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Abstract—The proper identification of road surfaces is 

essential for enhancing traffic safety. But current approaches 

can't handle varying road surfaces, and detection accuracy 

should be better.  In order to improve detection accuracy, this 

research introduces a novel road surface condition monitoring 

system called WOA-BP. The system leverages multi-sensor 

data.  Testing was carried out in a temperature range of -30℃ 

to 50℃ to confirm the efficacy of the model. The WOA-BP 

neural network model achieved better detection accuracy and 

model stability compared to BPNN, SVM, and RF. It has a 98.8 

percent success rate in identifying snowy, ice, dry, and rainy 

environments. By modifying the BPNN's starting weights and 

thresholds with the WOA, we can improve classification 

performance and resilience by decreasing the number of local 

optima and the rate of convergence. Collaboratively, the 

microwave water film thickness sensor, capacitive road 

condition sensor, and temperature sensor enhance detection 

accuracy. This research delves into the topic of intelligent 

transportation systems and traffic safety by investigating how 

to accurately identify road conditions using the WOA-BP 

neural network. 

 
Index Terms—Ice formation detection, Pavement condition 

assessment, WOA-optimized BP neural network, Sensor data 

fusion, Whale Optimization Algorithm 
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I. INTRODUCTION 

HE major challenge to maintaining safe driving condi-

tions is the negative impact of precipitation on roads, 

including snow and rain [1]. Vehicles are more likely to skid 

and lose control when there is water, ice, or snow on the 

road because these elements reduce tire-road friction [2]. 

According to research, the frequency of traffic accidents 

increases between fifty percent and one hundred percent 

when roads are wet compared to dry roads. Moreover, the 

frequency of accidents on snowy roads is significantly higher 

than that on wet roads [9]. According to research by Eisen-

berg et al. [3], which looked at over 30 million road inci-

dents in the US, more people died and more property was 

damaged on snowy days than on dry ones. An increase in 

accident rates can be attributed, in large part, to drivers' ten-

dency to misjudge conditions, such as thin ice or surfaces 

coated in snow [4]. Driving is already dangerous enough 

without having to contend with reduced visibility, which 

makes it even more difficult for drivers to spot potentially 

dangerous road conditions.   In addition to helping manage-

ment departments come up with suitable traffic management 

strategies, providing drivers with up-to-date and accurate 

information about road conditions allows them to effectively 

change their routes and speeds [5]. Consequently, it is criti-

cal to improve traffic safety by developing technology that 

accurately detects the condition of road surfaces. 

  Enhancing the accuracy and reliability of road condition 

detection primarily focuses on two key areas: the develop-

ment of advanced sensors utilizing innovative materials and 

technologies, and the exploration of novel algorithms. Road 

surface condition sensors are generally classified into con-

tact and non-contact types, based on their underlying meas-

urement principles [6]. Non-contact sensors operate using 

technologies such as radar, infrared, and visible light. Sys-

tems that rely on the visible spectrum typically employ vehi-

cle-mounted or roadside cameras to capture images, which 

are then analyzed through specific algorithms to assess the 

condition of the roadway. In recent years, there has been a 

notable increase in the application of algorithms for non-

contact road surface monitoring. These include vision trans-

formers [9], ResNet50, Mask-RCNN [8], and partial least 

squares (PLS) k closest neighbor (KNN) [10]. As an exam-

ple, Jonsson et al. [10] used PLS to assess weather data and 

image data, effectively classifying conditions as dry, wet, 

icy, or snowy.  The accuracy of nighttime road condition 
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assessment was improved by 89% for wet surfaces and 96% 

for snow-covered areas when Kawai et al. used KNN to 

evaluate photos taken by cameras mounted on vehicles [11]. 

Despite their usefulness in determining basic road surface 

characteristics, non-contact detection systems confront a 

number of obstacles. Because of their high price tag and 

poor performance in poor lighting or adverse weather (such 

as dense fog or heavy snowfall), these sensors have limited 

use [12]. A further concern is that these methods cannot de-

tect black ice that is hidden under snow, which increases the 

likelihood of traffic accidents [13]. 

  Contact sensors, on the other hand, are less susceptible 

to outside interference, allowing them to provide more relia-

ble detection findings when exposed to materials such as 

water, ice, or snow. Several principles, including capaci-

tance [14], resonant piezoelectric [15], fiber optics ultrason-

ic [16], and conductance [17], underpin the operation of 

contact sensors.  Troiano et al. developed a capacitive sensor 

that can differentiate between air, water, and ice using mul-

ti-frequency excitation, which is both efficient and cost-

effective [17]. A touch sensor made of concrete that can 

detect changes in resistance and temperature effectively dis-

tinguishes between dry, wet, and black ice was developed by 

Tabatabai and colleagues [18]. Improving the precision of 

detecting road surface conditions requires not only the opti-

mization of sensors but also the use of sophisticated algo-

rithms. As an example, a team led by Chen et al. achieved an 

impressive 89% accuracy in distinguishing water, ice, and 

ice-water combinations using a fork-finger planar capacitive 

sensor that was combined with a decision-making system 

[19]. Additionally, a thin-film impedance sensor was devel-

oped by Gui et al. by integrating machine learning tech-

niques with information pertaining to impedance spectrum 

correlation. With a 93.1% accuracy rate in classifying five 

different states, including dry, water, and ice-water combina-

tions, the SVM models showed remarkable performance 

[20].  But these systems can't handle the impact of tempera-

ture and film thickness on detection accuracy because they 

only use one sensor [21]. Also, there are a lot of problems 

with the current methods when it comes to snow detection.  

On the other hand, by combining data from multiple sensors, 

interference issues can be greatly reduced, leading to more 

accurate detection of road surface conditions. 

  The complimentary nature of inter-sensor data has al-

lowed for the integration of multi-sensor information to play 

an increasingly important role in recent years, enhancing the 

reliability of sensor outputs across a variety of domains [22], 

[23]. One common approach to fusing data from several 

sensors is the BP neural network (BPNN), which is well-

known for its excellent nonlinear mapping capabilities [24].  

But because BPNN's initial weights and thresholds are cho-

sen at random, the training process could converge to a local 

minimum, affecting the accuracy of predictions [25]. Hence, 

it has been combined with smart optimization algorithms 

like PSO, genetic algorithm, and whale optimization algo-

rithm (WOA) [26] to help it break out of its local minimum.  

Of them, WOA stands out due to its impressive global 

search capabilities and local extremum evasion strategies, 

which have proven to be highly effective when paired with 

BPNN in a range of domains.  In addition, WOA's consistent 

performance is improved by its low demand for parameter 

adjustment. Despite the WOA-BP neural network's remarka-

ble capabilities, its use in detecting road surface conditions 

has not been investigated yet. 

This study aims to enhance detection accuracy by integrat-

ing outputs from multiple sensors and introducing a Back-

propagation Neural Network (BPNN) optimized using the 

Whale Optimization Algorithm (WOA) for assessing road 

surface conditions. The system was tested under various 

scenarios, including dry, wet, icy, and snowy surfaces, using 

a contact-based road condition sensor in combination with 

additional sensors. The proposed method was validated 

within a temperature range of -30°C to 50°C. It achieved a 

high average accuracy of 98.8% across multiple experi-

ments, demonstrating superior performance and stability 

compared to traditional BPNN, Support Vector Machine 

(SVM), and Random Forest (RF) models. Specifically, the 

classification accuracy for dry, wet, slippery, and snowy 

conditions reached 98.2%. 

 

II. DETECTION OF ROAD SURFACE CONDITIONS 

UTILIZING THE WOA-BP MODEL 

A. Enhancement of the BP neural network 

A Backpropagation Neural Network (BPNN), a subtype 

of artificial neural networks (ANNs), consists of an input 

layer, one or more hidden layers, and an output layer. It em-

ploys the backpropagation algorithm to compute the gradient 

of the loss function with respect to each weight and bias. 

Through iterative updates using gradient descent or its modi-

fied versions, the network reduces the error between predict-

ed and actual outputs until it meets a predefined accuracy 

threshold [27]. In this study, a three-layer BPNN model was 

developed to classify road surface conditions. The model 

utilized input features such as temperature, voltage variation, 

and water film thickness to predict four surface states: dry, 

wet, icy, and snowy. 

 Backpropagation neural networks (BPNNs) typically start 

with random values for their weights and thresholds and 

refine them through backpropagation until the network's 

error is reduced. However, the network easily converges to 

local minima because to the arbitrarily set initial weights and 

thresholds; training results vary greatly depending on the 

starting parameters.  These issues have the potential to great-

ly affect the BPNN's prediction accuracy and convergence 

speed.  An efficient swarm intelligence technique that draws 

inspiration from hump-back whale foraging behavior, the 

whale optimization algorithm (WOA) is renowned for its 

strong global search capabilities to find best solutions [28]. 

This research makes use of the WOA to supplement the 

BPNN, which improves its ability to generalize and make 

predictions. By modifying the initial weights and thresholds 

for BPNN using WOA, the problem of the network getting 

stuck in local minima is effectively eliminated. 

 A detailed algorithmic approach for optimizing the 

BPNN using WOA is shown in Figure 3. We also detail the 

whole processes for improving BPNN's initial weights and 

thresholds using WOA. 
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B. Development of the WOA-BP neural network model 

In this research, a WOA-BP neural network model was 

developed using MATLAB, consisting of three layers: an 

input layer, a hidden layer, and an output layer. The detailed 

structure of the WOA-BP neural network is illustrated in 

Figure 2. The input layer comprises three neurons corre-

sponding to the input parameters: temperature, voltage fluc-

tuation, and water film thickness. The output layer includes 

four neurons, each representing a specific road condition—

dry, wet, icy, and snowy. The number of neurons in the hid-

den layer, denoted ash, significantly affects the model's per-

formance and was determined experimental validation [29]. 

Here, m and n refer to the number of neurons in the input 

and output layers, respectively, and k is an integer ranging 

from 1 to 10. After rigorous testing, 10 neurons were select-

ed for the hidden layer. Additionally, the activation function 

used for the hidden layer was MATLAB’s tansig function 

was applied for the output layer. 

 

III. SYSTEM DESIGN FOR DETECTING ROAD 

We used a WOA-BP neural network to construct a sensor-

fusion-based road condition detection system (Figure 3) that 

could achieve high-accuracy road condition identification.  

Gathering data from road condition sensors, preprocessing 

it, fusing features from many sources, transmitting it, and 

finally, using a trained WOA-BP neural network to recog-

nize road conditions are the parts that make up this system.  

In this study, we integrate data from many sensors by using 

feature-level fusion. By allowing the merging of different 

types of sensor data, feature-level fusion provides more 

comprehensive insights. 
 

 

 
 

 

Fig. 1. The flowchart of the WOA-BP neural network 
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Fig. 2. A conceptual representation of the WOA-BP network 

 

 

 
 

 

Fig. 3. System for detecting the state of road surfaces 

 

 To achieve feature-level fusion, a full feature vector is 

created by combining temperature, voltage variation, and 

water film thickness, and then this vector is fed into the 

trained WOA-BP neural network model. The WOA-BP neu-

ral network model determines whether the road is dry, wet, 

icy, or snowy based on real-time data collected from sensors 

and grouped into feature vectors. 

IV. RESRESULTS AND DISCUSSION 

Initial experiments within the temperature range of -30°C 

to +30°C revealed that the road condition monitoring sensor 

produced distinct waveform responses under dry, icy, and 

snowy surface states. As illustrated in Figure 4(a-b), the 

waveform peaks and troughs were analyzed to interpret these 
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responses more clearly, using an average of twenty samples 

for voltage measurement. Figure 4(a) indicates that peak 

voltage responses varied across the three surface types with 

temperature. While dry surfaces showed minimal sensitivity 

to temperature changes, snow and ice exhibited more notice-

able variations due to the temperature-dependent nature of 

their relative permittivity. However, distinguishing all three 

surface states based solely on peak voltage proved challeng-

ing due to overlaps. 

In Figure 4(b), it is evident that in the temperature range 

of -30°C to 0°C, the trough voltage associated with icy con-

ditions is noticeably different from that of dry and snowy 

surfaces, which appear quite similar. This suggests that using 

peak and trough voltages alone offers limited effectiveness 

for reliable classification among dry, icy, and snowy condi-

tions. 

To improve state discrimination, additional signal pro-

cessing was applied to the sensor output. Voltage waveforms 

were sampled across different temperatures for all four sur-

face states—dry, wet, icy, and snowy. The voltage variance 

was computed and scaled by a factor of 1000 to enhance 

clarity. As shown in Figure 4(c), within the -30°C to +30°C 

range, dry, icy, and snowy states showed overlapping vari-

ance patterns, particularly near 0°C. Nevertheless, tempera-

ture remained a critical parameter influencing voltage varia-

tion and, consequently, road condition assessment. 

In the 0°C to 50°C range, Figure 4(d) highlights a notice-

able separation between dry and wet conditions. For wet 

surfaces, voltage variance approached zero across all tem-

peratures. This phenomenon is attributed to water accumula-

tion on the sensor, causing a nearly flat voltage output. No-

tably, water’s relative permittivity remains stable across 

temperature when excited at 10 kHz, resulting in a consistent 

waveform. Overall, voltage variance proves effective in dis-

tinguishing between dry, wet, icy, and snowy road condi-

tions. 

 

 

A. Assessment findings of the WOA-BP model 

In this study, a total of 185 experimental samples were 

collected and divided into training and testing sets using a 

70:30 ratios. To improve model performance and minimize 

the influence of varying units, data standardization was ap-

plied. The WOA-BP neural network was trained with 30 

datasets, while its performance was evaluated using 50 da-

tasets. The training process utilized the Levenberg–

Marquardt (LM) algorithm, and 5-fold cross-validation was 

incorporated to prevent overfitting. The Whale Optimization 

Algorithm (WOA), which relies on a fitness function based 

on prediction error, was employed to optimize the model, as 

shown in Figure 5(a). During its iterations, the WOA used 

techniques like bubble-net foraging, prey searching, and 

encirclement to escape local minima. The model reached its 

best fitness value after 22 iterations, and Figure 5(b) illus-

trates the convergence of the WOA-BP neural network. 

After 15 iterations, the model achieved a mean squared 

error (MSE) of 0.003144 on the validation set, and training 

was concluded after the 21st iteration upon convergence. In 

the test results displayed in Figure 5(c), blue triangles repre-

sent actual classifications and red dots indicate predicted 

outputs. Labels 1, 2, 3, and 4 correspond to dry, wet, icy, 

and snowy conditions, respectively. Out of 55 test samples, 

all predictions were accurate except for one instance, where 

a snowy surface was misclassified as icy. The overall classi-

fication accuracy reached 98.2%. 

The confusion matrix in Figure 5(d) further confirms the 

model's performance, displaying actual versus predicted 

categories. Accuracy was 100% for dry, wet, and icy condi-

tions, and 94% for snowy surfaces. These results indicate 

that the WOA-BP neural network can reliably identify vari-

ous road surface conditions. Moreover, the experiment 

demonstrates the model’s effectiveness even with a relative-

ly small dataset of just 185 samples. 

 

B. Comparison with alternative methodologies 

Separate applications of BPNN, RF, and SVM were used 

to evaluate the efficacy and superiority of the suggested 

strategy in identifying road surface conditions. Just like the 

WOA-BP model, the BPNN's parameter settings were spot 

on. A radial basis function was the kernel function used by 

the support vector machine. In addition, the data was divided 

into training and test sets using a 7:3 ratios, which ensures 

that the results are reliable.  Each of the three models then 

used the dataset for training and evaluation. Confusion ma-

trices and total accuracy rates were used to assess the mod-

els' performance.  

 Figure 6 shows the outcomes of the three approaches' ex-

periments. With an overall accuracy of 90.9%, the BPNN 

accurately identified dry, wet, and icy conditions, however it 

incorrectly classified 31% of snow samples as ice, as shown 

in Figure 6(a). The SVM performed suboptimally, as shown 

in Figure 6(b). It achieved an overall accuracy rate of 87.3% 

but only 83% for ice and 45% for snow. As shown in Figure 

6(c), the RF model achieved a total accuracy of 92.7% by 

incorrectly identifying 7% of ice as snow and 16% of snow 

as ice. The WOA-BP model thus outperformed the other two 

approaches in terms of the accuracy of road surface condi-

tion detection. 

 Each of the four approaches underwent fifteen iterations 

of testing to ensure the model was stable. The results of de-

tecting the state of the road surface using each of the four 

approaches are shown in Figure 6(d-e). Among the four 

states—dry, wet, icy, and snowy—the WOA-BP model had 

the best overall accuracy, with a peak accuracy of 100% and 

an average recognition accuracy of 98.8%. While the WOA-

BP model achieved an average accuracy of 93.2%, the RF 

and SVM only managed 92.9% and 81.3%, respectively.  

Due to the large amount of data often needed by an RF mod-

el to achieve ideal performance, it performed poorly in this 

experiment. A support vector machine (SVM) model works 

well with small samples but struggles with multi-

classification problems.  
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Fig. 4. The road condition detection sensor's response at 10 kHz under different surface conditions.   (a) Sensor peak voltage output at different tempera-

tures under dry, icy, and snowy conditions; (b) Sensor valley voltage output at different temperatures; (c) Sensor output voltage variation under dry, icy, 

and snowy conditions; (d) Sensor output voltage variation under dry and wet conditions. 

 

 
 

Fig. 5. Assessment outcomes of the WOA-BP neural network. (a) Iterative procedure of the WOA; (b) Convergence trajectory of the WOA-BP neural net-

work; (c) Forecasted outcomes for the test set; (d) Confusion matrix of the WOA-BP neural network applied to the test set 
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Fig. 6. Proposed method vs. machine learning.  (a) BPNN confusion matrix; (b) SVM confusion matrix; (c) RF confusion matrix; (d) A comparison of the 

accuracy of the four algorithms after 15 tests; (e) Accuracy statistics 

 

 

The BPNN outperforms RF and SVM in terms of perfor-

mance. However, BPNN's performance becomes unstable 

due to its tendency to converge to local minima, resulting in 

an average accuracy of only 93.2%. Improvements to the BP 

neural network, efficient multisensor data fusion, and new 

feature selection are responsible for the high accuracy of 

road surface condition classification in this study. The raw 

voltage signals from capacitive road sensors were not used 

for feature selection; instead, the variance of the data was 

estimated. As a foundation for future classification, this pro-

cessing method greatly enhanced the disparities among vari-

ous road conditions. With the goal of enhancing both WOA's 

global search capabilities and BPNN's robust classification 

performance, the WOA-BP neural network was created.  By 

modifying the BPNN's initial weights and thresholds, WOA 

improved prediction performance and resilience while re-

ducing the impact of local op-tima.  In addition, three differ-

ent kinds of sensors were used to collect data from the road 

surface, and the WOA-BP neural network allowed for the 

combination of data from several sensors, which overcame 

the shortcomings of each sensor. In particular, the WOA-BP 

neural network was fed a full feature vector encompassing 

attributes like temperature, voltage fluctuation, and water 

layer thickness in order to perform feature-level fusion. The 

accuracy and robustness of identifying road surface condi-

tions were both significantly improved by this approach. 

Finally, there is substantial technical support for improving 

driving safety and expanding intelligent transportation sys-

tems offered by the proposed low-cost, high-accuracy meth-

od for identifying road surface conditions. 

V. CONCLUSION 

By integrating the WOA-BP neural network with an 

ensem-ble of road condition sensors, this study introduces a 

road condition detection system that significantly enhances 

detection accuracy. Using BPNN for data fusion, this detec-

tion technique gathers data on road surface conditions from 

three different types of sensors. This method greatly im-

proves the detection system's accuracy and reliability by 

achieving information optimization and complementarity, 

which successfully addresses the environmental susceptibil-

ity linked to a single sensor source. To solve the issue of 

BPNN becoming stuck in local minima, we used WOA to 

adjust the BPNN's initial weights and bias thresholds. This 

improved the model's convergence rate and classification 

performance significantly. Furthermore, results from the 

created testing equipment show that capacitive sensors' out-

put signal is significantly affected by temperature changes in 

a variety of road conditions (dry, wet, icy, snowy). As a re-

sult, the model's identifying performance can be improved 

by making voltage variation the main property for differenti-

ating different road scenarios. In a performance validation 

conducted across a temperature range of -30℃ to 50℃, the 

WOA-BP model outperformed BPNN, SVM, and RF, 

achieving an average accuracy rate of 98.8% and a maxi-

mum accuracy rate of 100% in classifying dry, wet, icy, and 

snowy road conditions. The model also demonstrated im-

proved detection accuracy and model stability. Improving 

road condition detection is essential for making roads safer, 

and this study presents a new method that does just that. 
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