1

)
e−iξkddξ. (22)

Thus, we can reduce our factorization problem (9) to the
following. For a given set of coefficients pk, k = −M/2 +
1, ...,M/2−1, such that (14) holds, we want to find to set of
coefficients p+

k , k = 0, ...,M/2−1, and p−k , k = 0, ...,M/2−
1 such that (16), (18) are valid, and satisfy the following
factorization identity:

M/2−1∑
k=−M/2−1

pke
iξkd =

M/2−1∑
k=0

p+
k e

iξkd ·
M/2−1∑
k=0

p−k e
−iξkd.

(23)
Note that the formula (23) can be interpreted as the

factorization of characteristic functions. In fact, consider a
discrete random variable X that takes the following positive,
negative, and zero values. Assume that this random variable
can be represented in the following form

X = X− +X+, (24)

where X− ≤ 0 and X+ ≥ 0 are independent discrete
random variables with the following unknown probability
distributions

P(X− = −kd) = p−k , k = 0, ...,M/2− 1, (25)

and

P(X+ = kd) = p+
k , k = 0, ...,M/2− 1, (26)

where {p−k }, and {p+
k } satisfy (i). Then the characteristic

exponent of X is defined by (9), and (ii) is valid for {pk}.
Thus, the factorization problem (9) can be reformulated as

follows. For a given distribution of X:

P(X = kd) = pk, k = −M
2

+1,−M
2

+2, . . . , 0, . . . ,
M

2
−1,

(27)
with {pk} that satisfies (ii), we need to find the distributions
of X− and X+.

In the following subsection, we reduce our factorization
problem to factorization of polynomials.
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B. Factorization of polynomials

Let the following sequence of M − 1 numbers be given:

p0, p1, . . . , pM−2,

where

pk ≥ 0, k = 0,M − 2;
M−2∑
k=0

pk = 1,M = 2m,m ∈ N. (28)

According to similar considerations as in Section III-A,
φX (ξ) =

∑M−2
k=0 pke

iξ(k−M2 +1) is the characteristic function
of a discrete random variable X , taking values at points xk =
k − M

2 + 1 with probabilities pk, k = 0, . . . ,M − 2.
Next, we impose an additional condition on the sequence

{pk}. For k ≤ M−2
2 the sequence pk increases and for

k ≥ M−2
2 it decreases. We want to represent the char-

acteristic function of X as the following product of the
characteristic functions of two independent discrete random
variables taking non-negative and non-positive values:

φX (ξ) =

M/2−1∑
k=0

βke
iξk ·

M/2−1∑
k=0

αke
−iξk,

where

αi > 0, i = 0,M/2− 1;

M
2 −1∑
i=0

αi = 1, (29)

0 < αi < αi+1 < 1, i = 0,M/2− 1; (30)

βi > 0, i = 0,M/2− 1;

M
2 −1∑
i=0

βi = 1 (31)

1 > βi > βi+1 > 0, i = 0,M/2− 1. (32)

The indicated task reduces to finding the following factor-
ization

p (x) = q(x) · r(x), (33)

where

q (x) = α0 + α1x+ · · ·+ αM
2 −1x

M
2 −1;

r (x) = β0 + β1x+ · · ·+ βM
2 −1x

M
2 −1;

p (x) = p0 + p1x+ · · ·+ pM−2x
M−2.

To solve the problem (33), we train a neural network to
find the coefficients of the polynomials q and r, the product
of which is equal to the given polynomial p.

The desired neural network should approximate the func-
tion

F : (pi)→ (αj , βk) ,

where M = 2m,m ∈ N, i = 0,M − 1; j, k = 0,M/2− 1.
Thus, in this paper, we consider the factorization of polyno-
mials of degree 2m − 2, m ∈ N,m > 1.

In this work, the discrete Fourier transform is used to
establish the identity (33) of the coefficients found using a
neural network.

For a given natural number M being the power of two, the
discrete Fourier transform of the vector (p0, p1, . . . , pM−1)
can be interpreted as computing the values of the polynomial

p (x) = p0 + p1x+ . . .+ pM−1x
M−1

at the roots of unity xk = e2πik/M , k = 0, M − 1. Note
that in the factorization problem (33) the polynomial p(x) is
of degree M − 2, that is, pM−1 = 0.

It is well known that the values of a n-th degree poly-
nomial at n + 1 different points uniquely determine the
polynomial itself. Furthermore, if q (x0) = a and r (x0) = b,
then r (x0) · q (x0) = ab. Thus, due to the values of the
polynomials r(x) and q(x) at every M -th root of unity, we
can determine the values of the polynomial p = r · q at the
same points and recover its coefficients pk using the discrete
inverse Fourier transform.

C. Generating training data

In machine methods framework, the training dataset is of
great importance to fit the model. In the problem considered,
a set of train data for our neural network is a set of pairs of
polynomials of a given degree M/2 − 1 as input data and
their products (polynomials of degree M − 2) as output data
under the conditions described in Section III-B.

The initial data of the function for generating polynomial
coefficients for the training sample for a given M are the
sequences α and β defined in Section III-B. These sequences
define factor polynomials, the product of which gives us the
original polynomial suitable for factorization using a neural
network.

As the most simple case, we consider a trinomial factor-
ization that corresponds to M = 4. It is easy to see that for
M = 4 the equality (33) takes the following form:

p0 + p1x+ p2x
2 = (α0 + α1x)(β0 + β1x). (34)

From (34) we derive the formulas for computing coeffi-
cients p0, p1, p2 for given αi, βi(i = 0, 1):

p0 = α0 · β0;

p1 = α1 · β0 + α0 · β1; (35)

p2 = α1 · β1.

For M = 8 the identity (33) reads as follows:
6∑
i=0

pix
i = (α0 + α1x+ α2x

2 + α3x
3)× (36)

(β0 + β1x+ β2x
2 + β3x

3).

Using (36) we derive the following explicit formulas for
the coefficients pi(i = 0, 6) for a given αj , βj(j = 0, 3):

p0 = α0 · β0;

p1 = α0 · β1 + α1 · β0;

p2 = α0 · β2 + α1 · β1 + α2 · β0;

p3 = α0 · β3 + α1 · β2 + α2 · β1 + α3 · β0; (37)

p4 = α1 · β3 + α2 · β2 + α3 · β1;

p5 = α2 · β3 + α3 · β2;

p6 = α3 · β3.

We use formulas (35) and (37) to generate artificial train-
ing data for a neural network to factor polynomials of the
second and sixth degrees, respectively.
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Next, we define the generator of artificial training data for
arbitrary M = 2N , N ∈ N, as follows.

Let us first introduce two M -dimensional vectors of the
coefficients of the polynomial factors supplemented with
extra zeros:

A =
[
α0, α1, . . . , αM/2−1, 0, . . . 0

]
;

B =
[
β0, β1, . . . , βM/2−1, 0, . . . 0

]
.

When constructing a training sample, we generate se-
quences αi, i = 0,M/2− 1 and βi, i = 0,M/2− 1 so that
they meet conditions (29), (30), and (31), (32), respectively.
To achieve these conditions, we introduce a sequence of
increasing and non-overlapping intervals such that the upper
boundary of the adjacent interval on the left is significantly
less than the lower boundary of the adjacent interval on the
right. Our αi random value generator selects one value from
each interval and then normalizes them. The elements of βi
are selected in a similar way, but in reverse order.

In particular, for M = 8, the sequence αi, i =
0,M/2− 1 is generated as follows. First, a sequence
of 4 random integers is constructed in the ranges
[0, 100], [300, 500], [1000, 1500], [5000, 10000]. Then the re-
sulting sequence is normalized, that is, each element is
divided by the sum of all elements constructed. The sequence
βi, i = 0,M/2− 1 is generated in a similar way, but with
its subsequent inversion.

Then the M -dimensional vector

P = [p0, p1, . . . , pM−2, 0]

of the coefficients of the correspondent polynomial product
of degree M − 2 (with zero coefficient at degree M − 1)
for the training sample can be efficiently determined by the
formula:

P = iDFT (DFT (A) ·DFT (B)),

where DFT is the discrete Fourier transform, iDFT is the
inverse discrete Fourier transform and · is the element-wise
multiplication of the sequences A and B.

Recall that the DFT maps the sequence of real or complex
numbers {f0, f1, . . . , fM−1} to the sequence of complex
numbers

Fl = DFT [f ](l) =
M−1∑
k=0

fke
2πjkl/M , 0 ≤ l ≤M − 1,

where j is the imaginary unit. Inverse DFT recovers the
sequence of fk’s exactly from {F0, F1, . . . , FM−1}. The
correspondent formula reads:

fk = iDFT [F ](k) =
1

M

M−1∑
l=0

Fle
−2πjkl/M , 0 ≤ k ≤M−1.

Technical details on the implementation of the Fast Fourier
Transform algorithm to efficiently calculate DFT and iDFT
can be found in [41].

D. Implementing ANN to find the coefficients of polynomial
factors

According to the universal approximation theorem of
Cybenko [21], a feedforward neural network with a single
hidden layer can approximate any continuous function of

many variables with any precision. The number of neurons
in the hidden layer is chosen empirically so that the factor-
ization accuracy has practical significance.

In this paper, we implement a feedforward neural network
with one hidden layer. The number of neurons in the input
layer is equal to the number of coefficients of the polynomial
for which factorization is performed. We trained artificial
neural networks to factor polynomials of the second (M =
2), sixth (M = 8) and 254th degrees (M = 256). Thus,
given M , the target degree of the polynomial is M − 2, and
the number of coefficients is M − 1.

The number of neurons in the output layer corresponds
to the number of coefficients of the factors. Given M , we
calculate M

2 coefficients for each factor. The sum of the
coefficients of the factors must be equal to one according
to the conditions (29), (31) formulated in Section III-B. To
strictly comply with this condition, the smallest coefficients
of the polynomials q(x), r(x) (α0, βM/2−1) are calculated
using the following formulas:

α0 = 1−
M/2−1∑
i=1

αi,

β0 = 1−
M
2 −1∑
i=0

βi.

In table I we present the parameters of our neural networks
for factoring polynomials of the second, sixth, and 254th
degrees.

Table I
PARAMETERS OF NEURAL NETWORKS FOR FACTORIZATION OF

POLYNOMIALS OF THE 2ND, 6TH AND 254TH DEGREES

DP NI NH NO

2 3 8 2

6 7 1024 6

254 255 2048 254

DP is the degree of the factorizable polynomial
NI is the number of neurons in the input layer.
NH is the number of neurons in the hidden layer.
NO is the number of neurons in the output layer.

In this research, neural networks for polynomial factoriza-
tion are implemented using the Tensorflow library for Python
programming language.

E. Loss function

As we already mentioned, two polynomials of the nth
degree are identically equal if their values coincide at n+ 1
different points. Using this property, in the problem of
factoring an arbitrary polynomial of degree M − 2, we must
evaluate the values of the original and factorized polynomials
at M points equal to the distinct M th roots of unity.
Considering that M is a power of two, we can effectively
implement the calculation of the required values by using the
Fast Fourier transform algorithm [41]. This approach appears
to be more efficient than the standard MSE (mean square
error) loss function.

To train the network, we propose our custom loss function
for factoring a second-degree polynomial that is constructed
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as follows. Let

A = [1− α1, α1, 0, 0];

B = [β0, 1− β0, 0, 0];

C = [p0, p1, p2, 0],

where p0, p1, p2 are the known values of the coefficients of
the quadratic trinomial, and α1, β0 are the predicted values
of the coefficients of the linear factors.

We define the vector D as follows:

D = DFT (A) ·DFT (B)−DFT (C) .

The loss function named CLOSS2 returns the mean sum
of squares of the real and imaginary parts of all components
of the vector D:

CLOSS2 =
1

N

N∑
k=1

M∑
i=1

((
<Dk

i

)2
+
(
=Dk

i

)2)
,

where N is the number of samples in the training set. Figure
2 shows the values of the loss function CLOSS2 in training
a neural network to factorize a second-degree polynomial.

0 5 10 15 20
Epochs

0.000

0.005

0.010

CL
OS

S6

loss
val_loss

Figure 2. Values of the loss function CLOSS2 in training a neural network
to factorize a polynomial of degree 2 by epochs

loss denotes values of the loss function on training data
val loss denotes values of the loss function on validation data

When factorizing a 6th degree polynomial, the vectors
A,B,C are constructed as follows:

A = [1−
3∑
j=1

αj , α1, α2, α3, 0, 0, 0, 0]; (38)

B = [β0, β1, β2, 1−
2∑
k=0

βk, 0, 0, 0, 0]; (39)

C = [p0, p1, p2, p3, p4, p5, p6, 0], (40)

where pi, i = 0, 6 are known values of the coefficients
of a 6th degree polynomial, αj(j = 1, 3), βk(= 0, 2) are
predicted coefficients values for factors.

We introduce the penalties PA and PB in the CLOSS6
loss function for violating the conditions of monotonic in-
crease of the sequence αj(j = 0, 3) and monotonic decrease
of the sequence βk(= 0, 3) as follows:

PA = −min(0, α1 − α0, α2 − α1, α3 − α2);

PB = −min(0, β0 − β1, β1 − β2, β2 − β3).

Then the loss function for training a neural network to
factor a 6th degree polynomial will have the form:

CLOSS6 =
1

N

N∑
k=1

M∑
i=1

((
<Dk

i

)2
+
(
=Dk

i

)2)
+

+ PA+ PB.

Figure 3 shows the dynamics of the CLOSS6 values
during neural network training to factorize a sixth-degree
polynomial.
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Figure 3. CLOSS6 values during neural network training for factorization
of a polynomial of degree 6

loss denotes values of the loss function on training data
val loss denotes values of the loss function on validation data

When factorizing a polynomial of degree 254, the vectors
A,B,C are constructed in a similar way. Along with the
penalties for violating the conditions on monotonic increase
(30) and decrease (32) of the sequences of the coefficients
of factors, we introduce the penalties for violating the con-
ditions (29), (31) as follows:

PA = −min(0, α1 − α0, α2 − α1, . . . , αM
2 −1 − αM

2 −2);

PB = −min(0, β0 − β1, β1 − β2, . . . , βM
2 −2 − βM2 −1);

PC = −min(0, 1−
M
2 −2∑
j=0

αj , α0, α1, . . . , αM
2 −2);

PD = −min(0, β0, β1, . . . , βM
2 −2, 1−

M
2 −2∑
k=0

βk);

PE =

1−
M
2 −1∑
k=0

αk

2

;

PF =

1−
M
2 −1∑
k=0

βk

2

.

Next, we sum all penalties into a total penalty P :

P = PA+ PB + PC + PD + PE + PF.

Let us introduce the penalty significance coefficient λ ≥ 103

to increase the weight of penalties. Then our custom loss
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function for training ANNs to factor a polynomial of an
arbitrary degree will have the form:

CLOSS =
1

N

N∑
k=1

M∑
i=1

((
<Dk

i

)2
+
(
=Dk

i

)2)
+ λ · P. (41)

Finally, Figure 4 presents the values of the loss function
(41) during training a neural network to factor a 254th degree
polynomial.
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Figure 4. CLOSS values in training a neural network to factorize a
polynomial of degree 254

loss denotes values of the loss function on training data
val loss denotes values of the loss function on validation data

IV. NUMERICAL EXPERIMENTS

A. Examples of the factorization polynomials using neural
networks

In our numerical experiments, we implemented and trained
three feedforward neural networks with one hidden layer to
factorize polynomials of degree 2, degree 6, and degree 254.

The neural networks were trained on more than 1,000,000
samples of input polynomials suitable for factorization. Char-
acteristics of the computer on which the experiment was
carried out: Intel(R) Core(TM) i7-3630QM CPU 2.40GHz,
RAM 16.0 GB.

In table II, we demonstrate the results of estimating the
precision of factorization of polynomials of the second, sixth,
and 254th degrees with respect to the number of neurons in
the hidden layer.

Table II
RESULTS OF TRAINING NEURAL NETWORKS TO FACTOR POLYNOMIALS

OF 2ND, 6TH AND 254TH DEGREES

Degree HNN CLOSS training prediction
time, hrs time, sec

2 8 3.45 · 10−6 6 0.0434

6 1024 6.31 · 10−6 19 0.0581

254 2048 4.43 · 10−4 82 0.0633

HNN - hidden neurons number
CLOSS - the custom loss function

The training time of a neural network increases predictably
with the degree of the factored polynomial. Most of the time
is spent generating the input data for the training epochs and

calculating the loss function, where the forward and inverse
discrete Fourier transforms are used. At the same time, the
time of factorization of a polynomial by a trained neural
network does not increase significantly and takes fractions of
a second with an accuracy sufficient to price barrier options.

A series of factorizations of various 6th-degree polyno-
mials was carried out using a trained neural network. For
1000 factorizations, we detected only one violation of the
condition of increasing the sequence {αk}, 11 violations of
the condition of decreasing the sequence {βk}, and 3 cases
of violation of the positivity of the coefficients of the factors.

The difference between the values of the original and
factorized polynomials at points equal to complex roots of
unity of degree 8, per 1000 calculations are
• maximal deviation – 0.0013;
• minimal deviation – 0.00019;
• average deviation – 0.00036.
Consider an example of factorization of an arbitrary 6th

degree polynomial that satisfies (28) by our trained neural
network. For example, let the initial polynomial be specified
by the following set of coefficients {pk}k=6

k=0:

[0.0787, 0.1372, 0.2349, 0.3236, 0.1714, 0.0443, 0.0096].

As the result of the test of our neural network, we obtain
the following coefficients of the factors:

α0 = 0.1291, α1 = 0.1696, α2 = 0.2994, α3 = 0.4018;

β0 = 0.5228, β1 = 0.3526, β2 = 0.0975, β3 = 0.0269.

In this case, the sequence of coefficients {αk}k=3
k=0 increases

and in the sum gives 1, and the sequence {βk}k=3
k=0 decreases,

the sum of the coefficients also equals 1.
According to the formulas (38)-(40), we represent the

coefficients {αk}k=3
k=0, {βk}k=3

k=0, {pk}k=6
k=0 as the vectors

A,B,C, respectively. The coefficients for missing degrees
are set equal to 0. Let us calculate the values of the
original polynomial and the product of factors predicted at
every eighth root of unity using the fast Fourier transform
algorithm.

DFT (C) = [1.0 + 0.j,−0.2557− 0.5198j,

0.0055 + 0.1419j, 0.0704− 0.0692j,

−0.0105 + 0.j, 0.0704 + 0.0692j,

0.0055− 0.1419j,−0.2557 + 0.5198j].

DFT (A) ·DFT (B) = [0.9999 + 0.j,−0.2838− 0.5170j,

0.0032 + 0.1542j, 0.0679− 0.0807j,

−0.0344 + 0.j, 0.0679 + 0.0807j,

0.0032− 0.1542j,−0.2838 + 0.5170j].

Compare the difference between the values of the product
of the factors and the original polynomial at all the points
equal to eighth roots of unity:

DFT (A) ·DFT (B)−DFT (C) =

[−2.9802 · 10−8 + 0.j,−0.0281 + 0.0027j,

−0.0024 + 0.0123j,−0.0025− 0.0114j,

−0.0239 + 0.j,−0.0025 + 0.0114j,

−0.0024− 0.0123j,−0.0281− 0.0027j].
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Calculating the average deviation of the values of the product
from the original polynomial over all the indicated points,
we obtain 0.00034. This precision is enough to apply this
approximation to calculate quantities similar to (8) to obtain
reasonable results.

B. Applications of neural networks to Wiener-Hopf factor-
ization in Lévy models

In this subsection, we compare the performance of the
suggested factorization with artificial neural networks (ANN
factorization, in short) and the approximate Wiener-Hopf
factorization described in [5] using the example of lattice
Lévy processes.

As a basic example, we consider the down-and-out put
option with the strike price K = 110, the barrier H = 100
from below, and the time to expiration T = 0.5. To illustrate
our method, we model the asset price St as H exp(Xt),
where Xt is a compound Poisson model with a binomial
distribution of jumps (see Example 3) and the intensity
parameter λ = 10, the size of jumps d = 0.01, and
probabilities pr = 1

2 and pl = 1
2 . For simplicity, we

choose the instantaneous interest rate r = 0, time to expiry
T = 0.5 year, and define q = N/T , where N = 10 - the
number of time steps. Since ψ(−i) ≈ 0, we can assume that
the equivalent martingale measure condition is satisfied (for
clarifications, we refer the reader to [9]).

In the example, we coded the algorithm for the ANN
factorization described in Section III.

First, we need to approximate the characteristic function
q(q + ψ(ξ))−1 for q = 20 with the Fourier series by
formula (13), with the coefficients pk defined by (22). To
find pk efficiently, we utilize the discrete Fourier transform
by approximating the integral in (22) with the trapezoid rule
as follows. Define the partition of the frequency domain
[−π/d, π/d] by points ξl = −πd + 2πl

dM , l = 0, . . .M . Denote
by ∆ξ the length of each subinterval in [−π/d, π/d] specified
by the partition. Then we have in (22) for −M/2 ≤ k <
M/2

pk ≈ d

2π

M∑
l=0

δl
q

q + ψ(ξl)
e−jξlkd ·∆ξ

=
d

2π

M∑
l=0

δl
q

q + ψ(ξl)
e−j(−

π
d+ 2πl

dM )kd · 2π

dM
(42)

= ejπk
1

M

M∑
l=0

δl
q

q + ψ(ξl)
e−j

2πlk
M

= ejπk
1

M

M∑
l=0

δl
q

q + ψ(ξl)
e−j

2πl(k+M/2)
M ej

2πlM/2
M

= ejπk
1

M

M∑
l=0

δl
q

q + ψ(ξl)
ejπle−j

2πl(k+M/2)
M ,

where δl = 1 for l = 1, ...,M − 1, and δ0 = δM = 0.5
specify the chosen quadrature rule.

According to our definition of iDFT, we obtain the ap-
proximate formula for pk:

pk = (−1)k · iDFT [P ](k +M/2),−M/2 ≤ k < M/2,
(43)

where

P = {P0, P1, . . . , PM−1},

P0 = 0.5

(
q

q + ψ(ξ0)
+

q

q + ψ(ξM )

)
,

Pl = (−1)l
q

q + ψ(ξl)
, 1 ≤ k ≤M − 1.

Set

c0 = 0,

ck =
d

2π

∫ π/d

−π/d
ln

q

q + ψ(ξ)
e−jξkddξ, k 6= 0. (44)

Then exp(Ψ(ξ)) approximates the function q
q+ψ(ξ) , where

Ψ(ξ) =

M/2−1∑
k=−M/2

ck(ejξkd − 1).

From the construction of Ψ(ξ) we can obtain the approximate
Wiener-Hopf factorization

φ+
q (ξ) ≈ exp(Ψ+(ξ)), φ−q (ξ) ≈ exp(Ψ−(ξ)), (45)

where

Ψ+(ξ) =

M/2−1∑
k=1

ck(ejξkd − 1), (46)

Ψ−(ξ) =
−1∑

k=−M/2

ck(ejξkd − 1). (47)

Similarly to (43), we approximate the coefficients ck:

ck = (−1)k · iDFT [C](k +M/2),−M/2 ≤ k < M/2,
(48)

where

C = {C0, C1, . . . , CM−1},

C0 = 0.5 ln
q2

(q + ψ(ξ0))(q + ψ(ξM ))
,

Cl = (−1)l ln
q

q + ψ(ξl)
, 1 ≤ k ≤M − 1.

To approximate the values of factors φ+
q (ξ) and φ−q (ξ)

at the points ξl, l = 0, . . .M , we utilize the direct discrete
Fourier transform. Using (46), we obtain for 0 ≤ l < M

Ψ+(ξl) =

M/2−1∑
k=1

ck(ejξlkd − 1)

= −
M/2−1∑
k=1

ck +

M/2−1∑
k=1

cke
j(−πd+ 2πl

dM )kd

= −
M/2−1∑
k=1

ck +

M/2−1∑
k=1

e−jπkcke
j 2πlk
M .

Analogously, we have for 0 ≤ l < M

Ψ−(ξl) =
−1∑

k=−M/2

e−jπkcke
j 2πlk
M −

−1∑
k=−M/2

ck

=
−1∑

k=−M/2

e−jπ(k+M)cke
j
2πl(k+M)

M −
−1∑

k=−M/2

ck

=
M−1∑

m=M/2

e−jπmcm−Me
j 2πlm

M −
−1∑

k=−M/2

ck.
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Taking into account the formula for DFT , we write

Ψ+(ξl) = DFT [c+](l), 0 ≤ l < M, (49)

where

c+ = {c+0 , c
+
1 , . . . , c

+
M−1},

c+0 = −
M/2−1∑
k=1

ck,

c+m = (−1)mcm+M/2, 0 < m ≤M/2− 1,

c+m = 0,M/2 ≤ m ≤M − 1;

and
Ψ−(ξl) = DFT [c−](l), 0 ≤ l < M, (50)

where

c− = {c−0 , c
−
1 , . . . , c

−
M−1},

c−0 = −
−1∑

k=−M/2

ck,

c−m = 0, 0 < m ≤M/2− 1,

c−m = (−1)mcm−M ,M/2 ≤ m ≤M − 1;

Now, we can approximate the coefficients p+
k and p−k in

(15) and (17) as follows:

p+
k = (−1)k · iDFT [P+](k +M/2), 0 ≤ k < M/2,

p+
k = 0,M/2 ≤ k < M, (51)
p−k = (−1)k · iDFT [P−](M/2− k), 0 ≤ k < M/2,

p−k = 0,M/2 ≤ k < M. (52)

where

P+ = {P+
0 , P

+
1 , . . . , P

+
M−1},

P+
l = (−1)lΨ+(ξl), 0 ≤ k ≤M − 1;

P− = {P+
0 , P

+
1 , . . . , P

+
M−1},

P−l = (−1)lΨ−(ξl), 0 ≤ k ≤M − 1;

In our numerical experiment, we found factors φ+
q (ξ) and

φ−q (ξ) analytically (see (45)) and using our trained neural
network. Table III presents the comparison of the values
of the function q

q+ψ(ξ) and the product of the approximate

factors eΨ+(ξ) and eΨ−(ξ) calculated at the points ξl using
(45).

Table III
COMPARISON OF THE VALUES OF THE FUNCTION q/(q + ψ(ξ)) AND THE

PRODUCT OF THE APPROXIMATE FACTORS

ξl q/(q + ψ(ξ)) eΨ
+(ξ) · eΨ−(ξ) ∆Ψ

314.1593 0.5 0.4998 0.0002

235.6194 0.5395 0.5397 0.0002

157.0796 0.6666 0.6664 0.0002

78.5398 0.8723 0.8726 0.0003

0.0 1 0.9996 0.0004

-78.5398 0.8723 0.8726 0.0003

-157.0796 0.6666 0.6664 0.0002

-235.6194 0.5395 0.5397 0.0002

∆Ψ =
∣∣∣q/(q + ψ(ξ))− eΨ+(ξ) · eΨ−(ξ)

∣∣∣

Table IV
RESULTS OF FACTORIZATION OF THE POLYNOMIAL SPECIFIED BY THE

COEFFICIENTS pk USING OUR TRAINED NEURAL NETWORK

ξ C A ·B ∆DFT

1 0.99+0.j 1.0+0.j 0.0012

exp(−j π
4

) -0.62-0.62j -0.595-0.59j 0.0321

exp(−j π
2

) 0.0+0.67j -0.0-0.61j 0.0599

exp(−j 3π
4

) 0.38-0.38j 0.365-0.37j 0.0242

-1 -0.49+0.j -0.505+0.j 0.0061

exp(−j 5π
4

) 0.38+0.38j 0.365+0.37j 0.0242

exp(−j 3π
2

) 0.0-0.67j -0.0-0.61j 0.0599

exp(−j 7π
4

) -0.62+0.62j -0.595+0.59j 0.0321

A = DFT ([p̂+]), B = DFT ([p̂−]), C = DFT ([p]) D = A ·B − C

∆DFT =

√∑M
i=1

(
(<Di)2 + (=Di)2

)

Table V
COEFFICIENTS p−k , p+

k USING APPROXIMATE FORMULAS (51)-(52) VS

COEFFICIENTS p̂−k , p̂+
k PREDICTED USING THE NEURAL NETWORK

k pk p−k p+
k p̂−k p̂+

k

0 0.0037 0.8282 0.8286 0.8111 0.8108

1 0.0208 0.1421 0.1422 0.1393 0.1391

2 0.1213 0.0244 0.0244 0.0444 0.0443

3 0.7071 0.0042 0.0042 0.0053 0.0057

4 0.1213 0.0 0.0 0.0 0.0

5 0.0208 0.0 0.0 0.0 0.0

6 0.0037 0.0 0.0 0.0 0.0

7 0.0 0.0 0.0 0.0 0.0

The comparison of the values of the polynomial specified
by the coefficients pk with the product of the factors pre-
dicted by our trained neural network for q = 20 and pr = 1

2
and pl = 1

2 is presented in Table IV in the primitive eighth
roots of unity.

−0.5 0.0 0.5 1.0
Re xi
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−0.25
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 x
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C

Figure 5. Approximation error of the polynomial C specified by the
coefficients pk with the product of factors A and B calculated using the
neural network

The values of the coefficients p−k , p+
k calculated using

approximate formulas (51)-(52) and the coefficients p̂−k , p̂+
k

predicted using our trained neural network presented in Table
V.

Analogously, we compare the values of the polynomial

IAENG International Journal of Computer Science

Volume 51, Issue 8, August 2024, Pages 1182-1194

 
______________________________________________________________________________________ 



Table VI
RESULTS OF FACTORIZATION OF THE POLYNOMIAL SPECIFIED BY THE

COEFFICIENTS pk USING THE FORMULAS OF THE APPROXIMATE
FACTORIZATION (45)

ξ C A ·B ∆DFT

1 0.99+0.j 0.998+0.j 0.0004

exp(−j π
4

) -0.62-0.62j -0.618-0.62j 0.0003

exp(−j π
2

) 0.0+0.67j 0.0+0.66j 0.0001

exp(−j 3π
4

) 0.38-0.38j 0.382-0.38j 0.0003

−1 -0.49+0.j -0.499+0.j 0.0003

exp(−j 5π
4

) 0.38+0.38j 0.382+0.38j 0.0003

exp(−j 3π
2

) 0.0-0.67j -0.0-0.66j 0.0001

exp(−j 7π
4

) -0.62+0.62j -0.618+0.62j 0.0003

A = DFT ([p+]), B = DFT ([p−]), C = DFT ([p]), D = A ·B − C

∆DFT =

√∑M
i=1

(
(<Di)2 + (=Di)2

)

C specified by the coefficients pk with the product of the
factors A and B calculated by the approximate formulas (45)
in Table VI in the primitive eighth roots of unity.

The graphs of the approximation error of the polynomial
specified by the coefficients pk with the product of factors
calculated using our trained neural network and by the
formula (45), in the primitive eighth roots of unity are
presented in Figure 5 and Figure 6, respectively.
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Figure 6. Approximation error of the polynomial specified by the
coefficients pk with the product of factors calculated by the formula (45)

Next, we consider the performance of our artificial neural
network in pricing barrier options. Set the pay-off function
G(x) = max{0,K − H exp(x)}. Let Vq(x) and V̂q(x) be
perpetual barrier option prices (7) calculated with formulas
(19)-(21) with coefficients p−k , p+

k obtained by approximate
formulas (51)-(52) and predicted using our neural network,
respectively. If we repeat the numerical procedure (19)-(21)
N(= 10) times replacing G(x) in (20) with Vq(x) (or V̂q(x))
from the previous step, we obtain two approximate values of
the down-and-out put prices defined by (5). Let us denote
these prices by V (x, T ) and V̂ (x, T ), respectively. The de-
tails of this iterative procedure that includes an approximate
Wiener-Hopf factorization can be found in [9].

In Table VII, we compare the prices of the barrier options
obtained using approximate formulas for the Wiener-Hopf
factors against the prices calculated using the Wiener-Hopf
factors predicted by our artificial neural network.

Table VII
PRICES OF BARRIER OPTIONS: APPROXIMATE WIENER-HOPF

FACTORIZATION VS ANN

x Vq(x) V̂q(x) V (x, T ) V̂ (x, T )

0.01 7.274 7.093 2.557 2.277
0.02 7.680 7.486 4.349 3.821
0.03 6.899 6.899 5.128 4.680
0.04 5.906 5.915 5.079 4.796
0.05 4.862 4.869 4.510 4.387
0.06 3.807 3.812 3.691 3.681
0.07 2.744 2.747 2.798 2.861
0.08 1.682 1.694 1.948 2.059
0.09 0.685 0.712 1.227 1.362
0.1 0.115 0.143 0.691 0.824

0.11 0.018 0.029 0.347 0.454
0.12 0.002 0.003 0.155 0.228
0.13 0.000 0.000 0.063 0.104
0.14 0.000 0.000 0.023 0.043
0.15 0.000 0.000 0.007 0.016

As we can see from the results presented in Table VII, the
perpetual barrier option prices Vq(x) and V̂q(x) are in agree-
ment, especially for x in the range 0.03− 0.08. In the case
of the approximate prices for down-and-out puts, we observe
less agreement between prices since the approximation error
of our neural network accumulates during the iterations. We
conclude that our artificial neural network may perform well
in computing expectations (7), but for pricing options (5)
and (6) we need further training of our ANN by increasing
the number of neurons in the hidden layer or increasing the
number of hidden layers.

V. CONCLUSION

In the paper, an approach to modeling the values of the
Wiener-Hopf factors has been developed using feedforward
neural networks with one hidden layer. The neural network
approximates the coefficients of two polynomial factors
based on a given vector of coefficients of the factorized
polynomial. The following conditions are imposed on the
input sequence of coefficients: the number of elements of
the sequence is one less than a given power of two, the sum
of all coefficients is equal to one, before the middle index,
the sequence increases, and after the index it decreases. The
following restrictions are imposed on the output sequences:
the sequence of coefficients of the first polynomial factor
increases, the sequence of the second polynomial factor
decreases, and the sum of the coefficients for each factor is
equal to one. Such a normalization allows us to interpret such
coefficients as the probabilities of suitable random variables.
The neural network is implemented using the TensorFlow
library for the Python programming language. The number
of input neurons corresponds to the number of coefficients
of the factorized polynomial and is greater by one than
the degree of the polynomial. The number of neurons in
the output corresponds to the number of coefficients of the
factor polynomials. The number of coefficients for each
factor is equal to half of the power of two closest to the
degree of the original polynomial. The last coefficient of each
factor is calculated as the difference between the sum of the
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predicted coefficients and one. The number of neurons in
the hidden layer is empirically selected in order to obtain a
practically significant accuracy of factorization. According to
the Cybenko theorem [21], the larger the number of neurons
in the hidden layer, the better the approximation.

We designed a training data generator and a generalized
loss function that are suitable for training our neural network
to factorize a polynomial of an arbitrary degree. The loss
function compares the values of the factorizable polynomial
of degree M − 2, (M is the power of two) and the product
of factors at points that are equal to the roots of degree
M of unity. For a given training set, such a choice of
points allows one to efficiently calculate the values of the
specified polynomials and the coefficients of the polynomi-
als using the Fast Fourier Transform (direct) and (inverse)
algorithms, respectively. We demonstrated the performance
of our approach in numerical experiments on the factorization
of polynomials of the second, sixth, and 254th degrees into
the product of two polynomial factors of degrees one, three,
and 127 respectively.

In particular, for second-degree polynomials, we achieved
factorization accuracy in 3.45e-06 with 8 neurons in the
hidden layer. For sixth-degree polynomials, the network
accuracy is 6.31e-06 with 1024 neurons in the hidden layer.
For 254th-degree polynomials, the accuracy is 8.99e-05 with
2048 neurons. The time to calculate the factors by the trained
neural network is on average 0.05 seconds. Thus, the neural
network for Wiener-Hopf factorization can quickly generate
the required set of coefficients for factors, which can then be
used to price barrier options using the Wiener-Hopf method.

REFERENCES

[1] R. Cont and P. Tankov, Financial Modelling with Jump Processes, 2nd
ed. Chapman & Hall/CRC, USA: Boca Raton, FL, 2008.

[2] Z. Xu and X. Jia, “The calibration of volatility for option pricing
models with jump diffusion processes,” Applicable Analysis, vol. 98,
no. 4, pp. 810-827, 2019.

[3] C. Wei, “Parameter Estimation for Discretely Observed Vasicek Model
Driven by Small Levy Noises,” IAENG International Journal of
Applied Mathematics, vol. 48, no.2, pp. 118-122, 2018.

[4] A. Kuznetsov, A. E. Kyprianou, J. C. Pardo and K. van Schaik, “A
Wiener-Hopf Monte Carlo Simulation Technique for Lévy Processes,”
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