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Abstract—This paper investigates a cumulative capacitated
vehicle routing problem with prioritized customers (CCVRP-
Pr), which aims to provide preferential service based on the
severity of disaster areas while also reducing the losses of
affected people. First, a mathematical model is established with
the objective of minimizing the time to reach disaster areas
and the penalty time for priority violations. Then, a hybrid
local search (HLS) algorithm is proposed to solve the problem.
The algorithm employs a greedy insertion method to rapidly
construct an initial solution, which also allows for the generation
of infeasible initial solutions violating the constraint of a
specified number of vehicles. The initial solutions are iterated
improved by the procedure of variable neighborhood descent
(VND). Meanwhile, that infeasible solutions are changed to be
feasible by the repair method. To prevent the algorithm from
trapping into a local optimum early, two perturbation operators
based on ruin-and-recreate and ejection chain are randomly
selected to perturb the local best solution. For those inferior
solutions found by local search, a rule based on simulated
annealing acceptance is used to ensure the solutions diversity.
Finally, several experiments were conducted on 82 benchmark
instances, and the results demonstrate the effectiveness of the
proposed algorithm.

Index Terms—vehicle routing problem, cumulative objective,
prioritized customers, hybrid local search, variable neighbor-
hood descent

I. INTRODUCTION

IN the context of disaster relief, the problem of planning
the optimal route for rescue vehicles is a typical appli-

cation of the vehicle routing problem (VRP), which is a
classical NP-hard combinatorial optimization problem. The
traditional approach to VRP is to minimize operating costs,
but the main goal in this context is to minimize casualties and
victims’ suffering. It is essential to consider the speed and
fairness of material distribution from the perspective of the
affected areas in order to ensure that relief supplies reach
each disaster area promptly. In order to achieve this goal,
Ngueveu et al. [1] first introduced the cumulative capacity
vehicle routing problem (CCVRP), which aims to minimize
the total arrival time of all customers under vehicle capacity
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constraints, rather than the traditional path length. Its solution
has been demonstrated to be more suitable for humanitarian
supply chains due to the fact that route distribution costs are
not a significant issue. Since the establishment of CCVRP,
with the continuous improvement of the quality of the solving
algorithm, it has attracted great attention from researchers.
A substantial corpus of literature exists on CCVRP and its
variants, and the recent literature review can be found in [2].

Due to the effect of geographical location, the degree of
disaster in each region is different. If each disaster region
is treated fairly, it can easily lead to the hard-hit areas not
receiving timely assistance. Generally speaking, the areas
closest to the disaster are more severely affected. Following
an equal relief principle might mean that disaster areas don’t
get help in time, causing more deaths and suffering. Also,
the company’s goals of customer satisfaction and profits
are important. When resources are limited, the company
must make trade-offs to ensure the satisfaction of important
customers. Thus, it is important to consider the priority of
service regions in humanitarian supply chains.

In view of the foregoing, this paper studies a new variant
of CCVRP, named CCVRP-Pr. For the CCVRP-Pr addressed
in this paper, there are a few high-priority customers, and the
majority of customers are low-priority. When a low-priority
customer is served before a high-priority one, dissatisfaction
penalty cost is incurred. We define a lateness penalty function
to calculate the penalty time for scenarios in which customers
jump queues. Then, we develop a hybrid local search (HLS)
algorithm to minimize the total arrival time of all customers
and the penalty time.

The main contributions of this paper are as follows:
• A problem model is established, whose goal is to

minimize the arrival time at disaster sites and the penalty
time for violation of priority.

• The different optimization operators are designed in
local search by the concept of variable neighborhood
descent (VND) to find better solutions, and a new initial
solution generation algorithm is proposed to generate
both feasible solutions and infeasible solutions.

• Two different perturbation operators, ruin-and-recreate
and ejection chain, are designed to escape local opti-
mum and explore larger solution spaces.

• A simulated annealing acceptance criterion is applied to
ensure solution diversity, preventing premature conver-
gence of the algorithm and enhancing solution quality.

The rest of this paper is organized as follows. The litera-
ture review of problem and solution approaches is given in
Section II. In Section III, the model of CCVRP-Pr is defined
and its mathematical model is described. To solve this
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problem, an HLS algorithm is developed in Section IV. The
computational results, using a set of benchmark instances, are
presented in Section V. Finally, we summarize the research
conclusions and suggest future research directions in Section
VI.

II. LITERATURE REVIEW

The cumulative vehicle routing problem is classified into
the cumulative vehicle routing problem (Cum-VRP) and
CCVRP [2] according to the cumulative objective. For Cum-
VRP, its objective prefers to travel the most distant arcs as
the vehicle gets lighter, which is related to the distance and
the load of the vehicle. However, for CCVRP, the arrival of
customers is the cumulative component, and the total arrive
time is the optimization objective. CCVRP has received
more attention due to several application in emergency relief
operations and customer-centered logistics operations.

The CCVRP arises from the Capacitated Vehicle Routing
Problem (CVRP), and most of the CCVRP literature focuses
on general CCVRP [1], [3], [4], [5], [6], [7]. As research
deepens, some CCVRP variants considering multiple depots
[8], [9], [10] and time windows [11], [12], are also proposed
to address more complex real-world requirements. This paper
primarily focuses on general CCVRP, thus the related work
about which will be described in the following.

Ngueveu et al. [1] was the first to study CCVRP and devel-
oped a memetic algorithm combing crossover operations and
local search procedures to generate solutions, using the vrpnc
instances with 50-199 nodes proposed in [13]. Lysgaard et al.
[3] proposed a branch-and-cut-and-price algorithm (BCP) to
solve CCVRP instances, and it was the first exact algorithm
for CCVRP. The BCP algorithm is effective for small-scale
problems but cannot solve larger or more complex problem
types. Nucamendi-Guillén et al. [14] proposed two manage-
able integer formulations which can solve instances with up
to 44 nodes, alongside two iterative greedy algorithms for
larger instances. The experimental results indicate that these
integer formulations can achieve optimal solutions within
reasonable computation time, and the two metaheuristic
algorithms can achieve outcomes comparable to the best-
known solutions. Exact methods can obtain optimization
solutions on small-scale problems, but they are impractical
for complex scenarios due to the limitations of the solvers
in handling medium to large-scale instances.

The heuristic and metaheuristic methods are the main
methods to solve the CCVRP and its variants. Mattos Ribeiro
et al. [4] employed the Adaptive Large Neighborhood Search
algorithm (ALNS), which utilizes adaptive probability mod-
els to apply destruction and repair operators to generate
new solutions. These solutions were then compared with
those generated by [1]. Ke and Feng [5] proposed a two-
phase metaheuristic algorithm whose algorithm integrates
perturbation and local search operators. In each iteration, two
interdependent phases use different perturbation and local
search operators to improve the solutions. Sze et al. [6]
developed a two-phase adaptive large neighborhood search
algorithm, using large neighborhood search as a diversifica-
tion strategy for solutions. The comparative analysis shows
that the optimal solutions of classical CVRP can lead to
suboptimal solutions of CCVRP, which is consistent with
the findings of [15]. Ke et al. [7] proposed the Brainstorm

Optimization Algorithm (BSO), designing new convergence
and divergence operations. The convergence operation selects
and perturbs the optimal solution so far, decomposing the
CCVRP into multiple sub-problems to be solved, and the di-
vergence operation selects one of three operators to generate
new solutions to the sub-problems, and then assembles these
solutions into a solution to the original problem. This algo-
rithm has effectively solved large instances with up to 1200
nodes. Liu and Jiang [11] developed an effective algorithm
based on the large neighborhood search and genetic algo-
rithms to address the CCVRP with time window constraints.
This algorithm involved a constraint relaxation scheme to
expand the search space, to enable iterative exploration of
feasible and infeasible neighboring solutions. Smiti et al.
[16] proposed the Skewed General Variable Neighborhood
Search algorithm, which yielded superior solutions compared
to memetic algorithms [1] and ALNS [4] in the set of
instances of [13] and [17]. Recently, Kyriakakis et al. [18]
utilized two algorithms, named Ant Colony System Variable
Neighborhood Descent algorithm (ACO-VND) and Max-
Min Ant System Variable Neighborhood Descent algorithm
(MMAS-VND), and it reached best-known solutions in 92
out of the 112 instances tested, offering superior results and
reduced computation time. Later, Kyriakakis et al. [12] also
presented a Hybrid Tabu Search - Variable Neighborhood
Descent algorithm. This algorithm can solve both general
CCVRP and its varient with time windows, and it can reach
84 of them on the 92 CCVRP instances tested.

These successful experiences in solving general CCVRP
have promote the related research in emergency vehicle
routing problems. However, considering the difference in the
degree of damage in different regions in actual disasters
scenario, the optimization objective of the CCVRP need
include total arrival times and the degree of satisfaction of
all customers. Nucamendi-Guillén et al. [19] proposed the
bi-objective CCVRP with customer prioritization, consisting
of the weighted sum of arrival time and penalty time due
to prioritization, and developed two memetic algorithms to
solve it. The experimental results show that their methods
are effective for small instances, but the solving quality of
methods are not sufficient for large instances.

In this paper, we study the post-disaster vehicle routing
problem with customer prioritization that is a CCVRP vari-
ant, which is still a NP-hard problem. The effectiveness of
heuristic and metaheuristic encourage us to develop a more
efficient algorithm to solve the addressed problem. Local
search methods, a kind of simple and effective heuristic,
can find better solutions in optimization problems [9], [10].
Therefore, we try to propose a hybrid local search algorithm
integrated local search with variable neighborhood descent
procedure to solve this problem efficiently.

III. PROBLEM FORMULATION

This section will give the description and definition of the
CCVRP-Pr problem, along with the method for calculating
priorities and the corresponding mathematical formulation.

A. Problem Description

The CCVRP-Pr is defined as an undirected graph G =
(V,E). V = {0, 1, 2, . . . , n, n + 1} represents the node set,
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Fig. 1. The calculation of penalty time

both node 0 and n + 1 are the same depots. The customer
set is denoted as V ′ = {1, 2, . . . , n}, and E is the set of all
edges. Each edge (i, j) ∈ E has a travel time wij and each
node j ∈ V ′ has a demand qj . The solution consists of R
homogeneous vehicles (R > 0), every of which has the same
maximum capacity Q. The variable tki donates as the time
when vehicle k arrives at node i from the depot. At the same
time, an n×n priority matrix with binary variables is defined
to consider priority, in which pij = 1 means customer i is
served before customer j, and pij = 0 means customer i can
be served after customer j.

If a lower-priority customer is served before a higher-
priority customer in the same route or different routes, dis-
satisfaction may emerge. This dissatisfaction arose based on
the order of service, so the difference in their arrival time can
measure that dissatisfaction. Accordingly, the penalty time is
the difference in their arrival time, written as Iij = |ti − tj |.
The total penalty time of the system can be shown in formula
(1)(j ̸= i):

∑
i∈ V ′

∑
j∈V ′

j ̸=i

Iij = pij

∣∣∣∣∣∑
k∈R

tki −
∑
k∈R

tkj

∣∣∣∣∣ , ∀i ∈ V ′, j ∈ V ′ (1)

Since the minimum of Iij is 0 and the maximum represents
the inversion order of customer service, also serves lower-
priority customers first and higher-priority customers last,
we can optimize each route’s customers to get a maximum
lateness time Imax. This means the system’s total penalty
time ranges from [0, Imax].

Figure 1 graphically illustrates an instance with 9 nodes
which has a solution with 3 routes. For each number symbol
at each point on the graph, the form a1 indicates the customer
a has the priority level of 1 (the higher the number, the higher
the priority). The depot is marked specially. The weight value
on each edge represents the path length. According to the
above calculation method, customers d and g show dissat-
isfaction with customer a. Thus, the corresponding penalty
times are the difference in their service time, resulting in a
total penalty time of 6.

B. Mathematical Formulation

The objective of CCVRP-Pr is to minimize the total arrival
time of all customers plus penalty time under the constraints

of the maximum load capacity Q. The mathematical formu-
lation of the CCVRP-Pr can be stated in the following.

Minimize:

F =
R∑

k=1

∑
i∈V ′

tki +
∑
i∈ V ′

∑
j∈V ′

j ̸=i

Iij (2)

subject to:∑
j∈V

xk
ji =

∑
j∈V

xk
ij , ∀i ∈ V ′, ∀k ∈ R (3)

R∑
k=1

∑
j∈V

xk
ij = 1, ∀i ∈ V ′ (4)

∑
j∈V

xk
0j = 1, ∀k ∈ R (5)

∑
j∈V

xk
j,n+1 = 1, ∀k ∈ R (6)

∑
i∈V ′

∑
j∈V

xk
ijqi ≤ Q, ∀k ∈ R (7)

tki + wij −
(
1− xk

ij

)
G ≤ tkj , ∀i ∈ V,∀j ∈ V ′, ∀k ∈ R (8)

tki ≥ 0, ∀i ∈ V,∀k ∈ R (9)

xk
ij ∈ {0, 1}, ∀i ∈ V, ∀j ∈ V, i ̸= j, ∀k ∈ R (10)

The objective function of CCVRP-Pr is shown in equation
(2). Constraint (3) ensures that the vehicle serves customer
i and must leave it. Constraint 4 ensures that each customer
is served by exactly one vehicle. Constraints (5) and (6)
indicate that per vehicle’s route starts and ends at the
depot. Constraint (7) limits every vehicle’s total load to its
maximum capacity. Constraint (8) prevents the creation of
sub-tours using a large constant G. Constraint (9) require
that tki must be non-negative. Constraint (10) gives the value
of the decision variable x k

ij . If the vehicle k traverses edge
(i , j ), it is equal to 1; otherwise, it’s equal to 0.

IV. PROPOSED METHOD

The proposed algorithm combines the iterated local search
and variable neighborhood descent [20], [21], which are
effective heuristic that has been widely applied in vehicle
routing problem. The hybridization of components of two
algorithms can take advantage of their performances to
improve the quality of the proposed algorithm. Furthermore,
we also introduce the effective perturbation methods and
nondeterministic acceptance rule to keep the balance between
exploration and exploitation of the proposed algorithm.

A. Overall Framework of HLS

The proposed algorithm, namely HLS, is developed in
the framework of iterated local search, which has VND
local search procedure, improved perturbation operators, and
nondeterministic acceptance criterion. The overall structure
of the HLS algorithm is shown in Algorithm 1.

Step (1) reads the node information from instances. Steps
(2) to (4) generate the initial solution using the algorithm
2. The initial solution may be infeasible due to capacity
constraints, which is subsequently corrected by the repair
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Algorithm 1: HLS
Input : file: vrp file; n: number of customers; k:

number of vehicles; T : initial temperture; a:
colding rate; epoch: max termination
nummber ; p: perturbation factor

Output: solb: best solution
1 node = ReadVRP(file)
2 solb = ø
3 sol0 = InitialSolution(node,k,n)
4 solb = RepairLocalSearch(sol0) // attempt to

repair infeasible solution
5 while epoch > 0 do
6 p = Rand(0,1)
7 solv = PMSearch(solb,p) // execute

perturbation operator
8 solv = LS − V ND(solv)
9 if solv < solb then

10 solb = solv
11 epoch = 20
12 else
13 r = Rand(0,1)
14 if r < T then
15 solb = solv
16 epoch = 20
17 end
18 end
19 epoch = epoch− 1
20 T = T × a
21 end
22 return solb

Algorithm 2: InitialSolution
Input : node: customers; n: number of customers;

R: number of vehicles
Output: sol0: initial solution

1 Sort(node)// Descending sort by
priority and demand

2 sol0 = ø with R routes
3 for i : node do
4 Insert i into the head route of R routes in sol0
5 Ascending sort the sequence of R routes in sol0

by its load
6 end
7 return sol0

method defined in Section IV-E. Steps (5) to (21) are the
main produce of the algorithm which is divided into three
stages. Step (7) is the perturbation stage, during which
a perturbation operator is randomly selected between two
perturbation operators with a given intensity p to perturb
the solution. Step (8) executes a VND search. The final
stage applies the simulated annealing criterion to accept new
solutions. Besides, the HLS algorithm records the best result
per iteration.

Given that the HLS algorithm can accept infeasible so-
lutions, the accept rule is the combination of the feasible
and infeasible objective function value, which is defined as

follows:

f(x) =

{
F (s), s is feasible

Q(s), s is infeasible
(11)

where F (s) is the objective function to be optimized and
Q(s) is the objective function when constraints are violated.
The algorithm accepts solutions with a lower objective func-
tion value and always prefers to accept feasible solutions.
The exact acceptance rule is detailed in Section IV-E.

B. Initial Solution

The initial solution is generated by a greedy insertion ap-
proach. Initially, R empty paths are created, then customers
are sorted by priority and demand and inserted into the
path with the largest remaining capacity to balance customer
priority and demand. The initial solution generated by the
algorithm may be infeasible and will be repaired during the
later procedure. Algorithm 2 shows how the initial solution
is obtained.

C. Neighborhood Structures

The neighborhood structure generates neighboring solu-
tions through small perturbations of the current feasible
solution to construct a set of neighboring solutions. The
procedure of selecting a neighboring solution to update the
current solution is called a neighborhood move. The neigh-
borhood is designed to consist of several solutions closest to
the current solution in the HLS algorithm and the solution
is updated by moving nodes among inter-routes or intra-
routes. The HLS algorithm utilizes six neighborhood search
operators, some of which can repair infeasible solutions. The
operations are detailed in the following.
(1) One-Point Move: This operator moves a node to the

before or after of another node which is also called a
relocation move. It can happen on the same or different
routes. The details are shown in Figure 2. Because
this operator can change the route’s capacity when
executed between different routes it can repair infeasible
solutions.

(2) Two-Point Swap: This operator swaps two nodes of the
same or different routes. This operator can change route
capacities when performed between different routes so
it can repair solutions like one-point move. Figure 3
illustrates the procedure in detail.

(3) 2-Opt: This is a classical 2-opt from the Traveling
Salesman Problem which deletes two non-continuous
edges and reconnects them back-to-front. This operator
doesn’t change the route’s capacity so it is unable to
repair infeasible solutions. Besides, we make it only
occur on routes with at least three customers. Figure 4
demonstrates this procedure by deleting edges e1 and
e2, reversing the connection from e1 to e2, and then
adding two new edges e3 and e4.

(4) Arc-Node Swap: This operator selects nodes and arcs
(two consecutive customers) on the same or different
routes and swaps them, also called the three-point move.
Figure 5 shows the procedure. This operator can occur
on the same or different routes but can’t repair infeasible
solutions.
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Fig. 2. Example of the One-Point Move

Fig. 3. Example of the Two-Point Swap

Fig. 4. Example of the 2-opt

(5) Or-Opt Move: It’s an extended one-point move operator
that moves a series of consecutive nodes (2 to 4) to the
before or after of another node. Figure 6 illustrates the
OrOpt2 process that moves two nodes. This operator
can apply to the same or different routes and repair
infeasible solutions when the route’s capacities are
changed.

(6) Arc Swap: This operator swaps the positions of two
pairs of consecutive nodes. It can be applied on the
same or different routes, as shown in Figure 7. This
operator can repair infeasible solutions.

D. Variable Neighborhood Descent Search

The HLS algorithm uses VND as the local search process
due to its ability to explore the large space. The detailed
process is shown in Algorithm 3. The algorithm is initialized

Fig. 5. Example of the arc-node swap

Fig. 6. Example of or-opt

Fig. 7. Example of the arc swap

in Steps (1) and (2). The VND process is described in Steps
(4) to (19), where we do a 2-opt after seven operators update
the current solution. Last, a maximum number of executions
is used to limit the execution time per operator.

E. Repair Method

In this section, we will describe the process of how each
operator repairs solutions. The generation algorithm of the
initial solution strictly limits the number of vehicles and
this may result in some vehicles being overloaded. The
repair process adjusts each route’s capacity to satisfy capacity
constraints. Through analyzing the instances, we reveal that
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Algorithm 3: LS-VND
Input : sol0: input solution; n: number of

customers; k: number of vehicles
Output: solv: output solution

1 solv = sol0
2 max iter = 10× n
3 foreach ng ∈ N do // N is the set of

seven operators
4 i = 0
5 flag = true
6 while flag = true do
7 solv = Improve(solv ,ngi)
8 if solv improved then
9 solv = 2-Opt(solv)

10 else
11 flag = false
12 end
13 i = i+ 1
14 if i > max iter then
15 flag = false
16 end
17 end
18 end
19 return solv

its total demand C is a fixed value for one instance. Thus,
repairing infeasible solutions can be abstracted into the
following optimization problem:

min Q (s) =
R∑

k=1

r2k (12)

subject to:
R∑

k=1

rk = C (13)

qk ≥ 0,∀k ∈ {1, . . . , R} (14)

where rk is the sum of demand in route k . And we can find
that the minimum value of Q(s) is acquired when r1 = r2 =
r3 = ... = rR = ⌊C/R⌋. Due to the capacity of a route is
a discrete variable, the minimum value of Q(s) is acquired
when each r is close to the value of ⌊C/R⌋. Further research
shows that each operator involves changes in only two routes
at most. The total load of the two routes remains unchanged
before and after the change. Therefore, when comparing the
Q(s) values of infeasible solutions, it is only necessary to
calculate the values of the two routes.

Algorithm 4 demonstrates the overall process of repairing
infeasible solutions for each operator. The repair or optimiza-
tion process of the operator is carried out in Steps (7) to
(18) after moving nodes. If there is an overloaded route, the
operator executes the criteria in Steps (8) to (12) to repair
solution. It will accept the smaller value of Q(s) and the
Q(s) is simplified calculated and compared in Step (10).

F. Perturbation Method

The HLS algorithm can get trapped in local optimum
like other local search-based algorithms. The perturbation
operators allow the HLS algorithm to restart the search

Algorithm 4: Repair
Input : soli: infeasible solution; Q: max vehicle

capacity
Output: solf : feasible solution

1 solf = soli
2 foreach Operator in LocalSearch do
3 r1, r2 = GetRouter(solf )
4 r1′, r2′ = Operator(r1, r2)
5 qr1 = GetRouterLoad(r1)
6 qr2 = GetRouterLoad(r2)
7 if qr1 > Q || qr2 > Q then // infeasible
8 q′r1 = GetRouterLoad(r1′)
9 q′r2 = GetRouterLoad(r2′)

10 if qr12 + qr2
2 > q′r1

2
+ q′r2

2 then
11 ApplySolUpdate(solf , r1′,r2′)
12 end
13 else // feasible
14 if f(soli, r1′, r2′) < f(soli, r1, r2) then
15 ApplySolUpdate(solf , r1′,r2′)
16 end
17 end
18 end
19 return solf

from different solution spaces to find global optimum, so
an effective heuristic method gets the best solution by the
combination of local search and perturbations. We design two
different kinds of perturbations: ruin-recreate and ejection
chain to explore a larger neighborhood solution space.

The ruin-recreate perturbation originated from [22]. The
pseudocode of the ruin-recreate is provided in Algorithm 5.
The variables and best solution are initialized in Steps (1) to
(3). The random customers are selected to be removed and
then we obtain both the solution with customers removed and
removed customers in Steps (4) and (5). The main loop is
from Steps (6) to (16) and it consists of two phases: the repair
phase and the update one. In the repair phase, the removed
customers will be shuffled randomly, after which they will be
reinserted to rebuild the solution. If the new solution rebuilt is
better than the current solution, the algorithm will terminate
early with the new solution returned in the update phase. It
also records the best solution found in Steps (13) to (15). The
above procedures are repeated until the termination condition
is met.

The ejection chain perturbation is a variable-depth search
including k insertion processes where k is the depth of the
ejection chain. A node from path 1 is moved to path 2, a
point from path 2 is moved to path 3, and so on. Finally,
a node from path k is moved to path 1. The pseudocode
of ejection chain perturbation is shown in Algorithm 6. The
variables and sequence of k paths are initialized in Step (1)
to (3). In step (4), the head route of the solution is copied
to the tail, routes = {1, 2, 3, ..., k , 1}. In steps (5) to (9),
k insertion procedures are executed to exchange a randomly
chosen node between adjacent paths in routes.

G. Acceptance Criterion

It’s important to maintain the diversity of solutions to
prevent the HLS algorithm from getting trapped in a local
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Algorithm 5: RuinRecreate
Input : sol: solution; p: the destruction factor;

epoch: the max number of iteration
Output: solp: the best solution

1 solp = ø
2 solb = ø
3 t = 0
4 nodes = GetRemovedNodes(sol, p)
5 sol0 = RuinSolution(sol, nodes)
6 while t < epoch do
7 RandShuffle(nodes)
8 soln=RepairSolutionn(sol0, nodes)
9 if soln < sol then

10 solp = soln
11 return solp
12 end
13 if soln < solb then
14 solb = soln
15 end
16 t = t+ 1
17 end
18 solp = soln
19 return solp

Algorithm 6: EjectionChain
Input : sol: solution; k: the number of perturbation

routes; num: the epoch of max perturbation
Output: solp: the perturbed solution

1 i = 0
2 for i > num do
3 routes = RandSelect(sol, k)
4 routes = routes ∪ routes[0]
5 for r1, r2 : routes do
6 node1 = RandSelect(r1)
7 node2 = RandSelect(r2)
8 Swap(node1, node2)
9 end

10 i = i + 1
11 end
12 solp = sol
13 return solp

optimum. When a better neighborhood solution is acquired
from the local search it will accept this solution. This accep-
tance rule is called the improvement acceptance. However, if
the algorithm always accepts the better solution, it may get
trapped in the local optimum due to diversity lacking. We
use a probable acceptance rule based on simulated annealing
to accept a worse solution. It is defined in the following:

S =


Sn, f(Sn) < f(Sc)

Sn, f(Sn) > f(Sc), ∆t > p, p ∈ (0, 1)

Sc, otherwise

(15)

where Sc and Sn are the current and new neighborhood
solutions,f(Sn) is the objective value of Sn, ∆t is the current
temperature and p is a random float between 0 and 1. Sn will
be accepted when it is better than Sc. However, if Sn is worse
than Sc, it is accepted with a probability of p.

V. COMPUTATIONAL EXPERIMENTS

In this section, we describe parameter settings and con-
duct experiments to evaluate the performance of the HLS
algorithm. First of all, the rules with priority instances are
presented, and then the parameter settings for the algo-
rithm are presented. Second, several comparison experiments
are performed by HLS and two effective metaheuristics
on CCVRP-Pr and basic CCVRP respectively. Finally, we
analyze the performance of hybridization and the influence
of different perturbation strengths. The algorithm is imple-
mented in C++ using Visual Studio Code, which is available
at https://github.com/chyoungerz/HLS. All experiments are
conducted on Windows 10 64-bit with an Intel i7-10700 CPU
@ 2.90 GHz.

A. Benchmark Instances

Since CCVRP-Pr is a relatively new problem and no
international benchmarks with priorities are available, we
generated 82 instances A*, B*, E*, and P*, which based on
existing benchmark instances A, B, E, and P [13], with sizes
ranging from 16 to 101. These adapted instances are publicly
available at https://github.com/chyoungerz/PrK Instances.
Each case name consists of four parts separated by ’-’,
such as ”A-n32-k5-Pr,” where ”A” represents the instance
set, ”n” is the number of nodes including the depot and
customers, ”k” is the maximum number of vehicles used, and
the last part indicates that each customer has a corresponding
priority. When generating the instances, customers were
clustered using k-means, with the k-value determined by
the elbow method, ranging from 1 to 10. The priority of
customers within each cluster was assigned based on the
square of the distance from the cluster center, decreasing
from highest (⌈lnn⌉) to lowest (1), simulating real-world
disaster scenarios. The priority assignment formula is:

Pi =
1(

1√
n
+ dci

r

)2 (16)

where Pi is the priority of customer i , n is the total number
of customers, r is the radius of the cluster that is the distance
from the farthest point in the cluster to the cluster center, and
dci is the distance from customer i to the cluster center.

B. Parameters Settings

The HLS algorithm has some parameters that need to
be set. The size of the neighborhood is set to half of the
customer number. The maximum iteration of perturbation in
the ruin-recreate operator is set to 10 and the destruction
range is set to (0, 0.5). The k in the ejection chain operator is
[2, r), where r is the number of total routes, and the range of
perturbation iteration is [1, 10). The perturbation intensity of
two methods is randomly selected at the range of (0.2, 1.0).
For the acceptance rule based on simulated annealing, the
parameters include an initial temperature of 1 and a cooling
rate of 0.94. Besides, the algorithm will be terminated if the
solution does not improve for 20 consecutive iterations.
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TABLE I
COMPREHENSIVE RESULTS OF DIFFERENT ALGORITHMS ON A*, B*, E*, AND P* INSTANCES

Instances
ILS VNS HLS

#BKS T/s #BKS T/s #BKS T/s

A*(27) 10 1.41 7 1.33 23 2.02
B*(22) 9 1.40 6 1.12 17 2.15
E*(11) 4 7.03 2 6.62 10 9.32
P*(22) 16 4.12 5 4.44 15 3.92
Total(82) 39 13.96 20 13.51 65 17.41

TABLE II
RESULTS FOUND BY HLS AND COMPARISON ALGORITHMS ON SET A*

Instance BKS
ILS VNS HLS

best avg best avg best avg

A-n32-k5-Pr 2653 2653 2655.00 2653 2775.10 2653 2664.90
A-n33-k5-Pr 1894 1894 1902.50 1894 1926.90 1894 1915.70
A-n33-k6-Pr 2095 2095 2121.00 2111 2136.80 2095 2118.00
A-n34-k5-Pr 2533 2533 2552.30 2540 2575.50 2533 2539.60
A-n36-k5-Pr 3165 3165 3188.20 3165 3219.50 3165 3187.60
A-n37-k5-Pr 2415 2415 2458.10 2454 2471.00 2454 2467.60
A-n37-k6-Pr 2884 2918 2977.20 2934 3045.50 2884 2983.90
A-n38-k5-Pr 2500 2500 2598.30 2641 2913.60 2500 2569.50
A-n39-k5-Pr 3170 3210 3237.10 3221 3503.40 3170 3244.60
A-n39-k6-Pr 2664 2664 2667.30 2687 2687.20 2664 2670.80
A-n44-k6-Pr 3475 3500 3570.70 3478 3635.30 3475 3536.20
A-n45-k6-Pr 3954 4195 4455.50 4078 4367.00 3954 4169.10
A-n45-k7-Pr 3516 3516 3520.10 3516 3565.90 3516 3519.00
A-n46-k7-Pr 3061 3061 3073.50 3069 3069.00 3061 3072.90
A-n48-k7-Pr 3920 3921 3977.10 3920 4014.90 3921 3947.50
A-n53-k7-Pr 3859 3918 4073.10 4018 4256.00 3859 4005.00
A-n54-k7-Pr 4374 4502 4602.30 4525 4651.10 4374 4496.30
A-n55-k9-Pr 3304 3314 3396.80 3430 3469.60 3304 3365.10
A-n60-k9-Pr 4601 4605 4711.50 4605 4728.30 4601 4617.50
A-n61-k9-Pr 3740 4397 4516.00 3822 4116.90 3740 4099.10
A-n62-k8-Pr 5047 5098 5139.40 5122 5185.70 5047 5104.20
A-n63-k9-Pr 6423 6640 6760.30 6423 6598.50 6426 6524.10

A-n63-k10-Pr 4183 4223 4351.20 4241 4379.70 4183 4305.70
A-n64-k9-Pr 5304 5316 5503.00 5304 5413.80 5313 5433.70
A-n65-k9-Pr 4963 5433 5647.50 5181 5420.40 4963 5189.20
A-n69-k9-Pr 4666 4790 4946.80 4685 4816.50 4666 4787.00
A-n80-k10-Pr 7694 7744 7946.50 7709 7786.30 7694 7814.50

Avg 3779.89 3860.00 3946.23 3830.59 3952.94 3781.81 3864.75
gap/% 2.12 1.34 0.05

C. Computational Results on CCVRP-Pr

To verify the performance of the HLS algorithm, we
conduct a series of comparative experiments with two effec-
tive local-search based algorithms, which are VNS and ILS.
The reasons why we chose the two algorithms are that this
problem is a relatively new one with no public algorithms to
compare and the design of the HLS algorithm is inspired
by these two algorithms. Furthermore, ILS and VNS are
classical algorithms for solving CCVRP problems, and they
have been proven to be highly effective for this class of
problems[14], [12]. This can facilitate performance verifica-
tion. The VNS algorithm uses four shake operators and the
ILS algorithm uses the simulated annealing acceptance. The

parameter settings of the two are the same as those of the
HLS algorithm and the operators used by the three algorithms
are also the same.

The three algorithms were tested on the A*, B*, P*, and
E* instance sets and each instance ran 10 times. The number
of optimal solutions found and the average elapsed time for
each algorithm are summarized in Table I. In Table I, the
first column shows the instance sets, and columns #BKS and
T/s show the number of best-known solutions found and the
average time to find the best solution.

According to the results of Table I, we reveal that the
HLS algorithm outperforms the VNS and ILS algorithms.
The HLS algorithm found 65 best solutions out of the 82
instances and its success rate is 79.27%. The VNS and
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TABLE III
RESULTS FOUND BY HLS AND COMPARISON ALGORITHMS ON SET B*

Instance BKS
ILS VNS HLS

best avg best avg best avg

B-n31-k5-Pr 2128 2128 2132.00 2131 2141.20 2131 2131.10
B-n34-k5-Pr 2871 2871 2895.40 2871 2927.20 2871 2878.60
B-n35-k5-Pr 3912 3912 3920.20 3912 3963.70 3912 3912.00
B-n38-k6-Pr 2307 2307 2310.40 2318 2320.80 2307 2310.50
B-n39-k5-Pr 2707 2707 2707.50 2708 2708.00 2707 2708.00
B-n41-k6-Pr 2868 2880 2896.40 2911 3039.40 2868 2905.90
B-n43-k6-Pr 2970 2970 2985.10 2970 3020.30 2970 2986.10
B-n44-k7-Pr 3660 3666 3674.40 3664 3682.60 3660 3676.00
B-n45-k5-Pr 3344 3344 3471.60 3371 3552.10 3369 3440.60
B-n45-k6-Pr 2333 2404 2546.70 2566 2676.50 2333 2486.50
B-n50-k7-Pr 2708 2708 2722.30 2708 2719.60 2708 2710.50
B-n50-k8-Pr 3644 3657 3670.00 3650 3678.40 3644 3661.50
B-n51-k7-Pr 3853 4263 4438.40 4369 4544.60 3853 4041.90
B-n52-k7-Pr 3096 3108 3123.90 3155 3160.60 3096 3114.80
B-n56-k7-Pr 3455 3473 3542.90 3455 3629.50 3459 3524.90
B-n57-k7-Pr 5552 6025 6205.10 6002 6416.10 5552 6013.60
B-n57-k9-Pr 5833 5848 5899.00 5956 5988.20 5833 5871.20
B-n63-k10-Pr 7120 7166 7255.10 7120 7217.60 7182 7227.70
B-n64-k9-Pr 3714 3813 3947.20 3776 3985.90 3714 3771.20
B-n66-k9-Pr 7074 7179 7212.50 7123 7172.80 7074 7150.90
B-n67-k10-Pr 4039 4049 4172.80 4070 4164.20 4039 4118.80
B-n68-k9-Pr 5651 5651 5869.00 5740 5843.00 5738 5814.20

Avg 3856.32 3914.95 3981.72 3933.91 4025.10 3864.55 3929.84
gap/% 1.52 2.01 0.21

TABLE IV
RESULTS FOUND BY HLS AND COMPARISON ALGORITHMS ON SET E*

Instance BKS
ILS VNS HLS

best avg best avg best avg

E-n22-k4-Pr 896 896 904.20 970 975.00 896 896.00
E-n23-k3-Pr 2178 2178 2178.00 2324 2324.00 2178 2195.10
E-n30-k3-Pr 2261 2261 2266.10 2276 2304.80 2261 2265.20
E-n33-k4-Pr 3380 3380 3391.80 3380 3399.40 3380 3402.80
E-n51-k5-Pr 2527 2655 2773.60 2747 2938.80 2527 2731.00
E-n76-k7-Pr 4211 4217 4293.20 4222 4394.50 4211 4281.40
E-n76-k8-Pr 3935 3970 4114.30 3950 4051.20 3935 4040.40
E-n76-k10-Pr 3557 3729 3915.90 3577 3748.50 3557 3696.60
E-n76-k14-Pr 2542 2692 2794.10 2683 2772.30 2542 2629.70
E-n101-k8-Pr 5644 5802 5937.60 5676 5841.90 5644 5811.30
E-n101-k14-Pr 3573 3694 3763.40 3573 3692.70 3617 3693.50

Avg 3154.91 3224.91 3302.93 3216.18 3313.01 3158.91 3240.27
gap/% 2.22 1.94 0.13

ILS algorithms only found 20 and 39 best solutions, whose
success rate is 24.40% and 47.56%. In the A*, B*, and
E* instances, HLS found more optimal solutions than VNS
and ILS, but in the P* instance, HLS is equals to ILS.
The computational time of the three algorithms is almost
the same. Overall, all three algorithms could find solutions
within a limited time. The HLS shows superior performance
in obtaining best solutions.

The optimal and average solutions for each instance set
are illustrated in Table II to Table V. Columns best and
avg denote the best solution and average solution found by

the algorithm. The column BKS represent the best solution
among all the algorithms. The best solutions are shown in
bold in these tables. The gap value is defined as:

gap =
best − BKS

BKS
× 100% (17)

As reported in Table II to Table V, the HLS outperforms
the VNS and ILS and has the best average solution. In detail,
the gap of the HLS is 0.05% on Set A* and much smaller
than 1.34% and 2.12% of the VNS and ILS. Meanwhile, on
Set B*, E* and P*, the gap of the HLS are 0.21%, 0.13%,
and 0.31%, which are also smaller than those of the VNS and
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TABLE V
RESULTS FOUND BY HLS AND COMPARISON ALGORITHMS ON SET P*

Instance BKS
ILS VNS HLS

best avg best avg best avg

P-n16-k8-Pr 438 438 438.00 438 439.20 438 438.00
P-n19-k2-Pr 974 974 990.30 1074 1070.00 974 985.20
P-n20-k2-Pr 1086 1086 1105.60 1086 1112.10 1086 1106.40
P-n21-k2-Pr 1072 1072 1076.50 1072 1164.70 1072 1083.60
P-n22-k8-Pr 709 709 709.00 739 739.00 709 709.40
P-n23-k8-Pr 787 787 807.10 863 863.00 792 805.10
P-n40-k5-Pr 1773 1773 1778.30 1773 1775.80 1773 1776.70
P-n45-k5-Pr 2293 2293 2334.60 2485 2542.40 2312 2357.80
P-n50-k7-Pr 1892 1892 1926.40 1922 1976.40 1909 1939.30
P-n50-k8-Pr 1733 1961 2050.40 1953 2130.50 1733 1891.30
P-n50-k10-Pr 1396 1396 1442.40 1482 1529.60 1396 1432.50
P-n51-k10-Pr 1543 1598 1734.80 1655 1736.00 1543 1617.10
P-n55-k7-Pr 1854 1854 1874.70 1875 1891.90 1854 1877.40
P-n55-k8-Pr 1889 1889 1913.60 1918 1934.50 1889 1911.50
P-n55-k10-Pr 1507 1507 1524.30 1507 1540.50 1509 1522.40
P-n60-k10-Pr 2249 2266 2350.90 2316 2355.40 2249 2298.00
P-n60-k15-Pr 1872 1879 1928.60 1909 1959.80 1872 1903.40
P-n65-k10-Pr 2582 2607 2680.80 2682 2715.50 2582 2636.20
P-n70-k10-Pr 2896 3046 3222.00 2953 3156.50 2896 3006.10
P-n76-k4-Pr 7108 7108 7345.30 7237 7513.70 7141 7281.10
P-n76-k5-Pr 5665 5665 6090.50 5870 6113.30 5690 5846.00
P-n101-k4-Pr 9651 9651 9960.20 10369 10668.60 9716 9970.20

Avg 2407.68 2429.59 2512.92 2507.91 2587.65 2415.23 2472.49
gap/% 0.91 4.16 0.31

ILS. Overall, the average best solution of all 82 instances was
3348.40. The HLS achieves 3353.80, the VNS is 3421.02,
and the ILS is 3405.78. To conclude, the HLS is superior to
the VNS and ILS in overall performance.

D. Computational Results on CCVRP

The above experiments can conclude that HLS algorithm
has the best solution performance among these three al-
gorithms, and in order to prove the performance of the
HLS algorithm even further, we removed the code that
calculates the priority in the algorithm in order to make
the algorithm ignore the priority of the nodes, so that
the optimization objective of the algorithm becomes the
basic CCVRP. Meanwhile, the termination condition was
modified to 50 consecutive iterations without improvement,
the cooling rate was adjusted from 0.94 to 0.99 to align
with the new termination condition but the other parameters
remain the same. We used the A, B, E&M, and P instances
to test our algorithm. Each instance was run 10 times and
the best solution was compared with the internationally
published algorithms for solving the CCVRP, such as IG-
PRB and IG-CE[14], ACS-VND and MMAS-VND[18], and
HTS-VND[12]. All the results are shown in Tables VI to
IX. Columns best and avg denote the best solution and the
average solution found by HLS. Columns T/s represents the
average CPU time per running. Column BKS represents the
best solution so far and the BKS with underline is not proven
to be optimal.

From the Tables VI to IX, by comparing the gap values, we
can find that the HLS outperformed the IG-CE algorithm on

all sets of instances. In particular, the HLS outperformed the
IG-PRB and MMAS-VND in the B by a slight margin. While
the HLS algorithm did not demonstrate the highest perfor-
mance among the six algorithms when comparing the gap
values, it is crucial to acknowledge that the HLS algorithm
was designed to solve the problem with customer priority. In
this regard, we have taken into account the order of priority
in each operator, particularly in the perturbation and initial
solution generation. In this study, we have solely eliminated
the priority computation without much modifications to the
algorithm. The solution quality of the HLS algorithm is
within 0.3% of the results of the best algorithm (HTS-VND),
which demonstrates the HLS is still advantageous in solving
the basic CCVRP.

E. Stability Analysis

In this section, the computational experimental results of
the proposed HLS algorithm on all instances are analyzed
to verify its stability. Figure 8 is the comparison of the
average standard deviation(STD) of the HLS algorithm, ILS
algorithm and VNS algorithm on all instances with running
10 times independently. After analyzing, it can be found that
the average STD of the HLS algorithm is relatively small
compared with the result of VNS and ILS algorithms, among
which the average STD of the VNS algorithm is the largest.
The results show that the HLS algorithm has a high stability
in solving the CCVRP-Pr problem compared with the VNS
and ILS algorithms.
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TABLE VI
RESULTS FOUND BY COMPARISON ALGORITHMS ON SET A

Instance BKS IG-PRB IG-CE ACO-VND MMAS-VND HTS-VND
HLS

Best Avg T/s

A-n32-k5 2192 2192 2192 2192 2192 2192 2192 2192.00 0.45
A-n33-k5 1725 1725 1725 1725 1725 1725 1725 1725.00 0.39
A-n33-k6 1612 1612 1612 1612 1612 1612 1612 1612.00 0.44
A-n34-k5 2104 2104 2104 2104 2104 2104 2104 2105.20 0.49
A-n36-k5 2279 2279 2279 2279 2279 2279 2279 2279.00 0.55
A-n37-k5 1970 1970 1970 1970 1970 1970 1970 1970.00 0.47
A-n37-k6 2241 2241 2241 2241 2241 2241 2241 2242.20 0.57
A-n38-k5 2084 2084 2084 2084 2084 2084 2084 2085.00 0.69
A-n39-k5 2312 2312 2312 2312 2312 2312 2312 2318.50 0.76
A-n39-k6 2216 2216 2216 2216 2216 2216 2216 2216.00 0.66
A-n44-k6 2563 2563 2563 2563 2563 2563 2563 2565.90 1.01
A-n45-k6 2848 2848 2848 2848 2848 2848 2848 2918.10 1.26
A-n45-k7 2831 2831 2831 2831 2831 2831 2831 2832.50 0.88
A-n46-k7 2373 2373 2373 2373 2373 2373 2373 2373.00 0.84
A-n48-k7 3101 3101 3101 3101 3101 3101 3101 3101.00 1.02
A-n53-k7 3115 3115 3122 3115 3115 3115 3115 3123.80 1.55
A-n54-k7 3357 3357 3382 3357 3357 3357 3363 3384.10 2.14
A-n55-k9 2588 2588 2588 2588 2588 2588 2588 2591.00 1.54
A-n60-k9 3446 3446 3446 3446 3446 3446 3446 3450.00 2.22
A-n61-k9 2868 2868 2869 2868 2879 2868 2887 2954.40 2.91
A-n62-k8 3925 3925 3925 3925 3925 3925 3925 3928.00 2.24
A-n63-k9 4630 4630 4681 4630 4630 4630 4630 4654.90 3.16
A-n63-k10 3256 3256 3256 3256 3256 3256 3256 3272.10 2.52
A-n64-k9 4135 4135 4137 4135 4135 4135 4135 4145.50 3.40
A-n65-k9 3487 3487 3549 3487 3487 3487 3487 3519.10 2.98
A-n69-k9 3528 3528 3528 3528 3528 3528 3528 3536.20 3.50
A-n80-k10 5929 5929 5944 5929 5929 5929 5929 5948.10 5.39
Avg 2915.37 2915.37 2921.41 2915.37 2915.78 2915.37 2916.30 2927.50 1.63
gap/% 0.00 0.21 0.00 0.01 0.00 0.03

Fig. 8. Average STD of HLS and other algorithms

F. Performance Analysis of Hybridization

In this section, we will validate the effectiveness of
the improved perturbation operator method (PM), VND,
and acceptance rule based on simulated annealing (SA) on
algorithm enhancement through experiments. We designed
seven new algorithms for this purpose. The first is the basic
ILS algorithm, which randomly uses one of the common
perturbation operators (2-opt, Or-opt, arc-node swap, and
arc-swap), and it executes LS operators in sequence, also its
acceptance rule is only the improvement acceptance rule. The
second algorithm uses the improved perturbation operator

method on the basic ILS (denoted as ILS+PM), the third
uses VND to replace common LS on the basic ILS (denoted
as ILS+VND), and the fourth utilizes the acceptance rule
based on simulated annealing on the basic ILS (denoted
as ILS+SA). The remaining three algorithms are combina-
tions of PM, VND, and SA on the basic ILS, denoted as
ILS+PM+VND, ILS+PM+SA, and ILS+VND+SA. Each of
these algorithms was executed 10 times independently, and
the results are calculated.

Figure 9 illustrates the comparison results of using a single
improvement method and multiple improvement methods.
From the point of view of average best solutions values, all
improvement measures enhance the algorithm’s performance,
with ILS+PM showing the most significant improvement.
The value of ILS+PM is 3385, outperforming ILS+VND and
ILS+SA, and it found the best of best solutions. For the
comparison results of using multiple improvement methods,
where HLS performed the best among the five algorithms,
with a result of 3354 and the highest number of best
solutions. The comparison of two figures indicates that the
performance of combined methods exceeds that of individual
methods. Further analysis shows that the improved pertur-
bation operator has a greater enhancement effect on algo-
rithm performance than VND and simulated annealing. The
algorithms using single improvement method and multiple
improvement methods have the similar solution time in total.
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TABLE VII
RESULTS FOUND BY COMPARISON ALGORITHMS ON SET B

Instance BKS IG-PRB IG-CE ACO-VND MMAS-VND HTS-VND
HLS

Best Avg T/s

B-n31-k5 1830 1830 1830 1830 1830 1830 1830 1830.00 0.34
B-n34-k5 2271 2271 2271 2271 2271 2271 2271 2271.00 0.54
B-n35-k5 2846 2846 2846 2846 2846 2846 2846 2846.00 0.41
B-n38-k6 2103 2164 2164 2103 2103 2103 2103 2103.00 0.50
B-n39-k5 1960 1960 1960 1960 1960 1960 1960 1960.00 0.59
B-n41-k6 2329 2329 2329 2329 2329 2329 2329 2329.20 0.78
B-n43-k6 2123 2123 2123 2123 2123 2123 2123 2123.00 0.83
B-n44-k7 2295 2295 2295 2295 2295 2295 2295 2296.10 0.99
B-n45-k5 2386 2386 2386 2386 2386 2386 2386 2388.30 1.17
B-n45-k6 2057 2057 2110 2057 2057 2057 2058 2077.50 1.22
B-n50-k7 2261 2261 2261 2261 2261 2261 2261 2261.00 1.26
B-n50-k8 2953 2953 2953 2953 2953 2953 2953 2953.90 1.35
B-n51-k7 3133 3133 3133 3133 3133 3133 3133 3143.00 1.72
B-n52-k7 2573 2573 2573 2573 2573 2573 2573 2573.00 1.42
B-n56-k7 2358 2358 2358 2358 2358 2358 2358 2358.00 1.61
B-n57-k7 3883 3885 4340 3883 3918 3883 3886 4018.50 2.57
B-n57-k9 4500 4500 4500 4500 4500 4500 4500 4500.10 1.71
B-n63-k10 4379 4379 4379 4379 4379 4379 4379 4392.00 2.32
B-n64-k9 2608 2608 2621 2608 2632 2608 2608 2633.20 3.41
B-n66-k9 4120 4132 4175 4132 4132 4120 4134 4161.70 3.13
B-n67-k10 2868 2868 2868 2868 2868 2868 2868 2870.00 2.44
B-n68-k9 4058 4058 4058 4058 4059 4058 4058 4060.20 3.36
Avg 2813.36 2816.77 2842.41 2813.91 2816.64 2813.36 2814.18 2824.94 1.53
gap/% 0.12 1.03 0.02 0.12 0.00 0.03

TABLE VIII
RESULTS FOUND BY COMPARISON ALGORITHMS ON SET E&M

Instance BKS IG-PRB IG-CE ACO-VND MMAS-VND HTS-VND
HLS

Best Avg T/s

E-n22-k4 845 845 845 845 845 845 845 845.00 0.16
E-n23-k3 1908 1908 1908 1908 1908 1908 1908 1908.00 0.22
E-n30-k3 1984 1984 1984 1987 1987 1987 1987 1988.30 0.38
E-n33-k4 2852 2852 2852 2852 2852 2852 2852 2852.00 0.54
E-n51-k5 2213 2213 2213 2213 2213 2213 2213 2240.30 1.83
E-n76-k7 2920 2920 2920 2920 2920 2926 2920 2922.90 4.05
E-n76-k8 2686 2686 2703 2686 2686 2687 2686 2695.60 4.66
E-n76-k10 2366 2366 2557 2366 2366 2366 2366 2425.70 5.28
E-n76-k14 2080 2093 2093 2080 2081 2080 2086 2124.30 5.19
E-n101-k8 3954 3954 3968 3954 3954 3954 3954 3984.00 10.10
E-n101-k14 2955 2955 2976 2955 2955 2958 2955 2980.10 8.64
M-n101-k10 3565 3565 3574 3565 3565 3565 3565 3573.00 9.09
M-n121-k7 7223 7230 7359 7230 7234 7223 7236 7324.20 24.28
M-n151-k12 4917 4917 4980 4917 4917 4917 4917 4961.40 30.10
Avg 3033.43 3034.86 3066.57 3034.14 3034.50 3034.36 3035.00 3058.91 7.46
gap/% 0.05 1.10 0.02 0.04 0.03 0.05

All of these algorithms can obtain satisfactory solutions in
a relatively short time and our HLS algorithm performs the
best of all.

G. Influence Analysis of Different Perturbation Strengths

From the comparative experiments in aboved section,
we can conclude that the perturbation operator significantly
enhances overall solution performance. When designing the
perturbation operator, we selected a perturbation intensity

range of (0.2, 1.0), which chooses randomly within that
range each time. To further validate the effectiveness of this
perturbation intensity strategy, we designed two different
perturbation intensity selection strategies, both related to
the temperature of simulated annealing. The first strategy
increases perturbation intensity as temperature drops, starting
with a minimum of 0.2 and gradually increasing to 1 as
the temperature drops. The second intensity is the opposite,
decreasing perturbation intensity as temperature drops. These
two algorithms are denoted as HLS(1-T) and HLS(T). Each
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TABLE IX
RESULTS FOUND BY COMPARISON ALGORITHMS ON SET P

Instance BKS IG-PRB IG-CE ACO-VND MMAS-VND HTS-VND
HLS

Best Avg T/s

P-n16-k8 396 396 396 396 396 396 396 396.00 0.02
P-n19-k2 849 849 849 849 849 849 849 849.00 0.14
P-n20-k2 924 924 924 924 924 924 924 924.00 0.17
P-n21-k2 928 928 928 928 928 928 928 928.00 0.16
P-n22-k8 681 681 681 681 681 681 681 681.00 0.09
P-n23-k8 616 616 616 616 616 616 616 618.60 0.15
P-n40-k5 1541 1541 1541 1541 1541 1541 1541 1541.00 0.68
P-n45-k5 1894 1894 1894 1894 1894 1894 1894 1897.50 0.93
P-n50-k7 1554 1554 1554 1554 1554 1554 1554 1554.40 1.28
P-n50-k8 1533 1533 1682 1533 1540 1533 1541 1588.10 1.92
P-n50-k10 1347 1347 1347 1347 1347 1347 1347 1349.50 1.15
P-n51-k10 1487 1489 1489 1487 1487 1487 1489 1509.40 1.73
P-n55-k7 1764 1764 1764 1764 1764 1764 1764 1764.00 1.33
P-n55-k8 1620 1620 1620 1620 1620 1620 1620 1620.00 1.32
P-n55-k10 1463 1463 1463 1463 1463 1463 1463 1467.00 1.34
P-n60-k10 1704 1704 1705 1704 1704 1704 1704 1709.40 1.82
P-n60-k15 1509 1509 1517 1509 1509 1509 1509 1512.50 1.77
P-n65-k10 1948 1948 1949 1948 1948 1948 1948 1950.80 2.38
P-n70-k10 2121 2121 2264 2121 2121 2121 2121 2163.30 4.15
P-n76-k4 4610 4610 4677 4610 4610 4610 4610 4682.60 6.13
P-n76-k5 3795 3795 3796 3795 3795 3795 3795 3870.00 4.85
P-n101-k4 6943 6943 6943 6943 6943 6946 6943 6979.00 12.15
Avg 1873.95 1874.05 1890.86 1873.95 1874.27 1874.09 1874.41 1888.87 2.08
gap/% 0.0049 0.90 0.00 0.02 0.0073 0.02

(a) using single method

(b) using multiple methods

Fig. 9. comparison of using single or multiple methods

of these was executed 10 times independently and the results
are shown in Table X, where column BN indicates the
number of best solutions among these three algorithm.

As shown in Table X, we find that the HLS algorithm
with random perturbation intensity strategy performed best
of all. It founds 54 best solutions among three algorithm, and

outperforms HLS(1-T) and HLS(T). For the analysis of gap,
HLS also has the lowest gap value of 0.29%, while HLS(T)
has the worst solution quality with a gap value of 1.41%. For
the average time, the three algorithms almost have the same
elapsed time. In conclusion, HLS has a better performance
than HLS(1-T) and HLS(T).

VI. CONCLUSION

This paper study the capacitated vehicle routing problem
with priorities (CCVRP-Pr), focusing on minimizing the
total time to reach disaster points while considering the
urgency of different disaster points in order to prioritize
service to severely affected areas. To address this issue, we
develop a hybrid local search algorithm based on iterated
local search, which incorporates improvements to the pertur-
bation, local search, and acceptance criteria components. Our
experimental findings demonstrate that these enhancements
led to enhance algorithmic solution quality, Experimental
results also reveal that our proposed algorithm can find better
solutions in reasonable computation time compared with the
local-search based metaheuristics.

From the experimental results, we have some findings.
First, all the improvement strategies, including the improved
perturbation operator method, variable neighborhood descent
procedure, and simulated annealing-based acceptance rule,
designed in our algorithm can enhance the algorithm’s
solution quality. Second, the combination of improvement
strategies outperforms the single improvement strategy used
in the proposed algorithm. Meanwhile, our algorithm is
still advantageous in solving the basic CCVRP. Finally, our
algorithm with random perturbation intensity has proven
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TABLE X
COMPARISON RESULTS OF DIFFERENT PERTURBATION STRENGTH

HLS(T) HLS(1-T) HLS

BN T/s BN T/s BN T/s

A*(27) 8 0.97 12 2.50 19 2.02
B*(22) 6 1.09 10 2.56 13 2.15
E*(11) 5 4.42 5 11.94 7 9.32
P*(22) 8 2.10 14 4.97 15 3.92
Total(82) 27 8.58 41 21.97 54 17.42
avg 3391.16 3368.76 3353.80
gap 1.41 0.74 0.29

to be more effective than those increasing or decreasing
perturbation intensity as the temperature drops.

In future, the CCVRP-Pr problem with additional at-
tributes, such as heterogeneous vehicles, multiple depots,
time windows and so on, need to be considered. Additionally,
the more effective algorithms could be explored to solve the
CCVRP and variants because of its hard complexity.
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