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Abstract—This paper introduces a new network model - the 

Image Guidance Encoder-Decoder Model (IG-ED), designed to 

enhance the efficiency of image captioning and improve 

predictive accuracy. IG-ED, a fusion of the convolutional 

network VGGNet-16 and the long short-term memory network 

(LSTM), is designed based on the encoder-decoder structure. 

The image captioning performance sees significant 

enhancements when leveraging the IG-ED network model. The 

network training process unfolds in a series of steps. Initially, 

the input image undergoes convolution via the VGGNet-16 

network, producing a 512-dimensional vector. Concurrently, 

each word in the image's caption is encoded to generate a 

corresponding 512-dimensional vector consistent with the 

image feature dimension. These two vectors form the input for 

the decoding process. Subsequently, the vectors are fed into the 

redesigned fusion LSTM (F-LSTM) network at different time 

steps to gradually train the parameters of the IG-ED 

framework. The training process is completed by utilizing a loss 

function for determining convergence. Evaluation of the IG-ED 

model's performance is conducted using CIDEr and seven other 

evaluation metrics on the MSCOCO 2014 dataset. 

The results exhibit substantial improvements over the 

“Adaptive Attention Mode” network and “Neural Talk” 

network. Additionally, the parameter count of the IG-ED 

architecture is significantly reduced compared to the "Adaptive 

Attention Mode" network, leading to decreased computational 

resource requirements and enabling edge computing on the 

neural network. 

 
Index Terms—Image Captioning, VGGNet-16, LSTM  

 

I. INTRODUCTION 

mage captioning, one of the core issues in computer vision, 

is closely related to image semantic analysis and image 

annotation technology [1], [2], [3], [4]. The research in this 

area plays a crucial role in various applications such as image 

search, information dimension reduction, video captioning 

[5]. video tracking [6], and human-computer interactions. 

The main goal of image captioning is to automatically 

generate coherent and accurate sentences that describe the 
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content of an image. While humans can easily describe an 

image in words, achieving similar results with a computer 

poses several challenges. Several key factors must be 

addressed in image captioning, including leveraging image 

features effectively, translating comprehension into 

descriptive text, and converting these processes into logical 

code. 

This task is highly complex and cannot be achieved easily 

through traditional computer algorithms. Early image 

captioning methods [7], [8] used to extract object information 

from images by merging image processing and SVM 

classification. The process involved inferring object 

information and attributes obtained in the previous stage, 

followed by utilizing CRF or other custom rules to create an 

image description. These methods heavily depended on 

explicit rules for sentence generation. In response, Fei-Fei Li 

[9] proposed a shift towards using a standard 

encoder-decoder framework. The method involved 

leveraging a high-performing convolutional neural network 

as the encoder to capture image feature information, followed 

by employing a recurrent neural network as the decoder for 

image description generation. 

Inspired by the attention mechanism mentioned by 

Volodymyr [10], attention mechanism has attracted 

increasing attention due to its ability to leverage image 

characteristics effectively. Traditionally, machine translation 

relies on extracting feature information from the source 

language uniformly, which limits its capacity to analyze 

specific contexts. Bahdanau [11] tackled this limitation by 

integrating attention mechanism into machine translation, 

allowing the translation model to assign varied attention 

levels to different words during the translation process. As a 

result, the generated target language output becomes more 

logically coherent. Furthermore, Cheng J P [12] incorporated 

attention mechanism into Long Short-Term Memory 

(LSTM) networks for machine reading tasks, while Lin Z 

[13] utilized attention mechanism for image feature 

extraction and sentence sentiment analysis. Additionally, 

Shen T [14] leveraged attention mechanism for enhancing 

language understanding. Finally, [15-17] applied attention 

mechanism to text classification tasks, further demonstrating 

the versatility and effectiveness of attention mechanism 

across a range of applications in natural language processing. 

Researchers have extensively explored attention 

mechanisms and their applications in image captioning. Xu K 

[18] introduced both soft and hard attention mechanisms, 

utilizing different types of attention in various regions. Lu J 

[19] proposed an adaptive attention mechanism, employing 

middle layers as visual guidance information after 

convolution to guide the inference process based on current 
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circumstances. Previous studies [20-24] have successfully 

employed attention mechanisms to enhance image 

understanding. Additionally, [25-26] developed a 

"top-down" image captioning method that utilizes partial 

labels to generate detailed captions, thereby improving the 

effectiveness of image captioning. Furthermore, Ashish et al. 

[27] introduced a novel recurrent neural network structure 

known as Transformer, while Devlin et al. [28] proposed the 

BERT architecture. These innovative network structures 

leverage attention mechanisms extensively and aim to 

replace LSTM networks for improved captioning 

performance; however, they have not yet been widely 

adopted in image captioning applications. 

While these methods have enhanced the quality of image 

captioning to some degree, the neural network approach still 

faces challenges such as high parameter complexity, 

algorithm intricacy, and significant CPU/GPU resource 

consumption during implementation. These issues pose 

economic and energy consumption obstacles, hindering the 

practical application of research outcomes. 

A novel neural network architecture IG-ED is proposed to 

address the issues outlined above in this paper. Unlike 

traditional attention mechanisms, the IG-ED model leverages 

global image information in lieu of local image details to 

optimize network parameter inference for improved image 

captioning performance at reduced computational expense. 

Functionally, the encoder processes input images and 

corresponding annotation sentences into a standardized 

vector format, while the decoder extrapolates core features 

from these input vectors. Specifically, the encoder utilizes the 

VGGNet-16 convolutional neural network and a data 

dictionary to unify the representation of the input images and 

labeled sentences. In contrast, the decoder employs a "fusion 

long short-term memory network" (F-LSTM) to generate 

textual descriptions of images based on the unified vector 

representation. Notably, the decoder outputs are influenced 

by both the image vector and the labeled sentence vector, 

ensuring a more precise depiction of the image content. 

Experimental findings demonstrate that, in comparison to 

traditional "attention mechanisms" [19], the IG-ED model 

boasts a streamlined network architecture, necessitates fewer 

parameters, and yields superior descriptive performance. 

The paper is structured as follows: section 2 presents 

related research on image captioning, section 3 details the 

IG-ED model and F-LSTM network algorithm, section 4 

presents experimental results and analysis, and section 5 

provides the final conclusions. 

 

II. ENCODER-DECODER STRUCTURE OF IMAGE CAPTIONING 

This framework bifurcates the image captioning process 

into two distinct steps: encoding and decoding. In the 

encoding step, a unified multi-dimensional vector is 

constructed to encompass all pertinent information, such as 

image features and labeled sentences. This vector facilitates 

processing by consolidating various types of data. On the 

other hand, the decoding step involves generating a linguistic 

description that effectively conveys complex information. 

This is accomplished by leveraging a multi-dimensional 

vector that encapsulates diverse information elements, such 

as image data, spatial information, and language aspects. In 

practice, the encoding step is predominantly executed by 

convolutional neural networks, while the decoding step 

primarily relies on recurrent neural networks. 

 

A.  Encoder Structure 

To encode the input image, the encoding algorithm 

employs VGGNet-16. This process involves the removal of 

the classification layer of VGGNet-16 since the decoder does 

not rely on the image's classification results. Consequently, 

upon inputting the image, a 4096-dimensional global feature 

information is extracted. Subsequently, this global feature 

information undergoes conversion using the method 

described in [9]. 

 

mV ( )g b gVGG I W b    (1) 

 

where， ( )bVGG I  is used to convert images to multi 

dimension vector , if the number of dimension is L , the 

dimension of Wm  is 4096 L , the dimension of gb is L

， Vg is the output vector of the convolutional neural 

network. 

The input object labeled as a sentence needs to be 

vectorized. This involves transforming each word in the 

labeled sentence into a canonical vector using a probability 

dictionary to prepare for the decoding process. 

 

B.  Decoder Structure 

LSTM excel in context processing and are commonly 

employed as decoders. With three gates, LSTM capture 

long-term and short-term semantic information effectively, 

thereby preventing gradient issues. [29-32] 

The expression of each gate at time t is as follows: 

 

x 1 h( )t t t ii x W h W b     
 (2) 

1( )t t x t h ff x W h W b     
 (3) 

x 1 h( )t t t oo x W h W b     
 (4) 

 

Where   is the activation function1/ (1 )xe ; 

  means multiply of matrix;  

ti  is input gate,
tf  is forget gate, and 

to  is the output gate. 

tx means word vector input of time t, 
-1th  is the hidden state 

of time t-1, 
xW  and 

hW  is the weight of the network. 

The decoding structure progressively extracts vector 

information through a recurrent neural network, revealing the 

input vector content over time. The cost function decreases 

with each iteration until it reaches a specific threshold, 

prompting the iteration to cease. 
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III. ENCODER-DECODER MODEL BASED ON VISION 

GUIDANCE 

To train this network effectively, we utilize both image 

data and their corresponding language labels. The initial step 

in this process involves converting the image data and labels 

into vectors, a crucial encoding process. Subsequently, the 

decoder uses the encoded information to generate the output 

sentence corresponding to the input image. Throughout this 

decoding process, the network's parameters are iteratively 

refined. Once the network has learned from the training data 

and its parameters are fixed, it can accurately generate the 

language description given the image features. These training 

and testing processes are essential components of the 

network's operation. 

The network model IG-ED is designed to achieve 

encoding and decoding work to enhance image captioning 

effectiveness. It is based on an encoder-decoder structure, 

with the encoder part utilizing the convolutional neural 

network VGGNet-16. Through this network, the image is 

processed into a 512-dimensional vector, while the sentence 

is vectorized using a probability dictionary. Each word in the 

labeled sentence corresponding to the image is also 

vectorized into a 512-dimensional vector, allowing for a 

unified format of vectors for subsequent decoding.  

The decoder part of the model employs F-LSTM, a 

recurrent network that generates the language description of 

the image based on the unified vectors derived from both the 

image and the text, which are obtained from the encoder. The 

IG-ED network framework consists of distinct training and 

testing phase network models, each comprising encoding and 

decoding processes. Subsequent sections outline the 

architecture of the training stage network and the testing 

stage model. 

 Training Process of IG-ED Structure: The training stage 

aims to update network parameters continuously using the 

loss function as an indicator, based on input training images 

and corresponding annotation sentences. This iterative 

process leads to the gradual convergence of the loss function, 

ultimately resulting in the acquisition of all model parameters 

at the conclusion of training. Conversely, the encoding stage 

involves the conversion of each input image and each word in 

the associated tagged sentence into a unified vector. The 

convolutional neural network completes the vectorization of 

image information, with the VGGNet-16 network playing a 

key role in transforming images into 4096-dimensional 

vectors. Following linearization, a 512-dimensional vector is 

produced and forwarded to the subsequent decoding phase.  

Similarly, the vectorization of labeled sentences is 

achieved through a vector dictionary, with every word within 

each labeled sentence yielding a 512-dimensional vector 

post-passage through the dictionary.   

The second interface of image information that enters the 

F-LSTM network is the gV  interface of the F-LSTM, and the 

dedicated interface for receiving image vector input. At any 

time, step of the network training, the image vector gV  is 

used as the input information of F-LSTM to provide inferring 

information, then the effect of image generation sentences 

can be significantly improved.  

The F-LSTM model is essentially a language inferring 

model, which combines unordered and discrete words into 

sentences. The function of the image vector gV  is to 

gradually deduce the way of network parameter combination 

through the image information. Therefore, the guiding role of 

the image vector gV  is very important. 

 

A. The Internal Structure of F-LSTM 

Inspired by the work of Lu [19], this paper introduces a 

new design for the network. In contrast to Lu's model, the 

proposed model utilizes global feature information obtained 

after convolution as a guiding visual cue for the decoding 

process. The global image information is reduced to a 

512-dimensional vector post-vectorization, significantly 

lower than the dimensionality of the convolutional middle 

layer. Consequently, the parameter count in this model is 

notably decreased. By transforming the convolutional global 

information into a 512-dimensional vector, the data aligns in 

dimensions with the labeled language, simplifying 

subsequent decoder design. This reduction in overall model 

complexity and computational burden enhances the 

efficiency of the model, shown in Fig. 1. 

 

 
 

Fig. 1.  Internal parameters of F-LSTM 

 

In F-LSTM model, a monitoring gate 
tp  designed 

controls the use degree of image vectors according to the 

current situation. If the value of 
tp  is 1, it means that the 

global image feature information needs to be judged 

according to the current situation, the expression is as 

follows: 

 

1( )t t x t h pp x W h W b       (5) 

 

This model uses the ideas in the [19], the hidden state 

information is used at the current time step, and combined 

with the global image feature information and the semantic 

vector information controlled by the monitoring gate, then 

the respective proportions ˆ
t  of the two are obtained. The 
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softmax function is used to limit the ratio to [0,1] , the 

expression of ˆ
t  as follows: 

 

( tanh( ))t t t ac t aha p c W h W      (6) 

t g v t he V W h W     (7) 

ˆ
ˆ tanh(e ; ) Wt t t ee a   (8) 

ˆ ˆsoft max( )t te   (9) 

 

Where tanh  activation function is 

2 2(1 ) / (1 )x xe e   , symbol ;  means joining two 

matrices together along dimension. 

Assume that ˆ1 [1]t    is the proportion of the global 

image features, the contex vector tu is:  

 

(1 ) ( tanh( ))t t t gu p c V        (10) 

The vector 
th  is: 

[ ; ]t t t hh h u W 
    (11) 

 

The main features of the newly designed F-LSTM 

recurrent network can be summarized as follows: Based on 

LSTM architecture, the neural network incorporates input 

gates, output gates, forget gates, and memory units to store 

and manage information. Additionally, it introduces new 

components. The memory units contain fused and distributed 

information, enabling efficient processing of input data. 

The parameter 
ta  in (9) reflects the proportion of 

language information in the input vector, the parameter te  in 

(10) reflects the proportion of the visual information. The 

global image information gV  is transmitted to the recurrent 

network at each time step. Parameter   reflects the 

proportion of the current input image vector gV  in the final 

output. This proportion has a direct impact on the generation 

of the final description result and plays an important role in 

improving the description structure. 

The F-LSTM described above differs from the approach in 

reference [9], where the image input is sent to the LSTM only 

at time step 0. With prolonged calculations, the reduction of 

image information may no longer effectively guide the 

construction of the inferred sentence. 

 

B.  Design of Loss Function 

In the training process, the loss function is used to evaluate 

the results of the network output, and to adjust the network 

parameters. The F-LSTM model uses the cross-entropy loss 

function to calculate the loss. The cross-entropy loss function 

is defined as follows: 

 

( ) ( )

1

1
ˆ( ) ( , )

n
i i

i

l H y y
n 

    (12) 

 

Where   is the parameters of the model,
( ) ( )ˆ( , )i iH y y  

is cross entropy, which is defined as: 

 

( ) ( ) ( ) ( )

1

ˆ ˆ( , ) log
q

i i i i

j j

j

H y y y y


   (13) 

 

Where 
( )iy  is the i -th probability distribution of real 

labels ,
( )ˆ iy is the i  th probability distribution of prediction 

labels ， q  is size of dictionary, 
( ) Ri qy  ，

( )ˆ Ri qy  . 

 

C. Testing Process of IG-ED Structure 

After the training process, both the encoder and decoder 

parameters of the network are established. The main 

objective of the IG-ED during training is to derive sentence 

information based on the input image. In this process, the 

encoder generates a 512-dimensional image vector, which is 

then fed into the F-LSTM network.  

The decoder subsequently generates a language 

description corresponding to the image. During the testing 

phase, the IG-ED model receives input solely in the form of 

image information without any additional textual content. 

Following the encoding of the image, the output vector is 

directly input into the F-LSTM network.  

The decoder then produces the textual description of the 

image. In the inference process, the F-LSTM network 

predicts one word at each time step. This prediction serves as 

the output from the network interface and becomes the input 

for the subsequent time step. These iterative steps are 

repeated to generate the complete sentence. The network 

structure in the testing stage is illustrated in Fig. 2. 

 

IV. EXPERIMENT AND ANALYSIS   

The MSCOCO 2014 dataset, established by Microsoft, is a 

comprehensive image dataset widely used for various 

computer vision tasks such as object detection, semantic 

segmentation, and image captioning. This dataset contains a 

substantial number of examples specifically tailored for 

Image Captioning, making it a popular choice for 

researchers. Each image in the dataset is associated with 5 

English labels, providing rich training data for neural 

networks. In this study, researchers have utilized several 

samples from the MSCOCO 2014 dataset, The dataset 

comprises 82,783 training samples, 40,504 testing samples, 

and 40,775 validation samples. Additionally, there are 

separate sets of 270,000 and 886,000 images utilized for 

segmenting people and objects, respectively. Notably, the 

MSCOCO 2014 dataset serves as a crucial benchmark for 

evaluating the performance of models such as the IG-ED 

model. 
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Fig. 2.  Architecture of neural network in testing 

 

 

A.  Training Process and Evaluation Method 

Different configuration servers were used in the 

experiment to verify the functions of different stages. The 

higher configuration NVIDIA Titan X GPU server was 

specifically utilized during the training and evaluation stage 

of the dataset to obtain accurate training and evaluation 

results. Subsequently, in the verification stage of image 

captioning, the lower configuration server was employed to 

test the prediction results of various models. This step aimed 

to identify the minimum computational requirements for the 

network structure. Throughout the experiment, a range of 

network improvement methods were explored. While many 

of these approaches did not yield ideal results, they provided 

valuable insights to steer towards a more promising direction 

and deepen the understanding of image captioning. 

The IG-ED network model undergoes training with 

100,000 iterations, utilizing a batch size of 64 in each 

iteration. The total training duration spans approximately 87 

hours. During training, the Adam optimization algorithm 

[35] is employed with a learning rate of 4e-4. To prevent 

overfitting, a dropout layer is appropriately included in the 

model. Notably, in all experiments, the network's parameters 

remain unaltered to avoid any convolutional neural network 

interference. The model is trained using a combination of 

supervised learning and end-to-end approaches, enabling 

faster and superior performance outcomes. 

Upon completion of model training, the training loss is 

logged every 200 iterations, with validation performed using 

3200 images to assess model performance, and average 

results calculated every 10,000 iterations. The training 

concludes after 100,000 iterations, as illustrated in Fig. 3.  

Showcasing the loss curve. Following training, the model's 

weights at 90,000 iterations outperform those at 100,000 

iterations based on observation and comparison. Thus, the 

weights at 90,000 iterations are chosen for evaluating 

experimental outcomes.  

 

 
Fig. 3.  Loss curve of model training 

 

In the experimental phase, a greedy search strategy, which 

selects only the word with the highest score each time, fails to 

produce the optimal sentence description. Hence, employing 

the beam search method guarantees the selection of words 

with the highest probabilities iteratively until the final 

sequence is constructed. 

The final bundle search size chosen is 3, achieved by 

continuously adjusting the parameters to improve sentence 

description. During model training, verification and 

evaluation are conducted using evaluation code support 

provided by coco-caption [36].  

Eight indexes including BLEU1-4 [37], ROUGE [38], 

METEOR [39], SPICE [40], and CIDEr [41] are calculated 

for evaluation purposes. BLEU focuses on accuracy by 

analyzing text similarity through comparing the appearance 

of -tuples in prediction sequences with real labels. On the 

other hand, Rouge emphasizes recall rate by comparing the 

absence of -tuples in real labels within prediction sequences.  

METEOR considers both recall and precision together in 

its evaluation. SPICE utilizes probabilistic Context-Free 

Grammar (PCFG) to encode predicted sequences and real 

labels into semantic dependency trees, applying specific rules 

for evaluation. CIDEr employs TF-IDF and cosine similarity 

to predict the similarity between description and reference 

sentences, making it a more suitable index for evaluating 

sentence quality. Fig. 4 and 5. display the progression of 

evaluation indices throughout model training. 

 

B.  Experimental Results 

The three typical network models selected for comparison 

in the test and evaluation of the model results are respectively 

the Google NIC network [42], Neural Talk network [9], and 

the attention mechanism model named Attention Model [19].  

These choices were made because the aforementioned 

papers offer classical and feasible theoretical methods. To 

effectively verify the IG-ED network model in the 

experiment, the encoder used in all the compared network 

models is the VGGNet-16 convolutional neural network 

model for image understanding, with no fine-tuning applied 

to the VGGNet-16 network. This approach ensures a more 

accurate evaluation under these specified conditions. During 

the test process, 1000 images from the test set are utilized as 

input. Each iteration involves reading one of these images, 
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and the evaluation results are displayed in Table 1. 

 

 
Fig. 4.  Curve of the first 4 indexes of IG-ED 

 

 
Fig. 5.  Curve of the last 4 indexes of IG-ED 

 
TABLE 1  

RESULTS OF EXPERIMENT 

 

After comparing various evaluation indicators, it is evident 

that our model exhibits significant improvements over the 

Neural Talk [9] model. Specifically, the BLEU_1, BLEU_2, 

BLEU_3, METEOR, and CIDEr scores have all witnessed 

improvements of 3.2%, 2.2%, 1.24%, 7.18%, and 16.52% 

respectively when compared to the baseline model. These 

enhanced scores collectively demonstrate the superior 

predictive capabilities of the model we have developed. 

Analyzing the model parameters further reveals key 

differences between our IG-ED model and the Attention 

Model. The IG-ED model comprises 13,747,553 parameters, 

whereas the Attention Model encompasses 17,684,320 

parameters, signifying a reduction of 3,936,767 parameters 

or 22.1% when compared to the latter. This reduction in the 

number of parameters is indicative of the streamlined 

architecture of our model in comparison to the Attention 

Model.  

The experimental outcomes corroborate the superiority of 

our IG-ED model over traditional network structures in terms 

of prediction accuracy. Notably, our model outperforms 

traditional models, showcasing its advanced predictive 

capabilities. Additionally, to validate the effectiveness of our 

model across diverse datasets, predictions were made on four 

images from the MSCOCO 2014 dataset and two real-life 

images, highlighting the model's generalizability and 

robustness in various settings. The prediction results are 

shown in Fig. 6 to 7. 

 

 
 

Fig 6.  Prediction result I 

 

 

 
 

Fig 7.  Prediction result II 

. 

V.  CONCLUSION  

The IG-ED network model has been developed to address 

the challenge of image captioning by employing an 

encoder-decoder architecture. The encoder leverages the 

VGGNet-16 network to perform convolution and generate a 

vector representation corresponding to the image, while the 

decoder utilizes the newly designed F-LSTM network 

structure.  

By integrating image spatial information with sentence 

temporal information, this framework aligns with the 

inherent structural characteristics where images are 

intertwined with language. According to the findings, when 

utilizing the same VGGNet-16 encoder, the image captioning 

evaluation metric, CIDEr, demonstrates a 65.37% 

improvement compared to the attention mechanism. Our 

Methods BLEU

_1 

BLEU

_2 

BLEU

_3 

BLE

U_4 

METE

OR 

CID

Er 

Google 

NIC 

66.6 46.1 32.9 24.6 - - 

Neural 

Talk 

62.5 45.0 32.1 23.0 19.5 66.0 

Attentio

n Model  

56.7 37.1 24.5 17.0 16.7 46.5 

IG-ED 67.5 47.0 36.5 23.8 21.9 77.9 
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IG-ED model comprises 13,747,553 network parameters, 

which is a 22.1% reduction from the 17,684,320 parameters 

in the attention mechanism. Furthermore, our model achieves 

real-time performance with predictions completed in under 

0.5 seconds, showcasing its strong efficiency and network 

design advantages. The emergence of the novel language 

model, BERT, has introduced fresh perspectives in natural 

language processing. Subsequent advancements in image 

captioning techniques are anticipated to leverage BERT to 

enhance performance and deliver superior outcomes in the 

field. 
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