
 

  

Abstract—Target tracking of UAV typically assumes that the 

system model is linear and disturbed by Gaussian noise. 

However, in practical applications, the tracking performance 

significantly deteriorates when encountering non-Gaussian 

noise, particularly when system measurements rely on 

nonlinear parameters (such as range and bearing). To address 

this problem, this paper proposes an extended target tracking 

method incorporating path planning, which utilizes mobile 

UAV equipped with angle-of-arrival (AOA) sensors to achieve 

GPS-denied maneuvering target tracking. Firstly, the 

maximum correntropy criterion extended Kalman filter 

(MCCEKF) is utilized to improve the accuracy of state 

estimation by maximizing the correlated entropy between the 

state estimate and the observed data. Secondly, particle swarm 

optimization (PSO) is utilized to optimize the UAV’s path 

synchronously based on state estimate to obtain more effective 

measurements. Finally, the maximum correntropy criterion 

extended Kalman filter-particle swarm optimization (MCEP) is 

designed to estimate the system state accurately. Simulation 

experiments are presented to demonstrate the accuracy and 

robustness of the proposed method for UAV target tracking 

with non-Gaussian noise. 

 
Index Terms—Target tracking, Path planning, Maximum 

Correntropy Criterion, Non-Gaussian noise 

I. INTRODUCTION 

n recent years, target tracking of unmanned aerial vehicles 

(UAV) has a wide range of applications in fields such as 

aviation, military, and security with the rapid advancement of 

UAV technology [1]. However, UAV tracking systems in 

complex operational environments typically encounter 

GPS-denied (no global positioning system) scenarios, which 

cause the system measurement model to be nonlinear, 

angle-of-arrival (AOA) measurements from radiation sources 

have emerged as a crucial parameter for localization and 

tracking under such circumstances [2]. Consequently, UAVs 

are typically equipped with AOA sensors for target tracking 

to address these challenges. Additionally, the system noise 

exhibits a non-Gaussian distribution due to interference from 

radar systems and radio frequency transmissions. Thus, the 

system is generally nonlinear and disturbed by non-Gaussian 
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noise under practical working conditions [3]. 

To address nonlinear system filtering challenges, 

maximum likelihood estimation (MLE) [4] and the 

pseudo-linear estimator (PLE) [5] can be utilized to 

approximate the linearization of the system and apply 

standard linear filtering algorithms to solve nonlinear 

filtering. MLE linearizes the model around the optimal 

parameters obtained by optimizing the likelihood function, 

whereas PLE linearizes the system locally through 

optimization of iterative updates. Additionally, algorithms 

based on Kalman filter (KF) are widely applied including 

extended Kalman filter (EKF) [6], unscented Kalman filter 

(UKF) [7], and pseudo-linear Kalman filter (PLKF) [8]. EKF 

employs Taylor series expansion for local linearization of 

nonlinear systems, whereas UKF propagates nonlinearity of 

the system through selecting a set of “sigma points”. PLKF 

focuses on linearizing the nonlinear state or measurement 

equations directly. The methods mentioned can effectively 

address nonlinear system filtering problems with Gaussian 

noise. However, when the system is nonlinear and disturbed 

by non-Gaussian noise, the accuracy of UAV target tracking 

degrades significantly. 

To address the target tracking challenges under 

non-Gaussian noise conditions, various algorithms have been 

proposed including the particle filter (PF) [9] and the 

H-infinity (H∞) filter [10]. The PF utilizes a set of random 

particles to approximate the posterior probability distribution 

of system state variables, which allows it to effectively 

handle the complexity of non-Gaussian noise. The H∞ filter 

exhibits remarkable adaptability to diverse noise types due to 

its independence from statistical characteristics such as mean 

and covariance. Additionally, optimization criteria derived 

from information theoretic learning (ITL) [11] have emerged 

as promising approaches in recent years, such as maximum 

correntropy criterion (MCC) [12] and minimum error entropy 

criterion (MEE) [13]. MCC leverages kernel functions to 

quantify the similarity between estimation errors and true 

values to suppress outliers in non-Gaussian noise scenarios. 

MEE minimizes error entropy to implement robust 

processing of non-Gaussian noise, which enables it not to 

make specific assumptions about noise distribution. 

In order to enhance the accuracy of UAV maneuvering 

target tracking, the target tracking performance can be 

significantly improved by optimizing the UAV flying path to 

make information gathered from measurements more 

effective. Accordingly, a cost function has been designed for 

UAV path planning, including the estimation covariance 

matrix [14] and the Fisher information matrix (FIM) [15] 

typically. The estimation covariance matrix describes the 

uncertainty of state estimates, whereas FIM quantifies the 
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“information content” of the measurement information with 

respect to parameter estimation [16]. Various algorithms 

have been investigated for UAV path planning including 

Dijkstra [17], A* [18], and particle swarm optimization (PSO) 

[19]-[20]. Dijkstra employs an incremental approach to 

update the shortest paths by leveraging previously identified 

optimal routes. A* incorporates a heuristic function that 

provides additional search guidance, enabling more efficient 

identification of shortest paths by prioritizing promising 

trajectories toward the target node on the foundation of 

Dijkstra. PSO explores the solution space through the 

collective movement of particle populations to discover 

optimal path solutions. 

To solve the problem of UAV maneuvering target tracking 

in the nonlinear systems with non-Gaussian noise, the 

maximum correntropy criterion extended Kalman 

filter-particle swarm optimization (MCEP) is proposed based 

on the above discussion. The proposed method integrates two 

key components: (1) maximum correntropy criterion 

extended Kalman filter (MCCEKF) is utilized to obtain the 

current state estimation under the nonlinear system with 

non-Gaussian noise. (2) particle swarm optimization (PSO) is 

utilized to plan the optimal path of the system based on the 

filtering estimation results. Finally, the new measurement 

information is obtained to enhance the stability and accuracy 

of UAV target state estimation based on the optimal path for 

the next state estimation. The simulation results demonstrate 

that the system state estimation can be performed quickly and 

accurately with the assistance of PSO, which improves 

estimation accuracy and provides new directions for future 

research. 

The rest of this paper is organized as follows: Section II 

formulates the target tracking problem under non-Gaussian 

conditions. Section III details the MCCEKF derivation and 

PSO implementation for trajectory planning. Section IV 

presents the simulation experiments and analysis. Section V 

concludes with research contributions and future directions. 

In this paper, the symbol ‘ := ’ denotes definition, ‘ I ’ and 

‘ O ’ are the identity matrix and zero matrices with 

appropriate dimensions respectively, ‘  
T

’ and ‘  
1−

’ 

represents matrix transpose and inverse respectively, ‘ k ’ 

represents the measurement time index, ‘ ’ is the space 

formed by real-valued vectors, ‘ ( )diag ’ represents a 

diagonal matrix, ‘
2

’ represents the L2 norm, ‘ ( )exp ’ 

denotes the natural exponential function, and ‘ ( )tr ’ 

indicates the trace of a matrix. 

 

II. PROBLEM FORMULATION 

This paper considers a 2D target tracking problem utilizing 

a mobile UAV equipped with AOA sensors in a GPS-denied 

environment. As shown in Figure 1, the positions and 

velocities of the UAV and target are unknown in O − . 

To achieve state estimation under GPS-denied 

environments, we select two static anchors (such as buildings 

or trees) at  1 1 1
: ,

T

b b
b  = ,  2 2 2: ,

T

b bb  = , the position of 

UAV at time k  is ( ) ( ) ( ): ,
T

u uu k k k =    , target location 

is ( ) ( ) ( ): ,
T

t tt k k k =    , and target velocity is 

( ) ( ) ( ): ,
T

v t tt k k k  =   . For ease of understanding, Figure 1 

illustrates the self-positioning and target tracking of UAV 

during path planning. 
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Fig. 1.  Self-positioning and target tracking of UAV with path planning. 

 

In Figure 1, the UAV measures three angles at thk  

including two relative to static anchors ( )1ub
k , ( )2ub

k and 

one relative to the target ( )ut
k .The measurement vector 

( ) ( ) ( ) ( )1 2: , ,
T

ub ub utZ k k k k   =    is represented as: 

 ( )
( )

( )
( )1-1

1

1

tan
b u

ub

b u

k
k v k

k

 


 

 −
= +  − 

 (1) 

 ( )
( )

( )
( )2-1

2

2

tan
b u

ub

b u

k
k v k

k

 


 

 −
= +  − 

 (2) 

 ( )
( ) ( )

( ) ( )
( )-1tan

t u

ut

t u

k k
k v k

k k

 


 

 −
= +  − 

 (3) 

where the -1tan  is a four-quadrant inverse tangent, and the 

( )v k  represents the non-Gaussian noise, which satisfies 

( )( )0,N R k . 

Note: Non-Gaussian noise is presented in radar 

measurements such as impulsive noise and α-stable noise, 

which exhibit heavy-tailed characteristics with longer tails 

and Gaussian-like central region. Such non-Gaussian noise 

can be decomposed into a weighted sum of Gaussian noise 

and noise with ‘heavy-tailed’ characteristics. In this paper, 

the Gaussian mixture noise model with distinct variances is 

utilized to represent the non-Gaussian noise: 

 ( ) ( ) ( ) ( )1 1 2 21 , ,v k N u N u   − +  (4) 

where 0 1    represents the intensity of the heavy-tail 

noise, ( )1 1,N u   denotes Gaussian noise with mean 
1u  and 

variance 
1 , ( )2 2,N u   represents Gaussian noise with a 

large variance. 

First, the state and measurement vectors of the system are 

formulated in the discrete time domain as follows: 

 ( ) ( ) ( ) ( )1X k F k X k k+ = +  (5) 

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3517-3525

 
______________________________________________________________________________________ 



 

 ( ) ( ) ( ) ( )1Z k H k X k v k= + +  (6) 

where ( ) nX k   and ( ) mZ k   represent the state vector 

and measurement vector of the system at thk  respectively, 

( )F k  is the state transition matrix, and ( )H k  is the 

measurement matrix. ( ) nk   denotes process noise, and 

( ) mv k   denotes measurement noise. ( )k  follows a 

normal distribution with zero mean and variance ( )Q k , 

whereas ( )v k  follows a Laplace distribution with zero mean 

and variance ( )R k , the process noise and measurement 

noise are uncorrelated. The system state is defined as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , ,u u u u t t tX k k k k k k k k      = 

( )
T

t k  at discrete time k , and the UAV location and 

velocity are ( )u k , ( )u k , ( )u k , ( )u k  in the   and   

directions, the target location and velocity is ( )t k , ( )t k , 

( )t k , ( )t k  in the   and   directions.   represents the 

sampling period, and transition matrix ( )F k  is defined as: 

 ( )

i

i

i

i

F O O O

O F O O
F k

O O F O

O O O F

 
 
 =
 
 
 

 (7) 

 i

1
F

O 1

 
=  

 
 (8) 

For the aforementioned system model (5)-(7), a significant 

decline and instability in filtering performance of the existing 

EKF for tracking maneuvering targets emerge due to the 

neglect of non-Gaussian noise effects and the uncertainty of 

the system measurement state. To solve the problem of 

non-Gaussian noise and measurement state uncertainty in 

maneuvering target tracking under a GPS-denied 

environment, the MCEP is proposed to estimate the target 

state with the assistance of UAV path planning. Firstly, 

MCCEKF is employed to achieve high-precision filtering 

results under non-Gaussian noise. Secondly, PSO is utilized 

to correct the system states to reduce the impact on 

maneuvering target tracking. Therefore, the MCEP enables 

precise estimation of target states. 

 

III. PATH PLANNING BASED ON PARTICLE SWARM 

OPTIMIZATION UNDER MAXIMUM CORRENTROPY EXTENDED 

KALMAN FILTERING 

In this section, MCCEKF is utilized to achieve state 

estimation of the nonlinear system under non-Gaussian noise 

conditions. PSO is utilized to obtain the optimal solution for 

single-step path planning by optimizing the cost function 

based on the aforementioned state estimation. In general, this 

method effectively improves the accuracy of system tracking 

and enhances its stability and practicality in non-Gaussian 

noise environments.  

A. Extended Kalman Filter based on Maximum Correntropy 

Criterion 

To solve the performance degradation in maneuvering 

target tracking under non-Gaussian noise, MCCEKF is 

designed from aspects such as state prediction, measurement 

equation formulation, and state updating, which adopts the 

robust MCC as the optimality criterion instead of employing 

the MMSE. The recursive process of the MCCEKF algorithm 

from time k  to time 1k +  is presented as follows. 

Initially, the prior state and covariance estimates are 

obtained according to equations (9) and (10). 

 ( ) ( ) ( )ˆ ˆ1 1 1 1X k k F k X k k− = − − −  (9) 

 
( ) ( ) ( )

( ) ( )

ˆ ˆ1 1 1 1

                    1 1T

P k k F k P k k

F k Q k

− = − − −

− + −
 (10) 

Calculate the Jacobian matrix ( )H k  based on the current 

state and measurement. 

 

( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1

2 2

1 1

2 2

2 2

2 2

2 2 2 2

b u u b

ub ub

b u u b

ub ub

t u u t u t t u

ut ut ut ut

k k
O O O O O O

d d

k k
H k O O O O O O

d d

k k k k k k k k
O O O O

d d d d

   

   

       

− −

− −
=

− − − −

 
 
 
 
 
 
 
 
  

 (11) 

where ( )1 1 2ubd u k b= − , ( )2 2 2ub
d u k b= −  , ( )ut

d u k= −  

( )
2

t k . 

For the model described in the Section II, which yields a 

nonlinear regression model, we have: 

 
( )

( ) ( )
( ) ( )

ˆ 1 IX k k
X k k

H kZ k


 −  
= +   

    

  (12) 

where ( )k  is 

 ( )
( ) ( )( )

( )

ˆ 1X k X k k
k

v k


 − − −
 =
 
 

 (13) 

with 

 

( ) ( )
( )

( )

( ) ( )
( ) ( )

( ) ( )

ˆ 1

1 1

T

T

p p

T

r r

T

P k k O
E k k

O R k

M k k M k k O

O M k M k

M k M k

 
 −

  =   
  

 − −
=  

  

=

 (14) 

where ( )M k  is obtained by Cholesky decomposition of the 

covariance matrix ( ) ( )
T

E k k  
 

. Left-multiplying both 

sides of equation (12) by ( )1M k−
, we obtain: 

 ( ) ( ) ( ) ( )A k W k X k e k= +  (15) 

where ( ) ( )
( )

( )
1

ˆ 1X k k
A k M k

Z k

−
 −

=  
  

, ( ) ( )1W k M k−=  

( )

I

H k

 
 
 

, ( ) ( ) ( )1e k M k k−= . 

The MCCEKF optimizes covariance matrix through 

Cholesky decomposition, avoiding numerical instability and 

enhancing the filter’s robustness against outliers.  
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For ease of understanding, Table I presents the 

implementation steps of MCCEKF including the filter 

initialization, prediction, iteration, and other processes. 

Where ( )ia k  denotes the thi  row of ( )A k , ( )iw k  denotes 

the thi  row of ( )W k , and ( )ie k  denotes the thi  element of 

( )ie k . 

 
TABLE I 

ALGORITHM PROCESS OF MCCEKF 

Input: ( )ˆ 0 0X , ( )ˆ 0 0P  

Output: ( )X̂ k k , ( )P k k  

1: Initialization. 

( ) ( )ˆ ˆ1 1 0 0X k k X− − 
 

// Initial state estimate 

( ) ( )ˆ ˆ1 1 0 0P k k P− −   // Initial covariance matrix 

Kernel bandwidth    

a small positive number    
 

2: Prediction. 

( ) ( ) ( )ˆ ˆ1 1 1 1X k k F k X k k−  − − −  // Predicted state 

( ) ( ) ( )

( ) ( )

ˆ ˆ1 1 1 1

                        1 1T

P k k F k P k k

F k Q k

−  − − −

− + −
 

// Predicted 

covariance 

( ) ( )( )ˆ 1  H k ComputeJaco Xbian k k −  
// Jacobian matrix 

 

3: Build regression model (Equation. 11). 

Perform Cholesky decomposition to obtain ( )1
p

M k k − . 

4: Fixed-Point Iteration. 

1t    

( ) ( )
1

ˆ ˆ 1
t

X k k X k k
−

 −  // Initialize fixed-point iteration 

( ) tate estimates in the fixed-point iteration tˆ s
t

X k k   
 

5: The iteration process is performed to obtain ( )ˆ
t

X k k , ( )ˆ
t

P k k . 

 ( ) ( ) ( ) ( ) ( ) ( )( )ˆ ˆ ˆ1 1
t

X k k X k k K k Z k H k X k k= − + − −  (16) 

 
( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )

ˆ ˆ 1
t

T
T

P k k I K k H k P k k

I K k H k K k R k K k

= − −

− +
 (17) 

 
( ) ( ) ( )

( ) ( ) ( ) ( )( )
1

1

1

T

T

K k P k k H k

H k P k k H k R k
−

= −

− +
 (18) 

 ( ) ( ) ( ) ( )11 1 1T

p x pP k k M k k C k M k k−− = − −  (19) 

 ( ) ( ) ( ) ( )1 T

r y rR k M k C k M k−=  (20) 

 ( ) ( )( ) ( )( )( )1 ,x nC k diag G e k G e k =  (21) 

 ( ) ( )( ) ( )( )( )1 ,y n n mC k diag G e k G e k + +=  (22) 

 ( )( )
( )( )

2

2
exp

2

i

i

e k
G e k



 
 = −
 
 

 (23) 

 ( ) ( ) ( ) ( )
1

ˆ 1i i i t
e k a k w k X k k

−
= − −  (24) 

6: Compare the state estimates at iteration step t  and step 1t − . 

 
( ) ( )

( )
1

1

ˆ ˆ

If    
ˆ

t t

t

X k k X k k

X k k

−

−

−
   (25) 

                                  ( ) ( )ˆ ˆ 
t

X k k X k k   

                                   ( ) ( )ˆ ˆ
t

P k k P k k    

break          // Convergence achieved, proceed to Step 7 

else 1t t +   

continue    // Return to Step 5 for further iterations 
 

7: Iterative filtering process. 

                         1k k +   

Repeat step 2 to step 6 until the filtering is complete. 

The estimation error covariance ( )P̂ k k  derived from the 

MCCEKF reflects the system’s estimation accuracy. The 

optimal waypoints of UAV are achieved by minimizing the 

trace of this covariance matrix and updating the measurement 

equations adaptively, thereby enhancing the overall 

estimation accuracy. 

B. Particle Swarm Optimization based Single-Step Path 

Planning Algorithm 

PSO is utilized to optimize the UAV’s next waypoints to 

achieve better estimation accuracy. Each particle in the PSO 

performs global optimization searches within the solution 

space to avoid getting trapped in local optima and converge 

to the optimal value quickly. 

Firstly, we initialize a population ( )1 2
: , , ,

n
N N N N=  

with n  individuals, population dimension : ,
T

D D D
 

 =   , 

D  and D  are represented the motion vectors of the UAV 

along the   and   axis respectively. Each particle 

( )1, 2 N  =  in the swarm is characterized by its position 

and velocity vector. The particle swarm is initialized 

according to Equations (26) and (27), the position vector 

( )d k  and velocity vector ( )d k  of the particle at time 

k are represented as follows: 

 ( ) ( ) ( ),
T

d k k k     =    (26) 

 ( ) ( ) ( ),
T

d k k k     =    (27) 

The magnitude of measurement noise determines the 

weight allocated to sensor data during the filter’s state update 

when the cost function is defined in the PSO. Proper selection 

and definition of measurement noise parameters are essential. 

Specifically, excessive measurement noise may cause the 

filter to overly prioritize model predictions while 

disregarding actual measurements, while insufficient noise 

levels can result in the filter becoming excessively reliant on 

measurements while neglecting the underlying system 

model. 

The maximum measurement noise is applied to the 

measurement equation to make the filter more sensitive to 

measurement data at critical moments by defining a set of 

( )1,2, 1000j j =  measurement noises and maximizing 

( )jv k , which effectively mitigates large estimation errors in 

dynamic environments and consequently improves the 

accuracy of path planning. 

The estimated covariance matrix ( )P̂ k k  represents the 

tracking accuracy of the maneuvering target, two specific 

methods are processed to convert the optimization of 

( )P̂ k k  into a scalar value: FIM and Trace. FIM measures 

the overall uncertainty in high-dimensional states, and a 

smaller determinant value indicates higher tracking accuracy. 

The trace serves as a simple scalar measure to quantify the 

overall level of uncertainty. Trace optimization is typically 

applied for convex problems, while FIM optimization is 

applied to non-convex optimization in high dimensions, 

which lead to local optima. Consequently, we adopt the trace 

of the covariance matrix as our cost function to characterize 
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the uncertainty in state estimation. The cost function for the 

next possible waypoint based on current information is 

minimized to reduce the uncertainty of estimation error. 

For ease of understanding, as shown in Table II, the cost 

function is defined in the PSO algorithm. 

 
TABLE II 

THE COST FUNCTION IN PSO 

Input: ( )ˆ 1X k k − , ( )ˆ 1P k k − , ( )d k , ( )ˆ 0 0P  

Output: ( )( )dJ k   

1: Initialize the particle swarm, the next possible waypoint is 

represented as: 

 ( ) ( ) ( )ˆ ˆ1 1 dd
X k k X k k k

− = − +  (28) 

 ( ) ( ) ( )[ ,0, ,0,0,0,0,0]T

d k k k    =  (29) 

2: Calculate the Jacobian matrix ( )
d

H k


 according to the current 

state prediction ( )ˆ 1
d

X k k


−  to obtain the following cost function 

( )( )dJ k . 

 
( ) ( ) ( )

( ) ( ) ( ) ( )( )
1

ˆ 1

ˆ 1

T

d d

T

d

K k P k k H k

H k P k k H k R k

 



−

= −

− +
 (30) 

 
( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )

ˆ ˆ 1
d dd

T
T

d d d d

P k k I K k H k P k k

I K k H k K k R k K k

 

   

= − −

− +
 (31) 

 ( )( ) ( )  ˆmax  
d

j

d
j

J k trace P k k


 =  (32) 

 

The fitness values are evaluated utilizing the cost function 

formulated in Table II. Through minimization of this cost 

function, the quality of particle positions is assessed to 

determine the subsequent optimal waypoints for the UAV. 

For ease of understanding, Table III delineates the systematic 

implementation procedure of the UAV path planning 

algorithm based on PSO. The algorithm encompasses critical 

PSO components including particle initialization, fitness 

evaluation, individual and global best position updates, and 

velocity and position updates. The system progressively 

converges towards the optimal solution through iterative 

execution of these algorithmic steps. 

 
TABLE III 

ALGORITHM PROCESS OF PSO 

Input: ( )( )dJ k , N , D , ,
1

c ,
2

c , ( )d
k


 , ( )d

k


   

Output: ( )X̂ k  

1: Initialize parameters. Including inertia weight  , learning factors 

1
c  and 

2
c . 

2: Prediction. Initialize the position vectors and velocity vectors of 

each particle randomly. Calculate the fitness value of each particle 

based on Table II. 

3: Update the particle’s individual historical optimal position ( )nd k , 

which represents the position ( )pbestf k  where the particle has found 

the individual optimal fitness value.  

 
( )( ) ( )  

( )( ) ( )( ) ( )( )1 2
min , ,

ˆmin max  
d

j

j

d d ND
J J J

J k trace P k k

k k k



  

 =

=

 (33) 

4: If (34) holds, continue to 5. Otherwise, update the swarm’s 

historical optimal position, which represents the position where the 

particle has found the swarm’s optimal fitness value. 

 ( )( ) ( )( )nd
J k J k 



  (34) 

 ( ) ( )nd
k k 



=  (35) 

5: Update the particle’s velocity and position vectors, 1k k+ →  and 

execute step 3 to perform the next round of optimization. 

 
( ) ( ) ( ) ( )( )

( ) ( )( )
1

2

1d d d

nd d

k k c k k

c k k

  



    

 


 + =  + −

+ −
 (36) 

 ( ) ( ) ( )1 1d d dk k k    + = +  +  (37) 

Therefore, the optimal position state ( )X k  of the system at step 

1k +  is represented as:  

 ( ) ( ) ( ) ( )ˆ 1 ,0, ,0,0,0,0,0
T

n nX k X k k k k  
   = + +

 
 (38) 

 

The MCEP algorithm is utilized to improve the tracking 

accuracy of UAV maneuvering targets. Firstly, MCCEKF is 

utilized for state and covariance prediction and updates. 

Secondly, n  candidate waypoints are generated utilizing the 

updated state estimate position as the center point, the trace of 

the n  updated covariance matrix is then computed and 

serves as the cost function of PSO. The UAV’s next optimal 

position is derived through PSO iteration to correct the 

system state measurement equation ( )Ẑ k , this equation is 

integrated into the MCCEKF to obtain the next optimal state 

update, thereby significantly enhancing the accuracy of 

maneuvering target tracking. For ease of understanding, a 

comprehensive flowchart of the MCEP algorithm is 

illustrated in Figure 2. 

 

IV. SIMULATION EXPERIMENTS AND ANALYSIS 

The simulation examples are provided in order to 

demonstrate the effectiveness of the proposed algorithms in 

Section III. The positions of two known static anchor are 

denoted at ( )0,925 m  and ( )200,1050 m  in a 2D plane 

O − , a moving target with an unknown position departs 

from ( )0,600 m  with speed ( )0.3,0.3 /m s . 

We set sampling time 1k s=  , iteration count 600T = , 

particle size 70N = , particle dimension 2D = , inertia 

weight 0.5 = , learning factors 
1

2c =  and 
2

2c = , ( )F k  

and 
iF  have been provided in Section II. The process noise 

covariance ( ) ( )( )0,k N Q k  and measurement noise 

( ) ( ) ( ) ( )0,0.01 0.1 0,0.1v k k N N + , ( )k  follows a 

Bernoulli distribution with success probability ( ) 0.9k = , 

( )1 0.9k  = = . 

The proposed MCEP algorithm is compared with EKF, 

MCCEKF, and EKF assisted by the PSO algorithm 

(abbreviated as EKF-PSO) through simulations. For all 

algorithms, we set the initial state 

( )  ˆ 0 0 -1000,10,1200,5,200,0.3,800,0.3
T

X = and the initial 

covariance ( )  3ˆ 0 0 10 1,0.01,1,0.01,1,0.01,1,0.01P diag=  , 

and the results are presented in Figures 3-7. 

A. Comparison of Tracking Trajectory Accuracy among 

Different Algorithms 

Figure 3 illustrates the global trajectory of the system 

obtained by each algorithm under non-Gaussian noise based 

on 200 Monte Carlo simulations. This figure depicts the 

motion trajectories of both the target and the UAV including 

the actual trajectories and the predicted trajectories. 
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fixed point 
iteration
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status update

( ) ( ) ˆ ˆ1 , 1X k k P k k− − ( ) 
1

ˆ
t

X k k
−

( ) ( ) ˆ ˆ,
t t

P k k P k k
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covariance

( ) ( ) ˆ ˆX k k P k k、 ( )( )ˆtrace P k k
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adaptation values
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tion

Updating the optimal 
position

Position、 
speed updates

( ) ( ) ,d dk k   ( )( )dJ k ( )nd k
 ( ) ( ) 1 , 1d dk k  +  +

optimal 
measurement

( )Z k

MCCEKF Iterative status update

PSO Iterative status update

( ) ( ) ˆ ˆ1 1 , 1 1X k k P k k− − − −

 
Fig. 2.  MCEP algorithm overall flowchart. 

 

As shown in Figure 3, the actual and predicted trajectories  

of the system exhibit significant differences under varying 

optimization conditions. In the absence of PSO, the UAV 

trajectory exhibits substantial oscillations and deviations, 

particularly pronounced near the terminal point, resulting in 

notable discrepancies between the predicted trajectories of 

both the UAV and target. Conversely, the implementation of 

PSO yields enhanced performance, characterized by a 

smoother UAV trajectory that demonstrates progressive 

convergence toward the target path. The high degree of 

correlation between actual and predicted values for both the 

UAV and target indicates superior prediction accuracy. This 

improvement can be attributed to the PSO’s ability to 

effectively mitigate the impact of external environmental 

perturbations through optimization of the estimated 

covariance matrix and reduction of noise interference, 

thereby enhancing both the accuracy of maneuvering target 

prediction and overall system stability.  

 

 
Fig. 3.  Global tracking trajectory diagram with and without PSO. 

 

The cost function value which corresponds to the trace of 

the error covariance matrix, serves as a critical metric for 

evaluating estimation accuracy. The results demonstrate that 

a significant reduction in the trace of the error covariance 

matrix under PSO. By leveraging its global search capability, 

PSO effectively circumvents local optima, thereby improving 

parameter adaptability. Furthermore, the smoother and less 

fluctuating convergence curve of the trace under PSO 

optimization reflects enhanced filtering stability, attributed to 

the refined parameter tuning. These findings validate that 

PSO dynamically adjusts key parameters, achieves an 

optimal balance between exploration and exploitation, and 

ultimately enables higher-precision state estimation in 

complex noise environments and nonlinear systems. 

 

 
Fig. 4.  The cost function value with and without PSO. 

 

Additionally, Figures 5-8 are calculated as the error norms 

for the position and velocity estimates of the UAV and target, 

which are defined as the sum of the error components along 

the   and   axis to quantify the deviation between the 

estimated results and the true values: 

 ( ) ( )
2 2

2
1

ˆ ˆ
n

i i i i

i

X X X X X   
=

= − + −  (39) 
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From Figures 5-8, the proposed MCEP demonstrates 

consistently superior performance with lower error norms 

compared to the three benchmark algorithms. Specifically, 

the target’s velocity error norm remains consistently within 

0 1.5 /m s− , whereas the UAV’s velocity error norm ranges 

from 0 5 /m s−  with significant deviations, primarily 

attributed to abrupt and frequent directional changes in the 

UAV’s velocity vector. Additionally, MCEP effectively 

addresses both non-Gaussian noise characteristics and system 

model nonlinearity through simultaneously minimizing the 

estimation error covariance matrix, which demonstrates that 

the proposed MCEP achieves higher precision in 

maneuvering target state estimation. 

 

 
Fig. 5.  Position error norm of target. 

 

 
Fig. 6.  Velocity error norm of target. 

 

 
Fig. 7.  Position error norm of UAV. 

 
Fig. 8.  Velocity error norm of UAV. 

 

A. Comparison of Tracking Accuracy Errors under 

Different Measurement Noise 

Figures 9-16 illustrate the average root mean square error 

(ARMSEs) curves of four algorithms under varying 

measurement noise q  based on 200 Monte Carlo simulations, 

which provide a quantitative assessment of the model’s 

prediction accuracy and facilitate performance comparison. 

The ARMSE is defined as follows: 

 ( )
2

1 1

1 1 ˆ
N n

ij ij

i j

ARMSE X X
N n= =

= −   (40) 

 
Fig. 9.  ARMSEs of target  -axis position at different q . 

 

 
Fig. 10.  ARMSEs of target  -axis position at different q . 
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Fig. 11.  ARMSEs of target  -axis velocity at different q . 

 

 
Fig. 12.  ARMSEs of target  -axis velocity at different q . 

 

 
Fig. 13.  ARMSEs of UAV  -axis position at different q . 

 

 
Fig. 14.  ARMSEs of UAV  -axis position at different q . 

 
Fig. 15.  ARMSEs of UAV  -axis velocity at different q . 

 

 
Fig. 16.  ARMSEs of UAV  -axis velocity at different q . 

 

Let q  increase by 1 each time. As shown in Figures 9-10, 

a comparative analysis of the ARMSEs for both UAV and 

target (positions and velocities) along the   and   axis is 

conducted. The ARMSEs for all algorithms gradually 

increase mildly with elevated noise levels. The proposed 

MCEP algorithm maintains consistently superior 

performance with lower error metrics across different noise 

conditions. MCEP algorithm effectively addresses the 

challenge of excessive peak tracking errors in maneuvering 

target scenarios, whereas simultaneously demonstrating 

enhanced filtering accuracy and robust performance 

characteristics. 

 
TABLE IV 

ARMSES OF THE COMPARED ALGORITHMS FOR THE TARGET 

comparative 

algorithms 
 (m)  (m)  (m/s)  (m/s) 

EKF 44.26 44.36 0.59 1.11 

UKF 13.34 14.22 0.43 0.53 

MCCEKF 11.34 11.55 0.41 0.58 

EKF-PSO 3.44 1.83 0.10 0.11 

UKF-PSO 1.98 0.87 0.12 0.07 

MCEP 1.67 0.75 0.07 0.06 
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TABLE V 

ARMSES OF THE COMPARED ALGORITHMS FOR THE UAV 

comparative 

algorithms 
 (m)  (m)  (m/s)  (m/s) 

EKF 118.99 103.82 4.13 3.93 

UKF 74.47 68.43 3.95 3.36 

MCCEKF 69.31 63.66 2.32 2.30 

EKF-PSO 23.06 23.23 1.53 1.23 

UKF-PSO 31.09 36.27 0.28 0.22 

MCEP 17.87 17.35 0.20 0.14 

 

Table IV and V compare the ARMSEs of various 

algorithms for the target and UAV. As shown in Table IV, the 

MCEP algorithm outperforms all other algorithms in position 

estimation, achieving the smallest ARMSE. In terms of 

velocity estimation, MCEP performs slightly better than 

UKF-PSO, demonstrating its effectiveness. Overall, the 

proposed algorithm outperforms the individual EKF-PSO 

and UKF-PSO in both position and velocity estimation, 

further validating its superior performance. Compared to 

EKF-PSO and UKF-PSO algorithms, the MCEP algorithm 

achieves reductions of approximately 55.2% and 34.7% in 

position and velocity ARMSEs, respectively, further 

demonstrating its higher tracking accuracy. 

As shown in Table V, compared to the target’s position 

and velocity ARMSEs, the UAV’s estimation performance in 

terms of position and velocity is slightly worse, possibly due 

to the frequent changes in velocity. Compared to EKF-PSO 

and UKF-PSO algorithms, the MCEP algorithm achieves 

reductions of approximately 24.3% and 76.9%, 14.6% and 

32.4% in position and velocity ARMSEs, respectively, 

demonstrating higher tracking accuracy. 

 

V. CONCLUSION 

In this paper, we propose MCEP algorithm to solve the 

problem of nonlinear systems with non-Gaussian noise in 

GPS-denied environments, aiming to improve the tracking 

accuracy of UAV. The algorithm leverages the estimated 

error covariance obtained from MCCEKF as an optimization 

cost function, while employing Particle Swarm Optimization 

(PSO) to optimize the UAV’s trajectory in the search space 

for enhanced state estimation accuracy. Through 

comprehensive simulation studies and comparative analysis 

against existing algorithms, the effectiveness of the proposed 

MCEP approach is thoroughly validated. The results 

demonstrate that by incorporating the MCC criterion for 

handling non-Gaussian noise and nonlinearity in system 

models, combined with PSO-based path optimization, the 

algorithm achieves superior target state estimation in 

uncertain environments with significantly reduced estimation 

errors. This enhanced robustness and accuracy makes MCEP 

particularly suitable for target tracking applications in 

dynamic systems. 

Future research directions will focus on incorporating 

complex environmental factors in UAV path planning (such 

as terrain variations and dynamic obstacles) to further 

optimize the system’s adaptability and robustness in practical 

operational scenarios. We aim to significantly enhance the 

UAV’s path planning capabilities in complex and dynamic 

environments through these research efforts, thereby 

providing more reliable solutions for practical applications. 
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