
Particle Swarm Algorithm Setting using Deep
Reinforcement Learning in the Artificial Neural

Network Optimization Learning Process
Abdelkader Fassi Fihri, Tarik Hajji, Member, IAENG, Ibtissam El Hassani,

and Tawfik Masrour, Member, IAENG

Abstract—Recent meta-heuristics for optimization issues in-
clude particle swarm optimization (PSO) techniques. They take
their cues from the coordinated movements of swarms of fish
and birds, which exhibit collective behaviors. A sophisticated
learning phase, like back-propagation, is needed for artificial
neural networks (ANNs), which are thought of as a source of
artificial intelligence (AI). This phase allows for the calculation
of the error gradient for each neuron, from the final layer to
the first.

However, some qualities of the objective function are neces-
sary (cost). This inspired us to experiment with meta-heuristics
to streamline the training of ANNs to manage complex nonlin-
ear systems.

The objective of this research is to apply deep reinforcement
learning (DRL) to automatically calculate the PSO algorithm’s
parameters while also optimizing the supervised learning pro-
cess of ANN. After a number of case studies, our methodology
consistently leads to the coefficients of the ideal ANN.

Index Terms—IA, ANN, CNN, PSO, machine learning, deep
learning, deep reinforcement learning, meta-heuristics, and
optimization.

I. INTRODUCTION

OUR team has worked on several issues related to the
use of AI in various industrial contexts! The integration

of artificial intelligence in the industry can bring tremendous
benefits in terms of efficiency, productivity, and decision-
making [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]. A branch
of mathematics known as optimization finds the best element
in a set by comparing it to a set of predetermined criteria.
As a result, optimization is ubiquitous and has long been
undergoing continual development [11], [12], [13].

Manuscript received February 16, 2023; revised July 15, 2024. This work
was supported in part by Moulay Ismail University, Meknes, Morroco.

Abdelkader Fassi Fihri is Professor at Laboratory of Mathematical Mod-
eling, Simulation and Smart Systems (L2M3S), Mathematical Modeling,
Analysis and Simulation team (M2AS), Department of Mathematics and
Computer Science, 15290 ENSAM, Moulay Ismail University, 50500 Mek-
nes, Morocco, e-mail: a.fassifihri@ensam.umi.ac.ma

Tarik Hajji is Professor at Laboratory of Mathematical Modeling, Simu-
lation and Smart Systems (L2M3S), Artificial Intelligence for Engineering
Sciences Team (IASI), Department of Mathematics and Computer Science,
15290 ENSAM, Moulay Ismail University, 50500 Meknes, Morocco, e-mail:
t.hajji@umi.ac.ma

Ibtissam EL Hassani is Professor at Laboratory of Mathematical Mod-
eling, Simulation and Smart Systems (L2M3S), Artificial Intelligence for
Engineering Sciences Team (IASI), Department of Mathematics and Com-
puter Science, 15290 ENSAM, Moulay Ismail University, 50500 Meknes,
Morocco, e-mail: i.elhassani@ensam.umi.ac.ma

Tawfik Masrour is Professor at Laboratory of Mathematical Modeling,
Simulation and Smart Systems (L2M3S), Artificial Intelligence for Engi-
neering Sciences Team (IASI), Department of Mathematics and Computer
Science, 15290 ENSAM, Moulay Ismail University, 50500 Meknes, Mo-
rocco, e-mail: t.masrour@ensam.umi.ac.ma

In the research space, optimization techniques look for a
solution or set of solutions that fulfill the set of constraints
and reduce or maximize the objective function [14], [15].
Meta heuristics, one of these techniques, are generic op-
timization algorithms that aim to enable the solution of a
variety of different problems without necessitating substan-
tial changes to the algorithm [16]. They collectively make
up a family of algorithms designed to tackle challenging
optimization issues for which there is no known more ef-
ficient conventional approach [17]. This group of techniques
includes PSO, which is derived from stochastic descent. The
gregarious interactions of migrating animals, such as those
shown in Fig. 1, which must travel long distances and thus
maximize their motions in terms of energy expended, such
as the ”V formation”, are a major source of inspiration [18].

The area of modern IA is strongly related to the ANN
technique. This takes its cues from the sophisticated infor-
mation processing that occurs in the human brain [7]. This
behavior is supported by a variety of mental mechanisms
that are based on neurophysiological (branch of physiology
dealing with the functions of the nervous system) processes.
This method is capable of accounting for the ”non-linearity”
and uncertainties present in actual systems. It is built on these
systems’ capacities for learning and optimization [19], [3].

The most popular optimization technique for training
ANNs is ”back-propagation.” It enables the determination of
the error gradient for each neuron, from the deepest layer to
the surface layer [5]. However, it requires specific qualities
from the objective function. Due to this, we decided to
test the PSO ”meta-heuristic” method for enhancing ANN
learning for complicated nonlinear system control.

PSO, like other algorithms, requires the definition of a
set of parameters, which we have established using DRL
[20], which is a branch of machine learning (ML) where
the learner, called an agent, interacts autonomously with
the environment to acquire the necessary skills. In each
phase, the agent is meant to select the action that produces
the highest reward signal. The rest of this paper is orga-
nized as follows: The state of the art section presents the
principles of PSO as well as related works in a general
sense; The methodology section explains our optimization
approach. The case study section presents the application
of the optimization approach on the training of an ANN in
a supervised classification problem; The interpretation and a
comparison with other optimization techniques are presented
in the discussion section, and the part that follows concludes.

IAENG International Journal of Computer Science

Volume 51, Issue 8, August 2024, Pages 1195-1208

__

Fig. 1. PSO (Particle Swarm Optimization): PSO is a heuristic optimization algorithm inspired by the social behavior of birds and insects. It is used to
solve numerical optimization problems and search for optimal solutions in a search space. The PSO algorithm consists of a population of particles (or
individuals) that move in the search space based on their own experiences and the collective experience of the group.

Fig. 2. The process of reinforcement learning.

II. BACKGROUND

PSO is employed as an optimization technique in a number
of works to address complicated issues. In [1], Wang and col-
leagues present a method for assessing various convolutional
neural network (CNN) topology that makes use of PSO.
Their aim is to automatically find the best CNN architecture
for image classification issues. The neural architecture search
(NAS) algorithm is replaced by the suggested method, which
has the drawback of being slow. This intriguing research area
has the potential to replace expert-designed networks with
learned task-specific architectures [2].

In [3], Beatriz and colleagues present a methodology that
automatically designs an ANN using PSO, such as Basic
PSO, Second Generation of PSO and a new model of PSO
called ”NMPSO.” The aim of these algorithms is to evolve,
at the same time, the three principal components of an ANN:
the set of synaptic weights; the connections, or architecture;
and the transfer functions for each neuron.

In [4], the authors explain how PSO is applied to search for
global solutions for reinforcement learning problems. This
particle swarm optimization policy (PSO-P) is efficient for
high-dimensional state spaces and does not require a priory

IAENG International Journal of Computer Science

Volume 51, Issue 8, August 2024, Pages 1195-1208

__

assumptions about the proper representations of the policy.
Bashir and colleagues demonstrate in [5] the significant

potential of the PSO technique to optimize parameter settings
and hence conserve valuable computational resources during
the tuning of deep learning models. ”Ada-Swarm,” a revolu-
tionary gradient-free optimizer with performance comparable
to or superior to that of the ”Adam” optimizer used in neural
networks, is introduced in [6].

A. Particle Swarm Algorithm

In many real-world applications, there is always a need
to find optimal configurations from a discrete set of objects;
this is known as a combinatorial optimization problem [21].
Approximations and meta heuristic algorithms have been
utilized to handle these optimization problems as a trade-
off between solution quality and computation time [22]. A
new generation of meta-heuristic algorithms, called Particle
Swarm Optimization, has been developed and has proven its
efficiency [23]. Like other meta-heuristic algorithms that are
inspired by nature [24], the PSO algorithm is considered an
adaptive search technique based on collaboration between
individuals.

PSO is a meta-heuristic optimization technique inspired by
biology and invented by Eberhart and Kennedy. PSO has its
origins in the behavior of groups of bees, flocks of birds, and
schools of fish when searching for food [25]. Despite having
limited individual capabilities, the agents that make up the
group (or the particles that make up the swarm) create a form
of collective intelligence [26]. Throughout the investigation,
members of the same swarm interact with one another to
develop a solution to the issue at hand based on their
combined knowledge. As a result, thetion f(x1, x2, ..., xd),
the objective to be optimized, xjmin ≤ xj ≤ xmax are
continuous or discrete variables. A PSO algorithm consists
of finding the combination (x1opt, x2opt, ..., xdopt) that opti-
mizes the function f (minimizes in our case). The PSO makes
use of both their own experiences and the best experiences of
their neighbors as they search through a space for a solution
that optimizes a certain cost (or fitness) function.

Consider a function that does not require any regularity
[27] in the function to be optimized (neither continuity,
convexity, nor gradient calculation). It has the particularity of
being simple to implement. A particle, or candidate solution,
is constituted by a vector of variables of the function to be
optimized. It is characterized by a velocity νi and a position
pi. Moving from iteration k to iteration (k+1), the algorithm
updates the velocity and position of each particle according
to two equations (1) called equations of motion:{

νk+1 = wk.νk + b1.r1.(pbest − pk) + b2.r2.(pgbest − pk)

pk+1 = pk + νk+1

(1)
where pk is the position of each particle at iteration k,

νk is the velocity of each particle at iteration k, w is the
inertial weight of the particle, b1 and b2 are the constant
acceleration coefficients, r1 and r2 are two random numbers
in [0, 1], pbest is the best position of particle until iteration
k and pgbest is the best position reached by the particle’s
neighbors.

B. The Pyswarms Library

PSO can be used to handle a wide range of issues,
from straightforward optimization to robotics and workshop
planning, given enough variations. Because of this, the
researchers decided to develop Pyswarms [28], a research
toolbox that can be used by scientists. For tackling con-
tinuous and combinatorial PSO issues, PySwarms offers a
set of practical classes. It uses a black-box methodology to
solve optimization problems and enables quick development
of non-conventional swarm models. It also includes research
tools and reference functions for assessing and enhancing
swarm performance. The packages’ fundamental design tenet
is to strike a compromise between experimental ease and sim-
plicity of use by offering a wide range of classes to address
optimization problems and by building a consistent API to
support non-standard PSO implementations. PySwarms was
created using the following guiding principles:

• maintain a particular set of comprehensible conventions;
• develop a single API that all Swarm implementations

can use;
• make a collection of rudimentary classes accessible for

use with common PSO implementations;
• python PSO algorithms that are commonly used ;
• built-in, special-purpose testing functions;
• environmental mapping for swarm and cost animations.

PySwarms offers the following hyper-parameter search tools:
• Continuous search space;

– pyswarms.single.global best: the classical
global-best PSO algorithm with a star-topology,
where each particle is compared to the best
performing particle in the swarm.

– pyswarms.single.local best: the classical local-
best PSO algorithm with a ring-topology. Each
particle is compared only to its nearest neighbors
as calculated by a distance metric.

– pyswarms.single.general optimizer:
modifiable PSO algorithm with a custom topology.
Each topology of the ”pyswarms.backend” module
can be considered as an argument.

• Discrete search space: Single-objective optimization
with discrete search space is useful for scheduling jobs,
dispatching salespeople on the road, and other sequence-
based issues.

– pyswarms.discrete.binary: A classic binary opti-
mization algorithm for PSO without mutation. uses
a ring topology to choose its neighbors (which can
also be defined on a global scale).

• Research methods: These search methods can be used
to compare the relative performance of hyper-parameter
values to reduce a specific objective function.

– pyswarms.utils.search.grid search: a thorough
search for the selected goal function’s best perfor-
mance with regard to the Cartesian products of the
given hyper-parameter values came up empty.

– pyswarms.utils.search.random search: the
classical local-best PSO algorithm with a ring-
topology. Each particle is compared only to its
nearest neighbors as calculated by a distance
metric.

IAENG International Journal of Computer Science

Volume 51, Issue 8, August 2024, Pages 1195-1208

__

– pyswarms.utils.plotters: for a defined number of
selection iterations, look for the selected objective
function’s best performance with regard to various
values of randomly chosen hyper-parameter com-
binations.

• Environment: various settings to evaluate swarm perfor-
mance and create visualizations:

– py.utils.environments.plot environment: a
setting where particles can be animated and
expenses can be tracked in a 2D or 3D space.

C. Electricity Transmission Problem

The proposed method was evaluated to increase the per-
formance and dependability of mechanical structures, specif-
ically to enhance load resistance while minimizing cost and
maximize the lifetime of a transmission line tower (”mini-
mizing the use of materials”). We are discussing the ”Energy
Tower” dilemma, in which the generation, transmission, and
distribution of electricity result in losses for a variety of
causes. It is advantageous to do a structural study of a
transmission line tower that is similar to a planar lattice
for this (Figure. 5). The two upper ends of the tower are
subjected to two identical loads F of 1.8KN each, imposed
at an angle of= 15. The steel bars that make up the
construction have a Poisson’s ratio of 0.27 and an elastic
modulus of 210GPa. Assuming that the weight of each bar
in the lattice is insignificant in comparison to the applied
forces, the cross-section of each bar is A = 27.90cm2.

The goal of this analysis is to identify the forces, stresses,
and maximum displacement produced by the applied loads
as well as to assess whether particular lattice elements are
susceptible to buckling. To increase the dependability of the
tower, design optimization will also be used to identify the
ideal straight portion of each bar that minimizes the max-
imum movement in the bar. The variables for optimization
are X = {H,W}, where H and W are the straight section of
the bar’s height and breadth, respectively, and these are the
main constituents of the objective function, or ”the function
to be optimized.”

D. Travelling Salesman Problem

An NP-Complete optimization problem is known as The
Travelling Salesman Problem (TSP) (it is impossible to find
a solution quickly, but it is fast to check the quality of a
solution). The issue is to ”create a path of minimum total
length that passes through each city exactly once and returns
to the starting point, given a set of cities separated by certain
distances.” We must employ techniques that enable us to
derive an approximation of the solution to this problem
because, despite its seeming simplicity, it cannot be solved
in an acceptable amount of time for big cases. The number
of potential pathways, for instance, is a 100 − digit figure
for 69 cities. The TSP has a wide range of applications and
frequently manifests as a smaller issue within a larger issue.
For instance, in genetics, the concept of distance between two
cities is equivalent to the degree of similarity between two
DNA pieces. The issue of the traveling salesman is shown
in the Figure.4.

E. Artificial Neural Networks Learning Problem

The topic of AI and ANN methodology are closely related.
It is modeled after how the human brain processes infor-
mation, which is considered intelligent behavior when it is
backed by a set of mental procedures based on neurophysio-
logical processes. This method is capable of accounting for
the non-linearity and uncertainties present in actual systems.
It is built on these systems’ capacities for learning and
optimization.

The most popular optimization technique for training neu-
ral networks is back propagation. It enables the computation
of the error gradient for each neuron, from the topmost layer
to the bottom most. However, it necessitates an understanding
of the control and certain qualities in the objective function
(cost). This encourages us to test the PSO meta-heuristic
for neural network training optimization for complicated
nonlinear systems control.

The goal is to use the PSO meta-heuristic to optimize the
emulator and controller ANNs during training. This mainly
entails tailoring the method to an ANN’s specifications in
terms of its structure, training variables, and their effects
on output variation, which serves as the system’s control,
and comparing the method’s effectiveness (performance) to
that of other methods, particularly the descending gradient
method.

F. Reinforcement Learning (RL)

In the branch of machine learning known as reinforcement
learning, an agent interacts independently with its environ-
ment to learn how to carry out a task. In each phase, the
agent is meant to select the action that produces the highest
reward signal (Fig. 2). A reinforcement learning system’s
components are:

• Agent : An autonomous entity can use sensors to
perceive its surroundings and defectors to act on them
in order to accomplish its objectives.

• Environment : It is the living environment of an
agent and can be discrete or continuous, episodic or
sequential, deterministic or stochastic, static or dynamic,
comprised of one agent or numerous agents, and can be
fully or partially observable.

• Policy: Due to the fact that it describes the agent’s
behavior at a specific time, it is the fundamental com-
ponent of the reinforcement learning system. A mapping
of environmental situations to a set of actions, on the
other hand, is what policy is.

• Reward: Each time the agent takes a decision, the envi-
ronment notifies them with a number signal. The reward
signal seeks to positively reinforce good behavior while
punishing undesirable behavior. As a result, the agent
gains the ability to favor positive acts in each state.
In other words, the reward signal seeks to improve the
policy; if the policy selects an action with a low payoff,
it will be adjusted to select other actions going forward.

• V aluefunction: It is an estimate of the overall reward
for an agent starting from state S, which is frequently
given as V (s). Values describe a state’s long-term
desirability, taking into account the expected payoff, if
the reward is an urgent aim in environmental conditions.
In other words, some states with low rewards have high

IAENG International Journal of Computer Science

Volume 51, Issue 8, August 2024, Pages 1195-1208

__

Fig. 3. Electricity pylon represented geometrically.

values, which indicates that states with high rewards
follow them. Value judgments are therefore a type of
forecast of rewards, and every action decision is made
based on one by default.

III. METHODOLOGY

In our method, the PSO algorithm is set up to optimize
the supervised learning of ANNs utilizing the DRL.

A. PSO Configuration

1) Number of particles: The allocation of particles to
solve the problem is primarily influenced by two factors:

• The search area’s dimensions;
• The relationship between the machine’s processing

power and the longest possible search time;
To choose this parameter, there is no set formula. To gain
the expertise required to comprehend this parameter, it is
important to conduct numerous tests. We created a DRL
framework consisting of an environment and an agent to
carry out this operation in order to learn how to choose this
parameter based on experience:

• The ANN is the agent’s surroundings.
• The ANN’s learning rate serves as the foundation of the

reward system.
• The parameters of the ANN represent the state space of

the environment.
• The agent’s options include either decreasing or increas-

ing the parameter in relation to the incentive received.
The PSO determines the ANN’s learning rate, and as a
result, the reward system assesses the quality of the current
parameter before changing it in an effort to make it better.

2) Neighborhood topology: The neighborhood topology
defines with whom each of the particles will be able to
communicate. There are many combinations of which the
following are the most used:

• In star topology, every particle is interconnected with
every other particle, making the neighborhood optimum
the global optimum.

• In ring topology, each particle is connected to an av-
erage of n (3 particles) other particles. It is the most
prevalent topology;

• In spoke topology, all particles communicate with just
one central particle.

The most typical PSO topology are shown in the Figure. 6
3) Confidence coefficient: It takes into account the par-

ticle’s propensities for panurgism or self-preservation. The
following definition applies to the random variables r1 and
r2: {

ρ1 = b1.r1

ρ2 = b2.r2

Where b1 and b2 are empirically obtained positive constants
that obey the equation b1 + b ≤ 24 and r1 and r2 have a
uniform distribution on [0, 1].

4) Maximum speed and constriction coefficient: It may
be required to establish a maximum speed (denoted Vmax)
to prevent the particles from traveling too quickly through
the search space and perhaps missing the optimum. This will
help the algorithm’s convergence. However, if we employ a
constriction coefficient k that narrows the search area, this
can be avoided. The velocity equation then becomes:

k = 1− ρ+

√
|ρ2 − 4ρ|2

With ρ = ρ1 + ρ2 > 4

νk+1 = k.[wk.νk+b1.r1.(pbestk−pk)+b2.r2.(ppgbestk−pk)]

According to research by SHI and EBERHART, applying a
constriction coefficient typically improves the convergence
rate without requiring the setting of a maximum speed.

IAENG International Journal of Computer Science

Volume 51, Issue 8, August 2024, Pages 1195-1208

__

Fig. 4. Problem of the Commercial Traveller.

B. Optimization Algorithm’s Steps

We consider the following notations:
• i : indices of the particles;
• j : indices of the variables to be searched;
• k: indices of the iterations;
• fitniss i : value of the fitness function of particle i;
• persona best fitniss i: best past tense realization of

particle i;
• global best futness i: best fitness of the neighbors of

particle i.
• Step 1:

Define the algorithm’s parameters, including the total
number of particles, b1, b2, and iterations.

• Step 2:
– Initialize the index of the iterations.
– Randomly initialize the positions of the particles

inside the search space.
– Compute fitness for each particle.
– Initialize pbest and p for each particle.
– Find pgbest.

• Step 3:
– Increment the index of iterations.
– Update the velocities and positions of the particles

according to the equations (1).
– Test the constraints: if they are violated, perform

the confinement (return the particles inside the
search domain).

– Compute fitness for each particle.
– Compare persona best fitniss i to fitniss i :

if fitniss i is better, assign pbest to p.
– Find the minimum on i of the fitniss i , note I

this index and assign to pgbest the value of pI .
• Step 4:

– Test the stopping requirement; if it is met, complete
the treatment; if not, go back to step 3.

– A minimal value of the optimal cost to be reached
or a predetermined number of iterations might serve
as the halting criterion set in step 4 of the PSO
algorithm.

Figure. 7 provides a schematic illustration of a particle’s
trajectory within the search space. The preceding steps are
encapsulated in the following algorithm after defining the
various PSO parameters:

C. PSO Application

Take into account, for illustration, the objective function
used for minimization:

F (x) = 10(x1 − 1)2 + 20(x2 − 2)2 + 30(x3 − 3)2

IAENG International Journal of Computer Science

Volume 51, Issue 8, August 2024, Pages 1195-1208

__

Fig. 5. Artificial Neural Networks (ANN) and Convolutional Neural Networks (CNN).

Fig. 6. Star Topology, Ring Topology and Ray Topology.

Algorithm 1 PSO Optimization Algorithm
repeat

for i from 1toN do
if F (−→xi) > pbesti then
pbesti ← F (−→xi)−−−−→xpbesti ← −→xi

end if
if F (−→xi(t) > gbesti then
gbesti ← F (−→xi)−−−→xgbest ← −→xi

end if
end for
for ifrom1toN do−→

ϑi ←
−→
ϑi + ρ1(

−→x pbetsi −−→x i) + ρ2(
−→x gbetsi −−→x i)

−→x i ← −→x i +
−→
ϑi

end for
until stopping conditions

1) Initialization of parameters and population:

• Parameter initialization:

– Number of variables: m = 3(x1, x2, x3);
– Population size: n = 5 (we used our proposed

approach that use DRL model after a learning
process to determine this parameter);

– Inertial weight for each particle: w = 0.9 ;
– Acceleration factors for each particle: c1 = 2 and

c2 = 2;
– Max iteration size: kmax = 50 ;

• Initialization of the population:

– Let’s initialize the position (xi) randomly for each

IAENG International Journal of Computer Science

Volume 51, Issue 8, August 2024, Pages 1195-1208

__

Fig. 7. Representation of the flight of a particle.

particle 
x1 x2 x3

particle1 8.8 9.9 1.1
particle2 9.9 6.6 1.1
particle3 3.3 5.5 1.1
particle4 1.1 2.2 1.1
particle5 11 5.5 8.8


– We initialize the position (ϑi) randomly for each

particle. We will consider:ϑi = 0.1xi ; Then, the
initial velocity of the first particle will be:

ϑ(x1) = 0.1 ∗ 8.8 = 0.88

ϑ(x2) = 0.1 ∗ 9.9 = 0.99

ϑ(x3) = 0.1 ∗ 1.1 = 0.99

– The remaining particles behaved similarly as well,
and finally we discover:

x1 x2 x3

particle1 0.88 0.99 0.11
particle2 0.99 0.66 0.11
particle3 0.33 0.55 0.11
particle4 1.1 0.22 1.1
particle5 1.1 0.55 0.88


2) Evaluation of the fitness function f(xi): Let’s calculate

the fitness value for each particle ; For example, its initial

value for the first particle will be:
ϑ(x1) = 10(x1 − 1)2 + 20(x2 − 2)2 + 30(x3 − 3)2

= 10(8.8− 1)2 + 20(9.9− 2)2 + 30(1.1− 3)2

= 1.9649 ∗ 10−3

Next, we find the other fitness values for the other particles:
The objective function value for k = O

particle1 1.9649 ∗ 103
particle2 1.3236 ∗ 103
particle3 2.2179 ∗ 103
particle4 2.9208 ∗ 103
particle5 2.2542 ∗ 103


Finally, we choose the best fitness value as gbest; in this
case, we take gbest = 1.3236 ∗ 103 and then xgbest = [x1 =
9.9;x2 = 6.6;x3 = 1.1]. For xbest of each particle, we
take the position that gives the best value of gbest for each
particle, and thus:

xbest

particle1 [x1 = 8.8;x2 = 9.9;x3 = 1.1]
particle2 [x1 = 9.9;x2 = 6.6;x3 = 1.1]
particle3 [x1 = 3.3;x2 = 5.5;x3 = 11]
particle4 [x1 = 11;x2 = 2.2;x3 = 11]
particle5 [x1 = 11;x2 = 5.5;x3 = 8.8]


3) Update velocity and position for each particle: Let’s

calculate the position of the particles by:

xk+1 = xk + ϑ(k + 1);

IAENG International Journal of Computer Science

Volume 51, Issue 8, August 2024, Pages 1195-1208

__

after computing the velocity by:

ϑk+1 = w.ϑk + c1.r1.(xbestk − xk) + c2.r2.(xgbestk − xk);

For the first particle in the initial iteration (k = 0), for
instance:

ϑk+1 = w.ϑk + c1.r1.(xbestk − xk)+

c2.r2.(xgbestk − xk)

ϑ0+1(x1) = (0.9 ∗ 0.88) + 0 + 2 ∗ r2.(9.9− 8.8)

= 1.0667

ϑ0+1(x2) = (0.9 ∗ 0.99) + 0 + 2 ∗ r2.(9.9− 9.9)

= −4.471
ϑ0+1(x3) = (0.9 ∗ 0.11) + 0 + 2 ∗ r2.(9.9− 1.1)

= 0.9000

Then, we look for the values of the same variables for the
other particles for the first iteration (k = 0), and we find:

• Velocity:
ϑ(x1) ϑ(x2) ϑ(x3)

particle1 1.066 −4.4719 0.9
particle2 0.81 0.5400 0.09
particle3 7.4888 2.5728 −18.3177
particle4 −0.1678 1.4286 1.4286
particle5 −1.2109 0.5286 −13.66


• Next, position:

ϑ(x1) ϑ(x2) ϑ(x3)
particle1 9.8667 5.4281 2
particle2 10.71 7.14 1.19
particle3 10.78 8.07 −7.317
particle4 10.83 3.628 12.42
particle5 9.78 6.028 −4.8635


4) Evaluation of the fitness function F (xi): for the new

values of velocity and position. For example, the new fitness
value for the first particle at the new position:

F (x1) = 10(x1 − 1)2 + 20(x2 − 2)2 + 30(x3 − 3)2

= 10(9.8667− 1)2 + 20(5.4281− 2)2 + 30

= 1.0512 ∗ 10−3

Then, we find the other fitness values for the other particles:
The value of the objective function

particle1 1.0512 ∗ 103
particle2 1.5695 ∗ 103
particle3 2.8866 ∗ 103
particle4 2.6716 ∗ 103
particle5 2.9504 ∗ 103


The smallest value is then selected as the new fitness value
after a comparison between the previous best fitness value
and these new fitness values. So in this instance:

gbest = 1.0512 ∗ 103;
and xgbest = [x1 = 9.8667;x2 = 5.4281;x3 = 2].

We compare its fitness value with the new one for each
particle, and save those with the smallest value. We find:

xbest

particle1 [x1 = 9.8667;x2 = 5.4281;x3 = 2]
particle2 [x1 = 9.9;x2 = 6.6;x3 = 1.1]
particle3 [x1 = 3.3;x2 = 5.5;x3 = 11]
particle4 [x1 = 11;x2 = 2.2;x3 = 11]
particle5 [x1 = 11;x2 = 5.5;x3 = 8.8]



5) Iteration update: Up till the stopping condition is
satisfied, we go back and forth from step two to this one
(i.e., reaching 50 iterations) k = k + 1 = 0 + 1 = 1.

6) Output with best gbest and xgbest :
Finally, the results obtained after 50 iterations:
gbest = 0.0032013791931731245 and xgbest = [x1 =
1;x2 = 1.9874;x3 = 3.0009888]. The fourth particle is the
one that provides us with this ideal answer. The graph in
Figure. 8 depicts how the value of the objective function
(gbest) has changed over time as a function of the number
of iterations (k).

IV. CASE STUDY: OPTIMIZATION OF ANN
LEARNING BY PSO

An ANN is made up of the association of simple objects
known as neurons in a graph of varying complexity. The
organization of the graph, or its architecture, the number of
neurons, the presence or absence of feedback loops in the
network, the type of neurons (their transition or activation
functions), and finally the objective supervised or unsuper-
vised learning, optimization, or dynamic systems distinguish
the main networks. In this paper, we apply the PSO meta
heuristics to the optimization problem of supervised learning
of ANN using DRL.

A. ANN Learning process

For ANNs, learning entails computing the parameters
so that the neural network’s outputs are, for the examples
used during training, as similar to the ”desired” outputs
as possible. The goal of ANN learning approaches, which
are optimization algorithms, is to reduce the discrepancy
between the network’s actual answers and its desired replies
by gradually changing its parameters (called ”iterations”).

As the learning process progresses, the output of the ANN
matches the data ever-better. However, the ANN’s error at the
conclusion of learning is not zero. As a result of the noise
that affects the measurements, we do not attempt to make the
curve pass through each and every measurement point, nor do
we attempt to replicate the measurement noise; instead, we
aim to ensure that the error committed in the neural network’s
approximation is of the same order of magnitude as the noise
that affects the measurements.

B. Optimization of ANN Learning Process using PSO

PSO algorithms are a recently proposed class of meta
heuristics for optimization problems. In the next of this
section we explain how we adapted PSO to ANN learning
optimisation on different steps.

1) Adaptation of the PSO meta-heuristic to ANN: Think
about a neural network with a single hidden layer and nc
nodes that has a single input and a single output. These
characteristics of this network:

• One input x and one output y ;
• Two weight vectors:

– W1 = (w11, w12, ..., w1nc);
– W2 = (w21, w22, ..., w2nc);

withe w1i : weight between the input and the interme-
diate layer and w2i: weight between the intermediate
layer and the output.

IAENG International Journal of Computer Science

Volume 51, Issue 8, August 2024, Pages 1195-1208

__

Fig. 8. The value of the objective function.

• A sigmoid function f at the hidden layer nodes;
• A linear function g at the node of the output layer;

The expression for the output y(k) of this ANN network is:

Y (k) =
i=nc∑
i=1

w2i ∗ f(x(k) ∗ w1i);

The following analogy needs to be used in order to apply
the procedure to an ANN:

• A ANN represents a particle.
• A weight vector with the dimensions (2 ∗ nc) replaces

the particle’s position x(k) : W = (W1;W2).
• A weight vector W takes the place of the particle’s

velocity or orientation.

W = (wv1, wv2, ..., wvnd);nd = 2 ∗ nc;

• The fitness function to maximize:

h(k) = 11 + e(k) With : e(k) = |yr(k)− y(k)|

• In the discrete case F (xi) = F (x(k)), the fitness func-
tion F calculates the position of the particle k, which is
denoted by the expression h(W): The fitness function
value as a function of the weight vector denoting the
particle’s ANN.

• xpbesti: The best position through which the particle i
has passed. It is replaced by Wpbest(k), the weight

vector of the particle k which allowed the best fitness
(maximum value ofh(k)).

• vpbesti: The best velocity (orientation) that the particle
has. It is replaced by Wvbest(k) the weight vector
of the particle k that allowed the best fitness h(k)
(maximum value).

C. PSO Optimization Algorithm

The method is to model DRL for reinforcement learning
and instantiate a random number of ANNs (the number
of particles for the PSO algorithm). The DRL consistently
suggests changing the PSO algorithm’s particle count in
accordance with learning rate, which stands for reward.

D. ANN Training for Flower Classification ”Iris” Data Set

Our Model is composed of 3 layers:
• An input layer with 4 neurons;
• An output layer with 3 neurons;
• An intermediate layer with 20 neurons;

And our optimization model contains 100 particles. Each
particle position represents the weights of the neural network.
The implementation steps of the algorithm are as follows:

• Import the libraries and dependencies necessary for the
implementation of the model.

• Import the r2 score metric to evaluate the model.

IAENG International Journal of Computer Science

Volume 51, Issue 8, August 2024, Pages 1195-1208

__

Algorithm 2 Proposed Optimization Algorithm using PSO
and DRL

repeat
for k from 1tonc do

if h(−→xi) > pbesti then
pbestk ← h(−→xi)−−−−→wpbesti ← wk

end if
if h(
−→
(k) > gbesti then

gbesti ← F (−→xi)−−−→xgbest ← −→xi

end if
end for
for ifrom1toN do
−−−−→wpbesti ← k(−−−−→wpbesti + p1(

−−−−→wpbesti −
−→
Wk)) +

p2(
−−−−→wvbesti −

−→
Wk)−→

Wk)←
−→
Wk +−−−−→wvbesti

end for
iteration = iteration+ 1
if iteration = CONST then
iteration = 0
reword = calculatethePSOconvergencerate
Cr = DQRL(State,Reword)
if Cr > 0 then

Reduce the number of particles furthest away;
else

Increase the number of particles around the best
positions;

end if
end if

until stopping conditions

• Import ”PySwarms”.
• Import of the ”Iris” data set.
• Store the features as X (inputs) and the labels as Y

(outputs).
• Divide the data set into training and testing(70%, 30%).
• Build the ANN model [inputs = 4;n hidden =

20;n classes = 3].
• This implies the forward propagation of a single particle

as an objective function to calculate the ANN forward
propagation as well as the loss.

• The forward propagation must compute the backward
propagation of weights and biases.

• Implement the forward propagation function for all
particles as a higher level method to do forward-prop
throughout the swarm.

• Initialize the swarm parameters with a dictionary whose
keys contain the value of the specific optimization
technique (cognitive, social, and inertia parameters).

• Perform the optimization to evaluate the objective func-
tion.

E. Optimization Results

The Figure. 9 represents the evolution of the value of
the objective function (the cost function) as a function of
the number of iterations (1000 iterations). The animation
in Figure. 10 displays how two particle positions behave in
relation to iterations:

We finally found the ideal neural network coefficients
thanks to this optimization model and 1000 iterations.

V. COMPARISON OF PSO TO OTHER META-HEURISTIC
METHODS

We must first examine the concept of complexity in
order to comprehend the significance of heuristics and meta-
heuristics. The resources needed for an algorithm to function
are represented as complexity. The calculation time is typi-
cally measured. P and NP are two distinct types of problems
that make up the complexity. Problems that can be resolved
in polynomial time are included in the P class. A problem
is said to be in the P class if it can be solved effectively;
otherwise, it is said to be tough. The solutions to problems
in the class NP can be proven to be attainable in polynomial
time. The problem of P = NP has not been resolved up to this
point. If P is included in NP, the converse is not guaranteed.
We opted to compare the PSO with the Genetic Algorithm
(GA) and the Firefly Method as two additional meta-heuristic
search methods for this study (Firefly).

A. Comparison between PSO and GA

A relatively new heuristic research technique called parti-
cle swarm optimization (PSO) draws its mechanics from the
swarming or cooperative behavior of biological populations.
PSO and the genetic algorithm (GA) are both population-
based search techniques, making them both evolutionary
heuristics. In other words, PSO and GA use a combination
of deterministic and probabilistic rules to go from one set
of points (population) to another set of points in a single
iteration with a likely improvement.

Because of their simplicity, ease of use, and capacity to ef-
fectively resolve highly nonlinear mixed integer optimization
problems typical of complex engineering systems, GA and
its various variations have gained popularity in academia and
industry. GA’s drawback is its high computational expense.
In terms of identifying the real global optimal solution, PSO
is just as effective as GA when statistical analysis and formal
hypothesis testing are used, but with much greater compu-
tational efficiency (fewer function evaluations) than GA. A
collection of benchmark test issues and two space system
design optimization problems, telescope array configuration
and spacecraft reliability-based design, are used to compare
the performances of GA and PSO.

B. Comparison of PSO and Firefly

The outcomes in Table I are provisional outcomes. Further
investigation and measurement are required because there can
still be mistakes and inaccuracies.

We shall express a view on the application of optimization
methods based on previous literature investigations. This is
because PSO might offer many different solutions while
having no guiding principles for the problem that has to be
optimized. PSO and other meta heuristic techniques cannot
guarantee the best outcomes. More specifically, PSO differs
from traditional optimization techniques like quasi newton
and derivative gradient in that it does not call for the
optimization of gradient issues. The PSO method and the
EC (Evolutionary Computation) method are quite similar in
many ways.

IAENG International Journal of Computer Science

Volume 51, Issue 8, August 2024, Pages 1195-1208

__

Fig. 9. The value of the objective function.

TABLE I
PSO AND FIREFLY PERFORMANCE COMPARISON

Feature PSO FireflyOne

Metaheuristic ⊗ ⊗
Flexibility ⊗ ⊗

Genetic operators ⊗
Low time complexity ⊗ ⊗

Easy to modify ⊗
Use of randomness ⊗

Certain of the most optimal solutions ⊗
Convergence ⊗ ⊗

Both methods begin with a collection of randomly pro-
duced populations and assess the population as a whole
using fitness values. The fundamental distinction between
PSO and other optimization techniques is that PSO does not

use genetic operators like crossover or mutation.
The PSO method’s particles use internal velocity to update

the data. As many times as necessary, the updating procedure
is repeated. Only the best particles will be used to create the
ideal solution in the final iteration. Implementation is simple
due to the lack of genetic operators like cross-SOP clarity
methods. It is now used as a vocational technique. Because
the PSO method uses very few parameters and has a low
time complexity, we may conclude that it is a straightforward
method.

There are numerous meta heuristic techniques, and each
has benefits and drawbacks of its own. PSO variants, GA
variants, and other variants were created as a result of some
researchers’ attempts to enhance things, which had their
ups and downs. The alternatives generated on one side are
quicker, less complex, but have a less ideal answer, while
the opposite is true.

IAENG International Journal of Computer Science

Volume 51, Issue 8, August 2024, Pages 1195-1208

__

Fig. 10. Convergence of PSO particles towards the optimal solution: from initial state (1) to final state (6).

The convergence of population diversity loss is one serious
issue that the PSO approach heavily depends on. There are
many more frequent applications for global optimization
techniques. other issues with simple solutions. The firefly
algorithm is another another meta-heuristic technique. The
firefly approach relies on chance to identify answers to issues.
Even with the same characteristics, not all problems can
be solved by the same solution. Directly observable natural
occurrences serve as the basis for the Firefly technique.
Whereas the masculinity-based approach is ineffective, the
condition can find the best treatment with this normal ap-
proach.

We are aware of the method for utilizing each optimization
algorithm thanks to the explanation in the previous section.
When selecting an algorithm, researchers must take care to
consider the data and the degree of difficulty they will face.
Another item to keep in mind is the goal of the research,
namely the importance of the desired optimization and how it
will affect the study’s conclusions. Here in Table II, are a few
advantages realized by utilizing the previously mentioned

TABLE II
THE ADVANTAGES OF USING THE PSO TO FIREFLY.

Algorithm Advantages

PSO Easy to implement
Requires only a few parameters

There is no evalution or mutation in the operator
Requires less computing

More flexible in maintaining

Firefly Algorithm Efficient to solve complex problems
Low time complexity

Can be used for various optimization problems

optimization algorithm.

VI. CONCLUSION

The particle swarm optimization (PSO) algorithm was
introduced in this study and was inspired by the world of
animals (bird species). Since its introduction, this approach
has had great success since it is straightforward and works

IAENG International Journal of Computer Science

Volume 51, Issue 8, August 2024, Pages 1195-1208

__

well for a variety of issues without forcing the user to
change the algorithm’s fundamental structure. Although the
PSO has experienced substantial issues (such as premature
convergence, which can cause algorithms of this type to
become stuck in a local optimum, for example), it has been
able to be significantly and permanently improved because
to its capacity and evolutionary nature.

The task involved modifying the PSO meta-heuristic for
neural network optimization, specifically to identify the
weight vector that would enable us to get the greatest fitness
function value.

It would be simple to apply the PSO to ANNs. However,
it is suggested that simple and reduced structures be used,
together with a sufficient number of particles in relation
to the size of the search space and the difficulty of the
optimization task.

Particularly to the MLP structure, the PSO has been well
adapted to neural networks. Contrary to precise approaches,
using PSO does not necessitate that the objective function
being optimized is derivable or continuous. To reduce pro-
cessing time, it is always preferable to utilize basic structures
with a single hidden layer and fewer nodes and connections.
Then, one should search for a balance between the number
of particles (neural networks) and algorithm performance.

REFERENCES

[1] I. E. Hassani, C. E. Mazgualdi, and T. Masrour, “Artificial intelligence
and machine learning to predict and improve efficiency in manufac-
turing industry,” arXiv preprint arXiv:1901.02256, 2019.

[2] C. El Mazgualdi, T. Masrour, I. El Hassani, and A. Khdoudi, “Machine
learning for kpis prediction: a case study of the overall equipment
effectiveness within the automotive industry,” Soft Computing, vol. 25,
no. 4, pp. 2891–2909, 2021.

[3] R. L. I. E. T. M. Tarik, Hajji, “Optimizations of distributed computing
processes on apache spark platform,” IAENG International Journal of
Computer Science, vol. 50, no. 2, pp. 422–433, 2023.

[4] M. T. O. J. M. I. Z. F. S. . J. E. Hajji, T., “Distributed and embedded
system to control traffic collision based on artificial intelligence,” In
Artificial Intelligence and Industrial Applications: Smart Operation
Management, pp. 173–183, 2021.

[5] J. Li, J.-h. Cheng, J.-y. Shi, and F. Huang, “Brief introduction of
back propagation (bp) neural network algorithm and its improve-
ment,” in Advances in Computer Science and Information Engineering.
Springer, 2012, pp. 553–558.

[6] M. O. Tarik, H., “Big data analytics and artificial intelligence serving
agriculture.” In Advanced Intelligent Systems for Sustainable Devel-
opment, pp. 57–65, 2020.

[7] N. Ouerdi, T. Hajji, A. Palisse, J.-L. Lanet, and A. Azizi, “Classifi-
cation of ransomware based on artificial neural networks,” in Inter-
national Conference Europe Middle East & North Africa Information
Systems and Technologies to Support Learning. Springer, 2018, pp.
384–392.

[8] J. O. Tarik, H., “Weather data for the prevention of agricultural pro-
duction with convolutional neural networks.” International Conference
on Wireless Technologies, Embedded and Intelligent Systems (WITS),
pp. 1–6, 2019.

[9] E. J. S. Y. M. J. . J. E. M. Hajji, T., “Microfinance risk analysis using
the business intelligence.” International Colloquium on Information
Science and Technology (CiSt), pp. 675–680, 2016.

[10] M. K. Tarik, Hajji and J. E. Miloud., “Digital movements images
restoring by artificial neural netwoks.” Computer Science and Engi-
neering, pp. 36–42, 2014.

[11] H. Miyajima, N. Shigei, H. Miyajima, and N. Shiratori, “Securely
distributed computation with divided data and parameters for hybrid
particle swarm optimization,” IAENG International Journal of Applied
Mathematics, vol. 52, no. 3, pp. 541–549, 2022.

[12] P. Pedregal, ”Introduction to optimization”. Springer, 2004, vol. 46.
[13] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization,”

Swarm Intelligence, vol. 1, no. 1, pp. 33–57, 2007.
[14] R. V. Rao and V. J. Savsani, “Mechanical design optimization using

advanced optimization techniques,” 2012.

[15] X. Ding, X. Liu, and H. Li, “Improved branch and bound global
optimization algorithm for a class of sum of linear ratios problems,”
IAENG International Journal of Applied Mathematics, vol. 52, no. 3,
pp. 617–624, 2022.

[16] I. H. Osman and J. P. Kelly, “Meta-heuristics theory and applications,”
Journal of the Operational Research Society, vol. 48, no. 6, pp. 657–
657, 1997.

[17] F. W. Glover and G. A. Kochenberger, ”Handbook of metaheuristics”.
Springer Science & Business Media, 2006, vol. 57.

[18] J. Qian and G. Chen, “Improved multi-goal particle swarm optimiza-
tion algorithm and multi-output bp network for optimal operation of
power system,” IAENG International Journal of Applied Mathematics,
vol. 52, no. 3, pp. 576–588, 2022.

[19] T. Hajji, A. A. Hassani, and M. O. Jamil, “Incidents prediction in road
junctions using artificial neural networks,” in IOP Conference Series:
Materials Science and Engineering, vol. 353, no. 1. IOP Publishing,
2018, p. 012017.

[20] Y. Li, “Deep reinforcement learning: An overview,” arXiv preprint
arXiv:1701.07274, 2017.

[21] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-
Spaccamela, and M. Protasi, ”Complexity and approximation: Combi-
natorial optimization problems and their approximability properties”.
Springer Science & Business Media, 2012.

[22] K.-L. Du, M. Swamy et al., “Search and optimization by metaheuris-
tics,” Techniques and Algorithms Inspired by Nature, pp. 1–10, 2016.

[23] Y. Zhang, S. Wang, and G. Ji, “A comprehensive survey on particle
swarm optimization algorithm and its applications,” Mathematical
Problems in Engineering, vol. 2015, 2015.

[24] S. Desale, A. Rasool, S. Andhale, and P. Rane, “Heuristic and meta-
heuristic algorithms and their relevance to the real world: a survey,”
Int. J. Comput. Eng. Res. Trends, vol. 351, no. 5, pp. 2349–7084, 2015.

[25] R. Eberhart and J. Kennedy, “Particle swarm optimization,” in Pro-
ceedings of the IEEE International Conference on Neural Networks,
vol. 4. Citeseer, 1995, pp. 1942–1948.

[26] D. Wolpert, “Theory of collective intelligence,” in Collectives and the
Design of Complex Systems. Springer, 2004, pp. 43–106.

[27] A. Gloria, S. Neukamm, and F. Otto, “A regularity theory for random
elliptic operators,” arXiv preprint arXiv:1409.2678, 2014.

[28] L. J. V. Miranda, “Pyswarms documentation,” 2020.

IAENG International Journal of Computer Science

Volume 51, Issue 8, August 2024, Pages 1195-1208

__

