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Abstract—In recent years, the utilization of unmanned aerial
vehicles (UAVs) for aerial target detection has gained significant
attention due to their high-altitude perspective and maneu-
verability, which offer novel opportunities and tremendous
potential in this field. However, detecting targets in UAV aerial
images remains highly challenging due to the presence of
numerous small targets with limited feature information, as well
as issues like target occlusion and complex backgrounds that
severely impact detection accuracy. To address these challenges,
we propose a detection model called BDC-YOLOv8 that aims
to enhance accuracy for small targets while minimizing compu-
tational complexity. Specifically, we augment the YOLOv8 ar-
chitecture by incorporating a dedicated detection head tailored
for small targets to improve performance when encountering
such objects. Additionally, we restructure the neck network of
the model to better extract and fuse feature information from
targets with significant scale variations. Furthermore, we intro-
duce the concept of DynamicHead to enhance the detection head
by incorporating various attention mechanisms suitable for our
task ahead of the original detection head, thereby enhancing
the model’s capability to detect objects of different scales and
complex backgrounds. Moreover, we introduce Convolutional
Block Attention Module (CBAM) to identify regions of interest
in densely populated areas. Extensive experiments conducted
on the VisDrone2019 dataset yield promising results where
our model achieves a mean Average Precision (mAP) score of
38% and an AP50 score of 59.6%. Compared to the original
YOLOV8 model, improvements are observed with increases
in mAP by 2.5% and AP50 by 3.7%, respectively. Notably,
our model demonstrates a significant enhancement in detecting
small targets with an increase in APs evaluation metric by 4.1%.

Index Terms—Object detection, Small objects, Attention
mechanism, Feature fusion.

I. INTRODUCTION

THE unmanned aerial vehicle (UAV) technology has
progressively matured over the past decade, rendering

it widely applicable in diverse fields such as industry, agri-
culture, and military due to its portability, efficiency, and
ease of deployment. Object detection plays a pivotal role in
UAV missions. However, detecting small objects during UAV
aerial photography poses a significant challenge compared to
conventional-sized objects. Small objects often lack distinc-
tive features and are prone to occlusion by other objects,
thereby impeding accurate detection by models. Moreover,
UAV aerial datasets frequently exhibit complex backgrounds
and severe occlusions that introduce interference and hinder
the detection of small objects. Henceforth, it is imperative to
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develop an efficient and effective network model specifically
tailored for small object detection.

In recent years, significant advancements have been made
in both deep learning and object detection techniques. The
most cutting-edge object detection algorithms can be cat-
egorized into two main types: single-stage detectors and
two-stage detectors. Single-stage detectors encompass the
renowned YOLO series [1, 2] , SSD [3], and RetinaNet [4],
while two-stage detectors include the RCNN series [5–7].
Although two-stage detectors generally achieve higher accu-
racy compared to single-stage detectors, they often encounter
challenges related to training difficulty and detection speed.
With the remarkable performance of transformer models
[8] in natural language processing, researchers have begun
incorporating transformers into computer vision [9–12], re-
sulting in substantial improvements. However, transformers
also introduce higher computational costs and deployment
challenges, rendering them unsuitable for real-time tasks
such as target detection and tracking in UAV aerial imagery.
Many existing real-time detectors prioritize both accuracy
and detection speed by utilizing CNN-based methods; how-
ever, these detectors exhibit suboptimal performance when
dealing with small objects amidst complex backgrounds,
making them less suitable for small object detection in UAV
aerial imagery.

The proposed BDC-YOLOv8 algorithm is an enhance-
ment of YOLOv8. Firstly, the neck network of YOLOv8
is reconstructed to incorporate bidirectional feature fusion
for improved retention of low-level features. Additionally,
a dedicated small object detection head is introduced to
significantly enhance the accuracy in detecting small objects.
Furthermore, the original detection head is improved by inte-
grating multiple attention mechanisms, effectively enhancing
the model’s ability to handle targets with varying scales and
complex backgrounds. To facilitate identification of regions
of interest within images, a Convolutional Block Attention
module (CBAM) is integrated into the backbone network,
resulting in a slight reduction in computational complexity
while improving accuracy.

II. RELATED WORK

Object detection algorithms have made significant ad-
vancements to date, achieving high accuracy on numerous
conventional object detection datasets. However, their perfor-
mance remains suboptimal for datasets containing small and
dense objects due to the inadequate capabilities of current
algorithms in detecting such objects accurately. While the
initial YOLO series and RCNN series algorithms have shown
improvements in detecting general objects, they fall short
when it comes to datasets with small objects. To address
this issue, researchers have proposed various methods. For
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instance, RetinaNet [4], introduced by Lin et al., effectively
tackles the problem of class imbalance in object detection
and enhances the detection performance for small objects;
however, it also introduces higher computational complex-
ity. Cascade-RCNN [7], presented by Cai et al., further
improves model performance by cascading multiple RCNN
modules. Centernet [13], proposed by Duan et al., is a
center-point-based object detection algorithm that enhances
the detection performance for small and dense objects while
compromising accuracy for larger ones. FPN [14], suggested
by Lin et al., provides multi-scale feature representations
enabling adaptability to different scale requirements of de-
tected objects. DETR [11], introduced by Xia et al., applies
transformers to object detection tasks and improves accuracy
for occluded and densely packed objects; nevertheless, its
performance on small objects remains unsatisfactory.The
DETR series consistently achieves state-of-the-art results
on the widely used COCO dataset for object detection.
However, it still faces significant challenges, such as high
computational complexity and slow training speeds, which
render DETR unsuitable for real-time detection applications.
To address these issues, Zhu et al. proposed Deformable
DETR [15], which focuses its attention module on a small
set of key sampling points around the reference. These
modifications effectively reduce computational load while
enhancing performance and decreasing training time by a
factor of ten. Roh et al. introduced Sparse DETR [16], which
selectively updates the tokens expected to be referenced
by the decoder; applying auxiliary detection loss to the
selected tokens in the encoder improves performance while
minimizing computational overhead. Wang et al. proposed
Anchor DETR [17], introducing a novel query mechanism
for Transformer-based object detection and designing an
attention variant that reduces memory costs while achieving
comparable or superior performance compared to standard
attention in DETR, thereby improving runtime speed as
well. Li et al., presented DN-DETR [18], introducing a new
denoising training method to expedite DETR training process
efficiently.Zhang et al., proposed DINO [19], an advanced
end-to-end object detector that utilizes contrastive denoising
training method along with hybrid query selection method
incorporating anchor initialization and ”look forward twice”
scheme for box prediction.These innovations significantly en-
hance both performance and efficiency over previous models
similar to DETR, effectively reducing model size and pre-
training data requirements while achieving superior results.

The YOLO series models have achieved remarkable suc-
cess in the field of computer vision through continuous devel-
opment, and their enhanced algorithms have been extensively
applied across various domains with commendable outcomes
[20, 21]. In comparison to its predecessors, YOLOv8 exhibits
superior accuracy while maintaining a lightweight design.
Additionally, YOLOv8 offers models of varying sizes (n, s,
m, l, and x) to cater to diverse tasks; its network architecture
comprises a backbone, neck, and head.

A. Backbone

The backbone network plays a pivotal role in object
detection tasks, as it is responsible for extracting meaningful
features from input images to provide informative data

for subsequent operations. Commonly employed backbone
networks encompass ResNet [22], DenseNet [23], Shufflenet
[24], SwinTransformer [9], etc., which have exhibited robust
feature extraction capabilities when applied across diverse
models. YOLOv8 employs an enhanced CSPDarknet53 as
its backbone network, derived from the previous iteration,
YOLOv5, ensuring both lightweight implementation and
improved detection accuracy. It incorporates residual con-
nections and bottleneck structures to reduce network size
while enhancing performance. Furthermore, the C3 module
in YOLOv5 is substituted with the C2f module in YOLOv8,
achieving further lightweight design while retaining the SPPF
(Spatial Pyramid Pooling) module utilized in YOLOv5 and
other related architectures.

B. Neck

The neck network is positioned between the backbone
network and the detection heads, primarily responsible for
processing the feature maps extracted by the backbone net-
work at different stages to cater to diverse task requirements.
Commonly employed neck networks encompass FPN [14],
NasFPN [25], and BiFPN [26]. In YOLOv8, the neck module
adopts PAN-FPN [27] methodology, effectively extracting
and integrating multi-scale features through operations like
feature pyramid networks and feature fusion. This enhance-
ment elevates object detection performance and robustness,
enabling superior adaptability of the model towards objects
with varying scales and sizes in complex scenes.

C. Detection head

The detection heads [28] in object detection tasks are
responsible for processing the feature maps generated by the
backbone network and neck network to accurately determine
the precise location and class of objects. In YOLOv8, sig-
nificant modifications have been made to the detection heads
compared to its predecessor, transitioning from coupled
heads to a decoupled head structure that is currently widely
adopted. This structural change effectively separates the
classification and detection processes, resulting in improved
flexibility, trainability, and generalization performance. Con-
sequently, these enhancements greatly enhance the model’s
applicability across diverse scenarios.

III. METHOD INTRODUCTION

YOLOv8 has demonstrated its accuracy and reliability on
various object detection datasets, showcasing multiple de-
tection layers of different scales to effectively detect objects
of diverse sizes. However, there is room for improvement
in detecting small objects. Therefore, we adopt YOLOv8 as
the baseline model and propose enhancements to enhance
its precision in detecting small objects. Our approach is
evaluated on the VisDrone2019 dataset, which comprises
UAV aerial photography images capturing a significant pro-
portion of small objects along with complex backgrounds
and severe occlusions. These factors can potentially result
in false positives and false negatives during object detection;
hence necessitating further algorithm optimization and model
improvements to augment the accuracy of small object
detection.
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Fig. 1: Overall improved architecture diagram

A. Overall architecture

To address these challenges, we have enhanced the original
YOLOv8 model as depicted in Figure 1. In the neck network,
we have identified that the feature extraction method of the
original model is not suitable for effectively detecting small
targets due to its unidirectional structure which tends to over-
look low-dimensional features, resulting in missed detections
of small targets. To tackle this issue and simultaneously
preserve more intricate details and edge information while
enhancing feature fusion, we propose a novel architecture
for the neck network. Taking inspiration from Bidirectional
Feature Pyramid Network (BiFPN), we reconstructed the
neck network of the baseline model. The figure illustrates
that our feature fusion module adopts a bidirectional feature
pyramid network approach. With this enhancement, our
redesigned neck network demonstrates superior capabilities
in extracting features compared to the baseline model. It
significantly enhances the model’s ability to detect objects
at various scales, thereby improving both robustness and
performance.

In addition, in order to further enhance the detection ability
of the model for features of different scales, the concept of
DynamicHead is introduced, and the original detection head
is expanded by fusing multiple attention mechanisms. This
enhancement improves the performance when dealing with
objects of different scales.

The CBAM attention mechanism was ultimately integrated
into the model, effectively enhancing its feature represen-
tation capabilities during the experiment. These CBAM at-
tention mechanisms selectively emphasize crucial informa-
tion and significantly improve the model’s ability to detect
small objects. These enhancements render the model more

adaptable to complex environments, resulting in a more
satisfactory performance in object detection tasks.

B. BIFPN

Given the presence of objects exhibiting varying scales
within the dataset, such as nearby cars and distant pedestri-
ans, the original model encounters challenges in effectively
detecting these objects when faced with significant scale
changes. It tends to prioritize larger objects while disregard-
ing smaller ones, resulting in missed detections. This is a
prevalent issue observed in contemporary object detection
algorithms. To address this problem, we have redesigned the
neck network by incorporating the concept of Weighted Bidi-
rectional Feature Pyramid Network (BIFPN). This approach
enhances both feature extraction and fusion capabilities of
the original neck network, thereby improving the model’s
ability to detect objects at different scales. The bidirectional
structure enables the model to acquire more low-dimensional
features, effectively reducing missed detections of small
objects and making it more suitable for our task.

Due to the varying resolutions of input features, their con-
tributions to the fused output features are typically unequal.
To address this issue, BIFPN introduces learnable weights
that capture the importance of different input features and
applies multi-scale feature fusion iteratively in both top-
down and bottom-up directions. This approach effectively
mitigates the problem of missing detection of small targets
caused by scale changes. Traditional FPNs often neglect low-
dimensional information due to unidirectional information
flow, resulting in a loss of semantic details for small targets.
Similar to its predecessor YOLOv5, YOLOv8 utilizes an
enhanced PAN-FPN structure, which is a pyramidal feature
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extraction network. PAN-FPN combines bottom-up and top-
down feature propagation on top of FPN by upsampling low-
resolution feature maps while simultaneously downsampling
high-resolution feature maps and connecting them to form
pathways. In this process, each layer’s information is fused
with adjacent layers’ information to minimize information
loss and retain more detailed information, thereby enhancing
detection accuracy. Our modified structure also adopts this
bidirectional sampling approach as depicted in FIG 2.Firstly,
it eliminates single-input nodes that lack feature fusion and
make minimal contributions to feature extraction. Subse-
quently, it establishes a connection from the original input
nodes to the output nodes and assigns additional weights to
each input, enabling the network to learn the significance of
individual input features. This adaptive integration of features
across layers mitigates conflicting information between them,
resulting in a slight increase in computational overhead
but significantly enhancing feature extraction capabilities
while minimizing semantic information loss for small objects
during feature fusion.

When merging features of varying resolutions, it is cus-
tomary to standardize them to the same resolution before
combining. However, due to their disparate resolutions, the
contributions of these input features differ, thereby neces-
sitating unequal treatment. BIFPN addresses this issue by
assigning an additional weight to each input, as depicted in
Equation 1. This enables the network to learn and leverage
the significance of each input through a weighted fusion
approach.

O =
∑
i

wi

ϵ+
∑

j wj
· Ii (1)

Here, wi ≥ 0 is ensured by applying the ReLU activation
function after each wi. The learning rate e is set to a
small value of 0.0001 to avoid numerical instability. Each
normalized weight value is also between 0 and 1, and since
there is no softmax operation involved, the efficiency is much
higher.

Fig. 2: Improved feature fusion

The YOLOv8 baseline model incorporates three detection
layers and heads of varying scales to accurately detect
objects of different sizes. Our research specifically focuses
on datasets containing a significant number of small objects,

which pose challenges for accurate identification. To tackle
this issue, we have designed a dedicated detection head
exclusively for small objects. This additional small object
detection head, combined with the restructured network
model, effectively mitigates the impact caused by drastic
variations in object size.

C. DynamicHead detection head

In aerial drone imagery, targets often exhibit significant
scale variations and complex backgrounds. To address these
challenges, we introduced the concept of a dynamic detection
head (DynamicHead) to enhance YOLOv8’s detection capa-
bilities. We integrated three different attention mechanisms
into the detection head: scale-aware attention for feature
levels, spatial-aware attention for spatial positions, and task-
aware attention for output channels. These attention mecha-
nisms establish global dependencies, effectively expand the
receptive field, and gather more contextual information. We
believe these mechanisms are crucial for detecting targets
in aerial drone imagery, significantly mitigating the impact
of target occlusion and complex backgrounds. However,
attention mechanisms introduce higher computational costs
compared to traditional CNNs, increasing both training and
inference overhead. Additionally, using multiple attention
mechanisms leads to a substantial increase in computational
burden. Therefore, we cannot directly incorporate these atten-
tion mechanisms into the detection head. To address this, we
introduced the concept of DynamicHead, aiming to improve
the model’s detection performance for targets with significant
scale variations and complex backgrounds while minimizing
the increase in computational complexity.

𝝅𝑳 𝝅𝑺 𝝅𝑪
YOLOv8 
HEAD

avg pool

conv 1*1

relu

hard 
sigmoid

index

conv 3*3

offsetsigmod

avg pool

fc

relu

fc

normalize

1,0,0,0

𝛼1, 𝛽1, 𝛼2,𝛽2

Fig. 3: Improvement of detection head

DynamicHead treats the input as a three-dimensional ten-
sor: level × space × channel, where level represents the
feature level, space represents the product of the width
and height of the feature map (HW), channel denotes the
number of channels, which can be expressed as F ∈ Rl×s×c.
In response to this attention, if we directly use the fully
connected layer, it can be described as W (F) = π(F) · F .
However, connecting three attention mechanisms in this way
will lead to a sharp increase in computational complexity,
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making it impractical. A feasible solution is to transform
the above attention mechanisms into three serial attention
mechanisms, each focusing on a single dimension, as shown
in Equation 2.

W (F) = πC (πS (πL(F) · F) · F) · F (2)

The functions πL(·), πS(·)and πC(·) respectively represent
attention on the three dimensions: L, S, and C.

1) Scale-aware Attention πL(·): The attention module
with scale awareness dynamically integrates features based
on their semantic importance across different scales, aligning
feature maps with target scales by operating on the level
dimension. By enhancing attention on the level dimension,
it further improves scale-awareness in target detection, ef-
fectively enhancing object detection for various scales and
overall performance. The mathematical representation of this
module is provided in Formula 3.

πL(F) · F = σ

f

 1

SC

∑
S,C

F

 · F (3)

In this case, f(·) approximates a linear function using a
1x1 convolutional layer. σ(x) = max

(
0,min

(
1, x+1

2

))
is

the hard-sigmoid function.
2) Spatial-aware Attention πS(·): The module for spatial

perception attention enhances the ability to discriminate
between different spatial positions. Given the high dimen-
sionality of S, it is imperative to decompose this module into
two sequential steps: firstly, employing variable convolution
for learning sparsity; and subsequently, aggregating features
across multiple levels at the same spatial position in the
spatial dimension, as illustrated in Formula 4. Geometric
transformations of the target correspond to distinct spatial
positions, and augmenting attention in the spatial dimension
amplifies the target detector’s capacity for perceiving space.

πS(F)·F =
1

L

L∑
l=1

K∑
k=1

wl,k·F(l; pk +∆pk; c)·∆mk (4)

Among them, K represents the number of sparse sampling
positions. pk + ∆pk performs a position offset to focus on
discriminative regions. ∆mk is a self-learned factor that
measures the importance of position pk. All of these can
be learned from the input features of the intermediate levels
in F.

3) Task-aware Attention πC(·): To enhance generalization
in joint learning and target representation, we propose a
task-aware attention module that dynamically adjusts feature
channels in the channel dimension to cater to different
tasks. Each channel corresponds to a specific task, thereby
improving the perception capability of target detection across
various tasks (as depicted in formula 5). By increasing
attention within the channel dimension, we can effectively
strengthen the perception capability of target detection for
diverse tasks.

πC(F)·F = max(ν)

ν = α1(F)·Fc + β1(F), α2(F)·Fc + β2(F)
(5)

We use
[
α1, α2, β1, β2

]T
= θ(·) as super functions to

learn to control the activation threshold. In addition, we

introduce the θ(·) function, which works similar to Dynamic
ReLU. Firstly, we perform global pooling on the L × S di-
mensions, then pass through two fully connected layers, one
normalization layer, and finally normalize the output using
the shifted sigmoid function. Through these optimizations
and enhancements, our model can better adapt to different
data and task requirements.

D. CBAM

In the context of drone-based aerial target detection, the
presence of intricate and dynamic backgrounds poses a
significant challenge to the model’s capacity for accurate
target detection. To effectively tackle this challenge, we
have incorporated an attention mechanism known as CBAM
(Convolutional Block Attention Module) into our model. The
primary objective behind integrating this module is to aid
the model in mitigating the impact of cluttered background
information and enhancing its focus on efficiently extracting
target objects.

The CBAM module is designed to enhance attention in
a lightweight manner and consists of two sub-modules: the
Channel Attention Module (CAM) and the Spatial Attention
Module (SAM). Figure 4 illustrates the structural diagram
of CBAM, showcasing its composition. The CAM module
calculates the channel attention map by considering informa-
tion along the channel dimension, while the SAM module
computes the spatial attention map by taking into account
information along the spatial dimension. These two attention
maps are then multiplied with the input feature map to
facilitate adaptive refinement of features.

In our experiments, we successfully integrated the CBAM
module into both the backbone and neck networks of the
model, resulting in enhanced feature representation capabil-
ity and improved detection performance. Despite a slight
increase in computational overhead, this optimization mea-
sure effectively enhances target detection tasks in complex
backgrounds, thereby increasing robustness and reliability.
Furthermore, this enhancement not only improves target
identification accuracy but also expands its applicability to
a wider range of real-world scenarios by enhancing general-
ization capability.

Channel Attention           
Module

Spatial Attention           
Module

Fig. 4: CBAM network architecture

IV. EXPERIMENTAL DESIGN AND IMPLEMENTATION

A. Dataset Introduction

In our experiments, we utilized the VisDrone2019 DET
dataset, meticulously curated by the AISKYEYE team at
Tianjin University’s Machine Learning and Data Mining
Laboratory in China. This comprehensive dataset comprises
8629 images encompassing 10 distinct categories and a
total of 343205 annotations. It showcases diverse scenar-
ios captured under varying weather conditions and lighting
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settings using an array of drones. Spanning thousands of
kilometers across 14 urban locations, it encompasses both
urban and rural environments. The object categories within
this dataset include pedestrians, vehicles, bicycles, among
others, with scene densities ranging from sparse to crowded
environments. Moreover, the dataset presents numerous chal-
lenging instances such as complex dense scenes and partially
occluded objects.

Fig. 5: The number of labels for each category in
VisDrone2019 dataset.

B. Experimental setup

In terms of hardware, we utilized an Xeon(R) Platinum
8350C CPU, 42GB of memory, and a GeForce RTX 3090
GPU. For software, we employed PyTorch 1.11.0 and Python
3.8, running on a Linux operating system.

The VisDrone2019 dataset contains images with varying
resolutions. To achieve better results, we adjusted the input
image size to 1500x1500. We set the batch size to 2 and used
the default learning rate for YOLOv8. YOLOv8 offers five
different models of increasing sizes, denoted as n, s, m, l, and
x. Larger models generally provide higher detection accuracy
but also increase training time and computational complexity.
For convenience in experiments, we did not use the largest
YOLOv8x model but instead utilized the YOLOv8s model.
Its performance was evaluated using the validation set from
the VisDrone2019 dataset.

C. Comparative experiments

The VisDrone2019 dataset comprises images with varying
resolutions. In order to enhance the performance, we adjusted
the input image size to 1500x1500 pixels. The batch size
was set to 2, while the default learning rate for YOLOv8
was employed. YOLOv8 offers a range of models denoted
as n, s, m, l, and x, with increasing sizes. Although larger
models generally yield higher detection accuracy, they also
lead to longer training time and increased computational
complexity. For experimental convenience purposes in this

study, we opted not to utilize the largest YOLOv8x model
but instead employed the YOLOv8s model. Its performance
evaluation was conducted using the validation set from the
VisDrone2019 dataset.

TABLE I: Compare different categories pairwise

Method ImageSize mAP AP50

YOLOv8s 1280*1280 35.5 55.9

Cascade-RCNN 1280*1280 16.1 32.0

DPNet 1280*1280 29.6 54.0

RRNet 1280*1280 29.1 55.8

TPH-YOLOv5 1280*1280 35.7 57.3

SMPNet 1280*1280 36.0 59.5

ours 1280*1280 38.0 59.6

We conducted detection on 10 different categories in
the VisDrone2019 dataset, encompassing pedestrian, people,
bicycle, car, van, trunk, tricycle, awning-tricycle, bus and
motor. Notably, there are overlapping categories such as
pedestrian and people or tricycle and awning-tricycle. These
targets are typically captured from a drone’s perspective
and often appear very small; thus models can only extract
limited features. Additionally, the presence of numerous
highly similar categories poses challenges for accurate de-
tection. Consequently, we compared the performance of our
enhanced model with other mainstream models (as presented
in Table 2). Our experimental results demonstrate that our
improved model achieves commendable performance across
most categories while validating its accuracy.

D. Ablation experiments
To delve deeper into the impact of each component on

the experimental results, we conducted a series of experi-
ments using the YOLOv8s backbone network in the same
experimental environment. By comparing different evalua-
tion metrics, including mean average precision (mAP), 50%
Intersection over Union (IoU) precision (AP50), and small
object precision (APs), we obtained a series of insightful
results. These findings contribute to a more comprehensive
understanding of the roles of each component in object
detection tasks. Table 3 presents the results of our ablation
experiments. Through systematic analysis and comparison,
we can better discern the contribution of each component to
model performance, thereby providing a solid reference basis
for further research and optimization.

TABLE III: Ablation experiments

BIFPN DyHead CBAM mAP AP50 APs

YOLOv8s - - - 35.5 55.9 24.7

YOLOv8s
√

- - 36.5 58 27.1

YOLOv8s -
√

- 36.2 57.5 26.8

YOLOv8s - -
√

35.8 56.3 25.5

YOLOv8s
√ √ √

38.0 59.6 28.8

E. Experimental results visualization
Our BDC-YOLOv8 underwent a series of experiments

on the VisDrone2019 dataset, effectively showcasing its ex-
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TABLE II: Compare different categories pairwise

Methods all pedestrian people bicycle car van trunk tricycle awning-tricycle bus motor

YOLOv8s 35.5 34.1 23.8 18.4 66.3 42.3 37.2 27.9 17.1 54.6 33.6

Cascade-RCNN 16.1 16.3 6.2 4.2 37.2 20.4 17.1 14.5 12.4 24.3 14.9

PPNet 29.1 30.4 14.9 13.7 51.4 36.1 35.2 28.0 19.0 44.2 25.9

DPNet 29.6 32.3 16.0 12.9 51.5 39.8 30.7 30.7 18.4 38.5 28.0

TPH-YOLOv5 35.7 28.0 14.9 14.2 67.6 45.0 44.8 25.1 20.5 55.7 27.8

ours 38.0 38.8 27.0 21.5 68.9 46.3 36.8 29.0 17.6 56.8 37.2

Fig. 6: Results Visualization

ceptional performance in object detection, particularly when
dealing with small and occluded objects. The visualized
results depicted in Figure 6 vividly illustrate the detection
outcomes achieved by our model. It is evident that our
approach attains higher levels of detection accuracy when
confronted with diminutive and densely packed objects. In
comparison to the original model, our methodology exhibits
superior detection performance and enhanced stability in
addressing these arduous tasks. These findings not only
validate the efficacy of our model but also provide significant
guidance and insights for future research endeavors aimed at
optimization.

In our dataset, there are several categories that share
similarities, such as pedestrians and crowds, bicycles and mo-

torcycles, tricycles and open tricycles, among others. When
viewed from a drone’s aerial perspective, these small objects
have limited distinguishing features. As a result, they can be
easily missed or falsely detected. Figure 7 demonstrates the
effectiveness of our model in reducing false alarms when
dealing with different categories. These improvements not
only enhance the accuracy of the model but also strengthen
its reliability in complex scenarios.

V. CONCLUSION

In this paper, we propose an enhanced model based on
YOLOv8, a widely adopted framework in the field, aiming to
improve detection accuracy and capability for small targets
in aerial drone imagery. Through empirical validation, our
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Fig. 7: Confusion matrix

model demonstrates its effectiveness and robustness, par-
ticularly in enhancing the detection performance for small
targets. We conducted experiments using the VisDrone2019
dataset as our experimental subject.

Firstly, we introduce the concept of Bi-directional Feature
Pyramid Network (BiFPN) to restructure the neck network of
the model, enabling it to obtain richer contextual information.
Secondly, we incorporate new layers and detection heads
specifically designed for small target detection, resulting in
improved detection accuracy when dealing with small targets.
Thirdly, we adopt the idea of DynamicHead detection head
with multiple attention mechanisms to enhance the original
detection head. The new detection head effectively unifies
scale perception, spatial perception, and task perception,
thereby enhancing detection accuracy. Finally, we integrate
CBAM (Convolutional Block Attention Module) attention
mechanisms into both the backbone and neck networks to
improve the model’s perception capability.

Compared to the baseline model, our improved model
achieves a 2.5% increase in mean Average Precision (mAP),
a 3.7% increase in AP50, and a 4.1% increase in APs.
However, challenges such as small target misses and category
misclassification still persist. Therefore, our future research
will focus on further optimizing the model while concur-
rently enhancing detection accuracy for diminutive targets,

particularly within lightweight model configurations.
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