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ARANet: Adaptive Mining Region Feature
Aggregation Network for Food Recognition

Yanling Li, Qingqi Liang, Wei He, and Mengmeng Liu

Abstract—Most existing food recognition techniques depend
on convolutional neural networks (CNNs) for the purpose of
extracting features directly from food images. However, these
methods frequently fail to discriminate key details in food
images with cluttered backgrounds. Here, we propose a novel
network framework employing an adversarial erasing strategy
via adaptive threshold segmentation for food recognition. The
framework is designed to simultaneously learn global features
and diverse, complementary local features. A residual network
(ResNet) is employed in order to extract global features from
the images under consideration, with the objective of generating
class activation maps (CAMs) from the final convolutional
layer. The model progressively mines discriminative food
regions to capture diverse and complementary local feature
representations. Adaptive threshold segmentation isolates
discriminative regions within CAMs, eliminating cluttered
backgrounds and enhancing key feature extraction. In
conclusion, the framework integrates representations of the
original input image and the identified regions for prediction.
Extensive experimentation on five benchmark food recognition
datasets has been conducted to demonstrate the superiority
of the proposed approach. For instance, the efficacy of the
proposed methodology is evidenced by the attainment of Top-1
and Top-5 accuracies of 90.4% and 98.7 %, respectively, on the
Vireo Food-172 dataset.

Index Terms—Food recognition, Convolutional neural

network, Adversarial erasing, Adaptive threshold

I. INTRODUCTION

OOD recognition has garnered significant attention in
computer vision and related fields [1], [2], advancing the
understanding of food from multidisciplinary perspectives,
such as health [3], [4] and medicine [5], [6]. Food recognition
holds significant potential for health-related applications,
particularly in dietary assessment [7], offering critical
insights for disease prevention.
Convolutional neural networks (CNNs) have been
successfully used for food recognition, outperforming
traditional methods [8], [9]. Several studies have employed
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features that have been extracted from pre-trained networks
for the purpose of food recognition [10], [11]. For instance,
McAllister et al. [12] employed pre-trained deep learning
architectures, specifically GoogleNet [13] and residual
network-152 (ResNet-152) [14] networks. Other approaches
fine-tune existing deep networks [15], [16], [17]. For
example, Tasci et al. [18] performed food image recognition
by fine-tuning ResNet, GoogleNet, similar architectures.
These methods rely on generic CNN architectures to extract
features from food images, neglecting to design structures
tailored to food characteristics. Consequently, opportunities
remain to improve food image recognition accuracy. Some
researchers have developed specialized deep neural networks
for recognising food images [19], [20]. Elbassuoni et al. [21]
employed a customized object detection model. Moreover,
certain studies have approached the recognition of food
images as a fine-grained visual recognition task [22], [23],
focusing on mining and integrating discriminative regions
within food images for enhanced recognition. Yang et al [24].
proposed a novel network capable of effectively capturing
both global and local features from food images.

The aforementioned studies have significantly advanced
the field of food recognition. However, food image
recognition remains challenging. Similar to generic object
recognition, its core challenge is extracting discriminative
visual features from images. Food images often exhibit
complex backgrounds that contain objects or visual noise
unrelated to the target food. As illustrated in Figure 1,
several food images from the ETH Food-101 [25] exemplify
this complexity. Apparently, addressing this background
complexity correctly can lead to more robust and accurate
food recognition results.

To this end, a novel Adaptive Mining Region Feature
Aggregation Network (ARANet) is proposed for the food
recognition framework. The framework is primarily
composed of two components: adaptive mining of
discriminative regions and region feature fusion. The
former adopts adversarial erasing (AE) [26] based on
adaptive threshold segmentation to mine discriminative
regions. While the latter combines the global and local
features of the input image and the mined regions. In
summary, our proposed ARANet model aims to reduce
complex background interference in food recognition.

The paper is organised as follows: Section II is about
our food recognition framework; Section III is about the
experimental results and analysis; and Section IV is about
the conclusion and future work.

II. MATERIALS AND METHODS

ARANet consists of two core components: (1) adaptive
discriminative region mining and (2) region feature fusion.
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Fig. 1.

Some food images with complex backgrounds

The first component employs a Global Representation
Network (G-Net), which classifies the original image to
extract global features and identifies primary discriminative
regions through adaptive threshold segmentation. Next,
an Erased Image Classification Network (E-Net) classifies
erased images to adversarially mine discriminative regions,
whereas a Discriminative Region Classification Network
(D-Net) processes cropped and upsampled regions to extract
local features. The feature fusion component integrates
a fully connected layer, which classifies concatenated
global (original image) and local (mined regions) feature
representations. The overall network architecture is depicted
in Figure 2.

A. Global Feature Learning

Food images from different sub-classes exhibit significant
visual differences, so can be better recognised using global
representations. Inspired by [24], the G-Net is based on the
existing ResNet model, and classifies the full input image ;.
Global Average Pooling (GAP) is employed on the output
fq of the final convolutional layer of the G-Net in order to
extract the global features fg,:

fg10 = GAP(f,) Q)

B. Adaptive Mining of Discriminative Regions

Food images often contain complex backgrounds, such
as utensils or environmental textures, which introduce
visual noise unrelated to the target food. Therefore, greater
emphasis should be placed on fine-grained local features.
In the proposed model, AE is iteratively employed to
accomplish two key tasks: (1) a classification network is
trained to localize discriminative regions, and (2) the mined
regions are adversarially erased. In the AE method, an
adaptive threshold segmentation is embedded to run on the
associated upsampled class activation map (CAM) [27] that

is generated from the final convolutional layer of some
sub-networks in our model. The CAM is a visualization
technique highlighting the regions which can assist the
classification network to recognize the target class. The
discriminative regions can be obtained by thresholding
the upsampled CAM. The progressive mining of new
discriminative regions is ensured by AE, enabling the model

¥ to progressively attend to distinct features of the target object

across iterations.
First, the generated CAM is upsampled to produce a

| heatmap. Since the CAM originates in the sub-network’s last

convolutional layer, the process is defined as follows:

CAM(I;,y;) = Zwk,c - feature_map,, 2)
k=1

where y is the target class of image I;, feature_mapy is
the k-th feature map from the last convolutional layer of
some sub-networks, with n total feature maps, and wy .
represents the final linear transformation weights, indicating
the importance of the k-th neuron in the GAP layer towards
identifying y for I;. During training, y is consistently used
as the ground truth label associated with the image I;. In
contrast, during the testing stage, y refers to the predicted
label assigned to the image I;.

The inter-class variance o%(t) is then computed to
generate the heatmap. For a given threshold ¢, this metric
measures the variance between background and foreground
classes. The process is formulated as follows:

o (t) = po(t) - po(t) +pa(t) - pa(t) 3)

where t denotes the threshold, po(t) and p;(t) are the
proportions of pixels below and above the threshold ¢
respectively. Similarly, po(¢) and pq(t) are the average
grayscale values of the pixels below and above the threshold
t respectively.

Next, inter-class variances are computed for all candidate
thresholds, the maximum value is selected, and the
corresponding optimal threshold ¢* is determined, the
foreground and background of the image are effectively
separated, ensuring both accuracy and effectiveness in
segmentation. The method for finding the optimal threshold
is formulated as:

t* =arg max o (t) )

Finally, by applying t* to segment the heatmap
into foreground and background, a binary image is
generated. This method adaptively separates food regions
from complex backgrounds, reducing background noise
interference during the classification process and thereby
obtaining discriminative regions.

Given the number of times M for discriminative region
mining and the mining step m (m < M), the GAP layer is
used to extract varied and compatible local features fLo¢:

¢ = GAP(fn) (5)

where f,,, denotes the output from the mining step m of the
D-Net.
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Fig. 2. The framework of ARANet. (a) Global Feature Learning branch extracts global features through a standard CNN backbone. (b) Adaptive Region
Mining branch captures discriminative local features through a multi-stage attention mechanism. The predictions from both branches are fused through a

learnable weighting layer for final classification.

C. Region Feature Fusion

In the training phase, global and local features are obtained
and concatenated. These are then fed into a classification
layer to produce the final output f.,,.q¢ after feature fusion:

fconcat = COIlCElt(fglo, frlr(;c) (6)

In the testing stage, the same steps are followed.

D. Training and Testing

Throughout the training procedure, the cross-entropy loss
function is employed to optimize all classification tasks.

N C
Lop ==Y viclog(fic) (7)

i=1 c=1

where N denotes the sample cardinality and C represents the
category dimension, y; . represents the ground truth label and

i, denotes the predicted probability for sample ¢ belonging
to class c.

Specifically, considering an image-label pair I;,y; as
input along with the region mining iteration count M, I;
is processed through the G-Net to perform classification,
with the corresponding loss represented as Lg. If M >
1, the G-Net computes CAM(/;,y;) and resizes it to
produce a heatmap emphasizing distinctive regions. The
CAM-based heatmap, extracted region, and erased image at
mining step m (m < M) are designated as H; p,, D;m,
and FE;,,. Both D,,, and E;,, retain the original label
y; from I;. Thus, following resizing, the initial heatmap
H; ;1 is acquired, matching I; in dimensions. The adaptive
threshold segmentation method is initially employed on Hj 1,
succeeded by connectivity examination to detect linked areas.
For every area, the cumulative pixel intensity is determined,
with the area showing the maximum intensity chosen as
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the primary distinctive area in I;. This primary distinctive
area emphasized in H;; is labeled as D);, which might
display an irregular shape. This region is then cropped using
a tight bounding box. The resulting patch is upsampled to the
dimensions of I; via bilinear interpolation and subsequently
processed by the D-Net for recognition.

When M > 1, the E-Net iteratively identifies subsequent
discriminative regions by computing CAM(E); ,,,,y;) for
m € 1,...,M — 1, while simultaneously classifying each
E; . Meanwhile, the D-Net continues to recognize the new
discriminative regions D ,,, m € {2,..., M} fed from the
E-Net. Simultaneously, during the first erasing operation, the
pixels within D;; in I; are replaced with zeros, thereby
yielding the initial discriminative erased image F; ;. The
image is then entered into the E-Net for classification. For
every classification performed by the D-Net and E-Net at
step m, the corresponding losses are designated as L ,, and
L, respectively. Representations of the input image and
each region are extracted from the GAP layers of the G-Net
and D-Net. These representations are concatenated to form a
robust and comprehensive feature representation, processed
through an additional layer for classification. The resulting
loss is denoted as L.,ncq:- The total loss L is defined as the
sum of Ly, Lgm, Lem, and Leopcat:

M M-—1
L = Lg + Z Ld}m + Z Le7m + Lconcat (8)
m=1 m=1

As M increases, the number of remaining discriminative
regions available to the E-Net for the purpose of identifying
the correct class decreases. In this study, the number of
mining iterations is set to M = 3, resulting in the
discriminative region images R; 1, R; 2, and R; 3, along with
the erased images F; ; and E; ». It is therefore proposed that
the total loss of the model be defined as follows:

3 2
L= Lg + Z Ld,m + Z Le,m + Leoncat )
m=1 m=1

During the training process, ARANet employs label
smoothing to adjust and optimize the model parameters,
thereby mitigating class imbalance in the data and enhancing
recognition performance. For a recognition task with C
classes, given the true label y, the smoothed label ys,00th
can be expressed as:
€

smooth = (1 — : 10
Ysmooth = (1 =€)y + (10)

where € is the smoothing coefficient, typically set to 0.1-0.6,
and y is the original one-hot label.

III. RESULTS AND DISCUSSION

All experiments are conducted using the PyTorch deep
learning framework on a Linux platform. A hardware
configuration consisting of four NVIDIA TITAN Xp
GPUs (12GB VRAM each) is employed for parallel
processing. Following [24], the model’s performance is
evaluated using both Top-1 and Top-5 classification accuracy
metrics. Through epoch-wise analysis, superior recognition
performance is consistently observed across all food
recognition tasks. The model’s effectiveness is further
verified through accuracy curves generated during the testing
phase.

A. Datasets

Experimental validation is conducted on five benchmark
datasets to assess the method’s effectiveness:

(1) Sushi-50 [28] is utilized as a fine-grained evaluation
dataset, containing 3,963 Google-sourced sushi images
distributed across 50 categories, with standardized 1:1
training-test splits being employed.

(2) The novel Central Asian Food Dataset (CAFD) [29]
is introduced, comprising 16,499 carefully curated images
spanning 42 unique Central Asian cuisine categories.

(3) Food-11 [30] is included as a baseline evaluation set,
featuring 16,643 images representing 11 common daily food
categories.

(4) ETH Food-101 [25] is incorporated as a large-scale
benchmark, consisting of exactly 100,000 images, with a
standardized split of 750 training samples and 250 test
samples per class across 101 food categories.

(5) Vireo Food-172 [31] is adopted as the most challenging
evaluation set, containing 110,241 professionally captured
Chinese food images organized into 172 categories.

B. Implementation Details

The ARANet framework employs ResNet-based
sub-networks, with various combinations of sub-networks
at different ResNet depths investigated. During the training
phase, input images are preprocessed through random
cropping and resizing to 224x224 pixels, followed by
horizontal flipping with a 50% probability. The experimental
setup parameters for model training are tabulated in Table I.

TABLE I
EXPERIMENTAL PARAMETER SETTINGS

Parameter Value

Initial Learning Rate 0.001
Learning Rate Step 14
Learning Rate Decay Factor 0.1
Momentum 0.9

Weight Decay 0.0001
Batch Size 3
Number of Epochs 60

Optimizer Stochastic Gradient Descent (SGD)

Loss Function Cross Entropy Loss

C. Experimental Results on Five Datasets

To verify ARANet’s generalization ability and robustness,
comprehensive experiments were conducted across five
benchmark datasets. The proposed model’s performance
was systematically compared against several state-of-the-art
approaches, including ResNet-50, ResNet-101, YOLOVS,
YOLOv11, and PAR-Net. Comprehensive benchmarks were
conducted across five diverse datasets: Sushi-50, CAFD,
Food-11, ETHZ Food-101, and Vireo Food-172, with
detailed results documented in Table II.

As shown in Table II, ARANet exhibits remarkable
performance across both evaluation metrics (Top-1 and Top-5
accuracy). For instance, on the Vireo Food-172 dataset,
ARANet achieves improvements of 0.1% and 0.3% in Top-1
accuracy, and 0.7% and 0.3% in Top-5 accuracy, compared
to the state-of-the-art YOLO-series models YOLOv8 and
YOLOvV11, respectively. When compared to the ResNet-50
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TABLE 11
EXPERIMENTAL RESULTS ON FIVE DATASETS

Method Sushi-50 CAFD Food-11 ETH Food-101  Vireo Food-172
Top-1  Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1  Top-5

YOLOv11 88.7 98.0 87.5 97.2 93.4 94.4 89.2 97.4 90.3 98.4
ResNet-50 89.0 98.5 82.0 97.3 93.6 98.0 87.1 97.3 88.0 97.3
ResNet-101 89.8 98.5 82.4 97.4 94.2 98.6 88.1 97.6 88.3 97.8
YOLOVS 91.3 98.7 86.8 96.8 93.4 99.0 88.3 96.8 90.3 98.0
PAR-Net 92.0 98.6 83.6 97.4 94.9 99.2 89.6 97.6 90.0 97.9
ARANet (Ours) 92.3 99.1 83.8 97.6 95.4 99.4 90.0 98.0 90.4 98.7

TABLE III
TESTING ACCURACIES (%) OF THE THREE RESNET COMBINATION MODELS ON THE FIVE EXPERIMENTAL DATASETS

Method Sushi-50 CAFD Food-11 ETH Food-101  Vireo Food-172
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1  Top-5
G50+E34+D50 90.2 98.9 83.0 97.3 94.9 98.8 89.5 97.6 89.9 98.0
G101+E34+D50 91.6 98.3 83.6 97.2 94.9 98.9 89.6 97.9 89.6 97.9
G101+E101+D101 923 98.8 83.6 97.3 95.0 99.0 89.9 98.0 90.3 98.5
TABLE IV
EXPERIMENTAL RESULTS OF ARANET UNDER DIFFERENT LABEL SMOOTHING PARAMETERS
Sushi-50 CAFD Food-11 ETH Food-101  Vireo Food-172
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
0 92.3 98.8 83.6 97.3 95.0 99.0 89.9 98.0 90.3 98.5
0.1 92.3 99.1 83.7 97.5 95.2 99.2 89.9 98.1 90.4 98.6
0.2 92.3 99.1 83.8 97.6 95.4 99.4 90.0 98.0 90.4 98.7
0.3 92.2 99.0 83.7 97.3 95.1 99.0 89.9 98.0 90.3 98.6
0.4 92.3 99.0 83.6 97.4 95.3 99.2 90.0 98.1 90.4 98.6
0.5 92.3 98.9 83.6 97.6 95.1 99.2 89.9 98.0 90.3 98.5
0.6 92.2 99.1 83.6 97.6 95.3 99.2 89.9 98.0 90.3 98.5
TABLE V
EXPERIMENTAL RESULTS OF ARANET UNDER DIFFERENT MINING STEP PARAMETERS M
M Sushi-50 CAFD Food-11 ETH Food-101  Vireo Food-172
Top-1  Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
2 92.0 98.6 83.6 97.2 95.0 98.0 89.7 97.6 90.0 98.2
3 92.3 99.1 83.8 97.6 954 99.4 90.0 98.0 90.4 98.7
4 92.3 99.0 83.9 97.6 95.3 99.4 90.0 97.8 90.2 98.8

and ResNet-101 models, ARANet exhibits enhancements of
2.4% and 2.1% in Top-1 accuracy, and 0.6% and 0.9% in
Top-5 accuracy. The PAR-Net model, referenced in [28],
employs a fixed-threshold segmentation method to extract
discriminative regions. In comparison to PAR-Net, ARANet
achieves a 0.4% enhancement in Top-1 accuracy and a 0.8%
enhancement in Top-5 accuracy.

D. Results and Discussion of Combined Models,
Sub-Networks, and Region Mining Iterations M

The proposed ARANet architecture comprises three
principal sub-networks: (1) the G-Net, which performs
classification on the full input image; (2) the E-Net, designed
for processing erased images; and (3) the D-Net, specialized
for classifying mined discriminative regions. To evaluate
architectural variations, multiple ResNet configurations were
implemented, including G50+E34+D50, G101+E34+D50,
and G101+E101+D101 (where G50 denotes a G-Net based
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Fig. 5. The loss curve of ARANet for the Sushi-50 dataset

on ResNet-50, etc.). The results of these three models
across the five experimental datasets are presented in
Table III. As demonstrated in Table III, the ARANet
configuration with G101+E101+D101 architecture achieves
superior performance compared to other variants. Based on
these results, this optimal configuration was selected for all
subsequent experimental evaluations.

As demonstrated in Table 4, the experimental findings
substantiate that the implementation of label smoothing
enhances the performance of ARANet, validating its
effectiveness and generalization capability. When ¢ = 0.2,
the model exhibits the most stable performance. On the
Food-11 dataset, ARANet reaches peak Top-1 accuracy
of 95.4% and Top-1 accuracy of 99.4% at ¢ = 0.2,
outperforming other e values by 0.3% and 0.4%, Therefore,
in subsequent experiments, ¢ is fixed at 0.2.

To  comprehensively evaluate the  performance
improvements achieved by ARANet, an ablation study
is conducted to analyze the contribution of the concatenated
representation. The experimental results, presented in
Figures 3 and 4, demonstrate the effectiveness of this
architectural component. First, as mining continues, the
classification performance for the mined regions declines
as expected (D1 > Dy > Ds), because the later mined
regions are less distinctive than the earlier ones. This trend
is also observed in the erased images, where accuracy
diminishes (E; > FE») as the later images contain fewer
characteristic regions compared to the prior ones. Secondly,
the performance of the concatenated representation is
consistently superior to that of either the original image or
the mined regions alone. It confirms that the integration

of global and local representations leads to a more robust
and comprehensive feature representation, ultimately
contributing to improved food recognition performance.
Figure 5 illustrates the loss curve of ARANet on the
Sushi-50 dataset. As shown in Figures 3, 4, and 5, as the
training iterations progress, the loss metric steadily declines,
while the primary and secondary classification accuracies
consistently rise, demonstrating the enhanced performance
of ARANet in food recognition tasks.

Several prediction results from the five datasets are
visualized, with two examples selected from each dataset,
as shown in Figure 6. The CAM-based heatmap M ; has
been projected. Each discriminative region D; ,, has been
extracted via the red annotation box and resized to align with
the dimensions of the original image I;. The masked zones in
M; o and M; 3 represent the erased regions. I; is classified by
the G-Net and D, ,, is classified by the D-Net. In I; /Top-1,
Top-1 is the prediction based on the G-Net. In D, ,,, /Top-1,
Top-1 is the prediction based on the D-Net. Concat. Top-1 is
the prediction based on the concatenated representation. GT
means the ground truth. The foods labeled by red color label
are not correctly classified in the Top-1 results. In the first
and tenth rows, both the input and the extracted regions are
accurately identified by the G-Net and D-Net, respectively,
leading to the target prediction after the concatenation of
their representations. In the second to eighth rows, the
input images are misclassified via the G-Net, whereas the
extracted salient regions are accurately identified via the
D-Net. Consequently, the target classification derived from
the fused representation is achieved. Furthermore, Figure
6 highlights the diversity of discriminative regions mined
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Fig. 6. Visualization of the predicted results of the ARANet on the five datasets

from the images, contributing to improved classification
outcomes. These findings validate the utility of leveraging
discriminative regions for food recognition improvement and
showcase our approach’s robust performance across diverse
food datasets.

To investigate the optimal number of region mining
iterations required for ARANet to achieve peak performance,
systematic ablation studies are performed to assess the
influence of different values for the number of mined regions
M. As evidenced by Table V, optimal performance is
achieved when mining three discriminative regions, with
reduced accuracy observed for fewer regions. While a
marginal improvement in accuracy is noted on the CAFD
dataset when increasing to four regions, this configuration
introduces significant computational overhead. Consequently,
M = 3 was chosen as the best compromise between
recognition performance and computational efficiency for all

following experiments.

IV. CONCLUSIONS

In this paper, a novel food recognition model is
proposed that employs an adaptive threshold segmentation
method to progressively extract distinctive food regions.
The representations of these regions are integrated with
the global features of the full input image to achieve
accurate predictions. This approach generates more robust
and comprehensive representations, effectively addressing
the distinctive visual complexities inherent in food images.
Future work will incorporate ingredient information to
further enhance model performance.
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