
A Study of Introductory Exercise Problems for
Novice Students in Java Programming Learning

Assistant System
Mustika Mentari, Nobuo Funabiki, Safira Adine Kinari, Komang Candra Brata, Noprianto, Yan Watequlis

Syaifudin, Triana Fatmawati, Indra Dharma Wijaya

Abstract—Nowadays, Java programming is often taught in
an introductory Object-Oriented Programming (OOP) course
to novice students in universities around the world. In this
course, students need to be familiar with typing source codes
using computers first. Then, they will learn the grammar and
syntax of Java from introductory levels. For effective studies,
dedicated exercise problems for them should be implemented
in Java Programming Learning Assistant System (JPLAS) that
has been developed in our group to assist self-studies at home.
In this paper, we present a study of three exercise problems
in JPLAS that are dedicated to novice students, namely, code
typing problem (CTP), code fixing problem (CFP), and value trace
problem (VTP). A CTP instance requests to type a given source
code on a computer. A CFP instance requests to type a given
erroneous code while fixing the errors. A VTP instance requests
to answer the values of important variables in a given code. The
correctness of any answer is checked through string matching
on the answer interface on a web browser. For evaluations, we
generated and assigned five CTP, 10 CFP, and 10 VTP instances
to first-year undergraduate students in two related courses at
State Polytechnic of Malang, Indonesia. In the results, most
students correctly solved all the questions, where a statistically
significant difference in the time span between punctual and
delayed students in completing the exercises, provided positive
feedback for the usability questionnaire and achieved higher
final exam scores in the courses than students who did not
solve the instances. Thus, the effectiveness and validity of the
proposal are confirmed.

Index Terms—Java programming, novice student, JPLAS,
code typing problem, code fixing problem, value trace problem.

Manuscript received February 24, 2025; revised August 25, 2025. This
work was supported by Okayama University and State Polytechnic of
Malang.

Mustika Mentari is a PhD candidate at the Department of Information and
Communication Systems, Okayama University, Okayama, Japan (e-mail:
pqt85hm5@s.okayama-u.ac.jp).

Nobuo Funabiki is a Professor at the Department of Information and
Communication Systems, Okayama University, Okayama, Japan (e-mail:
funabiki@okayama-u.ac.jp).

Safira Adine Kinari is a Master’s student at the Department of
Information and Communication Systems, Okayama University, Okayama,
Japan (e-mail: safiraak@s.okayama-u.ac.jp).

Komang Candra Brata is a PhD candidate at the Department of
Information and Communication Systems, Okayama University, Okayama,
Japan (e-mail: p1qk35rx@s.okayama-u.ac.jp).

Noprianto is a PhD candidate at the Department of Information and
Communication Systems, Okayama University, Okayama, Japan (e-mail:
py3o92mw@s.okayama-u.ac.jp).

Yan Watequlis Syaifudin is a lecturer at the Department of Information
Technology, State Polytechnic of Malang, Malang, Indonesia (e-mail:
qulis@polinema.ac.id).

Triana Fatmawati is a lecturer at the Department of Information
Technology, State Polytechnic of Malang, Malang, Indonesia (e-mail:
triana@polinema.ac.id).

Indra Dharma Wijaya is a lecturer at the Department of Information
Technology, State Polytechnic of Malang, Malang, Indonesia (e-mail:
indra.dharma@polinema.ac.id).

I. INTRODUCTION

NOwadays, Java programming has become a cornerstone
in computer science education. Many universities

worldwide are incorporating it into their curricula as the
primary Object-Oriented Programming (OOP) language
[1][2][3]. As an introductory OOP language, Java provides
a structured and practical approach to understanding
fundamental concepts such as classes, objects, inheritance,
polymorphism, and encapsulation. Its extensive standard
libraries and user-friendly syntax of Java make it accessible
to beginners while offering the depth required for complex
applications [4].

The widespread adoption of Java stems from its versatility,
robustness, and platform-independent nature, enabled by the
Java Virtual Machine (JVM) [5][6]. Its real-world relevance
in industries, such as web developments, mobile applications,
and enterprise solutions, further solidifies its position as
an essential tool for aspiring programmers. Consequently,
students should be equipped with skills of Java programming
that are both academically foundational and professionally
valuable [7].

To support novice students in self-studies of Java
programming, we have developed the Java Programming
Learning Assistant System (JPLAS) [8], and implemented it
into Java programming courses [9]. To facilitate step-by-step
studies, JPLAS provides various types of exercise problems,
each designed with specific learning objectives and difficulty
levels:

• Grammar Concept Understanding Problem (GUP)
requires students to ask questions regarding the
grammar or libraries in the given source code based
on the prompts provided [10].

• Value Trace Problem (VTP) requires students to provide
answers regarding the values of important variables or
output messages in the source code that are anticipated
to appear after execution [11].

• Mistake Correction Problem (MCP) requires students
to provide answers for pairs of incorrect code segments
and their corrections, along with the correct solution, in
the given source code that contains multiple errors [12].

• Element Fill-in-blank Problem (EFP) requires students
to fill in the blanks in the given source code that contains
several missing elements [13].

• Code Completion Problem (CCP) requires students to
complete the given source code that contains several
missing elements, without explicitly indicating the
locations of the blanks [14].

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3526-3544

__

• Phrase Fill in blank Problem (PFP) requires students
to fill in the blanks of phrases in the given source code,
where each phrase may consist of multiple elements
[15].

• Code Writing Problem (CWP) requires students to write
program code based on the specifications provided and
shown in the available test code [8].

In a Java programming course, students must first
become familiar with reading source codes and typing
them on personal computers (PCs). Many of them lack
prior experiences using computers, including code editors
[16]. To begin learning programming, they need to adapt
to the technical environment required for coding [17].
Although Integrated Development Environments (IDEs) offer
useful features like syntax highlighting, debugging tools,
and version control, they may appear intimidating or
overly complex for novice users [18]. Additionally, features
like auto-completion may lead to dependency, potentially
hindering their understanding of basic programming
concepts.

After novice students become accustomed to reading and
typing source codes, they need to understand the grammar
and syntax of Java programming. In Java programming,
syntax refers to the set of rules that define the correct
structure of a Java code, including the proper arrangement
of symbols, keywords, and punctuations. For example, every
statement in a code must end with a semicolon ;, and a code
block is enclosed within curly braces{ }.

Then, novices need to understand the semantic behaviour
of a code. The semantic behaviour represents how the
code runs and interacts by following the language’s rules.
A code must ensure the correct variable usage, object
communications, and error handling. This behaviour is
closely tied to the logic in the code, as it dictates
how the program processes and produces the result.
Understanding semantic behaviour will help students write
a clear and reliable code. The semantic behaviour includes
both structural correctness and meaningful logic [19].
Unfortunately, we have not studied proper exercise problems
to be offered to novice students in JPLAS to address these
challenges systematically.

In this paper, we present a study of three introductory
exercise problems in JPLAS that are designed for novice
students. These problems include the code typing problem
(CTP), the code fixing problem (CFP) [20], and the value
trace problem (VTP). A CTP instance requests the student
to type a given source code as it is in a computer. A CFP
instance requests student to type a given code that has several
errors while fixing them. A VTP instance requests student to
answer the values of important variables in a given code.
Answer correctness is evaluated through string matching on
an answer interface running on a web browser.

For evaluations of the proposal, we generated five CTP,
10 CFP, and 10 VTP instances using simple source codes
that cover fundamental Java programming topics. Then,
we assigned them to first-year undergraduate students who
were taking two related courses at State Polytechnic of
Malang, Indonesia, namely, the basic Java programming and
the algorithms and data structures. Then, a part of them
submitted their answers before the deadline called punctual
students, whereas others had submissions after the deadline

called delayed students. For comprehensive evaluations, we
compared the differences between these two student groups,
in addition to the analysis of the performances in each group.

The results show that most of the students quickly adapted
to solving CTP instances and demonstrated the ability to
read and type codes effectively. They also successfully
corrected the errors in CFP instances, although they felt
more difficulty than CTP. Subsequently, they were able
to read the codes and infer the values of variables as
required in VTP instances. Most students’ opinions regarding
these instances were positive. As a qualitative feedback,
the SUS (System Usability Scale) resulted in the acceptable
category, indicating that students found the proposal usable
and well-designed. A significant difference in time span was
observed between the punctual and delayed students, while
their solution performances remained similar. Furthermore,
the final exam scores comparison shows that the students
who completed the given instances outperformed those who
did not, with statistically significant differences. Thus, the
effectiveness and validity of the proposal are confirmed.

The rest of this paper is organized as follows: Section II
discusses related works in literature. Sections III-V present
the code typing, code fixing, and value trace problems,
respectively. Section VI shows their application results to
novice students. Section VII contains discussions on the
results. Finally, Section VIII concludes this paper with future
works.

II. RELATED WORKS IN LITERATURE

In this section, we present key findings from related
studies relevant to this paper. By reviewing previous research,
we will highlight the significance of past studies, identify
research gaps, and demonstrate how our work contributes to
advancing this field.

A. Java Programming Education

Java has been a cornerstone of computer science education
for decades. Its widespread adoption in both academia
and industry has made it a top programming language for
educational purposes [21][22]. Its object-oriented nature,
simple syntax, and extensive ecosystem make it an ideal
language for teaching programming concepts such as classes,
inheritance, and polymorphism. Educational institutions
worldwide, from high schools to universities, use Java as
an introductory programming language to assist learners
in establishing fundamental skills in programming and
computational problem-solving [23][24][25].

The importance of Java programming education is
amplified by the language’s role in fostering critical thinking
and problem-solving skills. Through Java programming,
students learn not just how to code but also how to approach
problems systematically. This structured problem-solving
approach is fundamental in computer science and is highly
valuable in professional settings, where Java is commonly
used for developing software applications, mobile apps, and
even big data solutions [26]. Moreover, Java is frequently
employed in coding boot camps and online educational
platforms, providing students with flexible environments to
master the language in a relatively short time [27][28].

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3526-3544

__

Despite its prominence in education, there are ongoing
challenges to ensure that students fully understand the
theoretical and practical aspects of Java programming.
Researches have shown that students often struggle
with abstract concepts such as memory management
and concurrency, which are critical when learning Java
[29][30]. Instructors must balance teaching fundamental
concepts with providing hands-on programming experiences,
effectively supporting project-based learning. Project-based
learning allows students to engage in real-world scenarios,
strengthening their theoretical understanding of Java
[31][32].

To improve the effectiveness of Java programming
education, educators must adapt to technological
advancements by integrating modern tools and frameworks
within the Java ecosystem. The introduction of Integrated
Development Environments (IDEs) such as IntelliJ IDEA,
Eclipse, and NetBeans equips students with powerful
resources to write, debug, and optimize their codes, making
learning experiences more interactive and productive
[33][34]. Furthermore, the growing use of Java in Android
app development opens the doors for students to explore
mobile developments, further enhancing the language’s
relevance in today’s job market [35][36].

Finally, collaboration and peer-based learning play a
vital role in Java programming education. Studies have
demonstrated benefits of collaborative learning, where
students work together to solve problems and learn from each
other [37][38]. This approach fosters a deeper understanding
of Java concepts and prepares students for teamwork in
professional environments, where collaboration is often
essential to success. As Java continues to evolve, educational
strategies must adapt, ensuring that future generations are
well equipped to meet the challenges of the digital age
[39][40][41][42].

B. Java Programming Study Tools

The study of Java programming has evolved significantly
with introductions of various learning tools designed
to facilitate understanding, enhance comprehensions, and
develop practical coding skills. These tools range from
interactive Integrated Development Environments (IDEs) to
online coding platforms, automated assessment systems,
and gamified learning environments. The effectiveness of
these study tools lies in their ability of providing real-time
feedback, actively engages learners, and simulates real-world
coding scenarios [17].

One of the most widely used Java learning tools is
the Integrated Development Environment (IDE), including
IntelliJ IDEA, Eclipse, and NetBeans. These IDEs not only
provide structured workspaces for writing and debugging
Java codes, but also offer intelligent code suggestions, error
detections, and automated refactoring, significantly aiding
students in understanding programming logics [33]. Some
studies have shown that students using feature-rich IDEs
demonstrate improved problem-solving abilities and reduced
syntax errors [43].

In addition to IDEs, online coding platforms have
become essential tools for Java learners. These platforms
offer structured courses, interactive coding exercises, and

real-world project assignments that help students build
confidence in Java programming [43]. Researches indicate
that students who actively engage in hands-on coding
exercises on online platforms tend to retain Java concepts
more effectively than those who rely solely on traditional
lectures [32].

Furthermore, automated assessment and feedback tools
play a crucial role in Java education. Tools such
as Moodle, CodeRunner, and JUnit testing frameworks
enable educators to automate code evaluations, instantly
assess students’ programming assignments, and provide
personalized feedback [3]. Automated testing not only
assists students in debugging their code but also promotes
self-directed learning and iterative problem-solving [44].

Another category of Java learning tools gaining popularity
is game-based learning platforms. Gamified environments,
such as CodeGym and Codingame, employ challenges,
levels, and interactive problem-solving to make Java
learning more engaging and enjoyable [45]. Some researches
have demonstrated that game-based learning significantly
enhances motivation and retention rates among programming
students [46].

Additionally, collaborative coding platforms such as
GitHub, GitLab, and Replit have become indispensable
tools for Java students. These platforms support version
controls, peer code reviews, and collaborative software
developments, all of which are essential for gaining
real-world programming experiences [47]. Studies indicate
that students who actively engage in collaborative coding
develop a deeper understanding of Java programming
concepts and teamwork skills, both of which are highly
valued in the software industry [32].

Despite the advantages of these learning tools, challenges
remain in ensuring that students effectively utilize them.
Some students experience tool overloads, where the
abundance of resources leads to confusion rather than
enhanced learning [48]. Additionally, insufficient instructor
guidance on the optimal integration of the tools into
the learning process can hinder their effectiveness [49].
Therefore, educators must provide structured guidance on
when and how to utilize Java study tools to optimize student
learning outcomes [23].

Java programming study tools have transformed the way
that students learn and practice coding. Ranging from
IDEs and online coding platforms to automated assessment
and collaborative coding tools, they enhance engagements,
improve skill retention, and better prepare students for
the demands of the software industries [43]. However,
effective use of these tools requires structured guidance
from educators and a balanced approach to prevent being
overwhelmed with excessive options. As Java programming
education continues to evolve, the integration of innovative
study tools will become more essential in training future
software developers [50].

III. CODE TYPING PROBLEM

In this section, we introduce a new problem type in
JPLAS called the code typing problem (CTP) that is designed
for novice students to practice typing source code using
computers.

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3526-3544

__

A. Definition of CTP
CTP is designed to help novice students practice typing

program codes using a computer. It will help them to get used
to typing programming languages. The exercises provided
in CTP require students to enter answers by retyping the
provided source code while referring to the example code.
Answer correctness is validated line by line. The core idea
is to offer a quick learning tool that strengthens beginners’
memory of syntax through retyping exercises. Over time,
students become more comfortable with the Java coding
environment.

B. Answer Interface of CTP
Figure 1 depicts the answer interface for a CTP instance.

The layout is divided into two main sections. The right side
displays the source code in this instance, which cannot be
copied. The left side serves as the answer area, that has
the same number of lines as the source code. Students are
required to retype the code in this area, line by line, to ensure
exact matching. If the typed code line is different from the
original line, it is highlighted in red as an incorrect answer.
If the answer is correct but the line formatting is not yet neat,
it is highlighted in yellow. Otherwise, it remains white.

C. CTP Instance Generation Procedure
To generate new CTP instances, a teacher needs to collect

source codes related to basic Java programming topics that
novice students should study.

The answer interface for the CTP instance is created using
the following procedure:

1) Collect a Java basic programming source code from a
teaching material or a website.

2) Save this source code and the correct answers (code
lines) in an input text file.

3) Run the answer interface generation program with the
input text file to generate HTML, CSS, and JavaScript
files for the answer interface, which runs on a web
browser.

4) Add image files to the HTML file if necessary to
complete the new CTP instance.

D. CTP Instance Example
Listing 1 shows a part of the sample source code.

This code is selected as an introductory Java programming
material that contains a class, variables, a data type, an
operator, a condition, and standard outputs.

IV. CODE FIXING PROBLEM

In this section, we present the code fixing problem (CFP)
for novice students to learn Java programming syntax.

A. Definition of CFP
CFP is designed to help novice students understand Java

grammar and syntax. The answer interface for this problem
has the same appearance and procedure as CTP. However,
differences lie in the source code provided to be retyped.
This code is intentionally injected with errors in several parts.
Students need to understand the correct grammar appropriate
in the wrong parts and fix them at retyping the code line by
line.

B. Error Injection Algorithm
First, to generate a feasible CFP instance with a unique

correct answer, the blank element selection algorithm in [13]
is adopted to select the elements in the source code for error
injections.

Second, the error injection method in [12] is applied to
the selected elements for errors. This method consists of the
grammar error injection and the name error injection.

1) Grammar Error Injection: The grammar error
injection creates errors in Java grammar. Table I shows the
list of candidates for errors. A selected candidate in a source
code will be changed to another candidate in the same row.
For example, if the selected candidate is ”byte,” the possible
changes could be ”int,” ”short,” or ”long.

TABLE I
GRAMMAR ERROR CANDIDATE LIST.

no component type

1 byte, int, short,
long

data type

2 (,) and (.) mark
3 float, double data type
4 void, byte, int,

short, long, float,
double

data type

5 String, short, int,
long

data type

6 boolean, Boolean data type
7 char, Character data type
8 byte, Byte data type
9 short, Short data type
10 int, Integer data type
11 long, Long data type
12 float, Float data type
13 double, Double data type
14 while, if Java keyword
15 if, while Java keyword
16 switch, case Java keyword
17 break, continue Java keyword
18 ++, – operator
19 class, interface Java keyword
20 main, Main Java keyword
21 static, New Java keyword
22 (;), (:) mark
23 +, -, *, /, % operator
24 ==, !=, ¿, ¡, ¡= operator
25 (, , [opening mark
26), ,] closing mark

2) Name Error Injection: The name error injection
creates errors in the name of a variable and a method. A
parameter can be changed from the previous one. As shown
in Table II, when a name consisting of two or more names
is connected by ” ” or is separated from the collection of
them, the first letter is changed from the lower case to the
upper case or vice versa, or one character is added before
the name or after the name. A similar character is selected
here, as shown in Figure 2, to create confusion.

C. CFP Instance Example
Listing 2 shows an example of the generated source code

with errors in a CFP instance. The error results are marked in
blue. They include ”interface” derived from ”class”, ”new”
derived from ”static”, ”Index” derived from ”index”, and
others.

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3526-3544

__

Fig. 1. Answer interface for code typing problem.

1 public class MyOperator {
2 public static void main(String[] args) {
3 int x = 15;
4 System.out.println("x-- = " + x--);
5 System.out.println("After evaluation, x = "

+ x);
6 x = 15;
7 System.out.println("--x = " + --x);
8 System.out.println("After evaluation, x = "

+ x);
9 int y = 8;

10 if (x > y) {
11 System.out.println("x is greater than y");
12 } else {
13 System.out.println("x is less than or equal

to y");
14 }
15 }
16 }

Listing 1. Example code for CTP.

TABLE II
ERROR NAME CANDIDATE LIST.

no before after

1 StringName String Name
2 StringName String Name
3 Name name
4 name Name
5 Name Namee
6 Name NName

D. Hint Function

The answer interface for CFP checks the correctness of
a typed source code line by line. Thus, students can easily
know which line has error elements. However, they need to
find which elements have errors in the erroneous line, which
can be difficult for novice students. As a result, they may
continue making mistakes.

To avoid this desired situation, a hint function is
implemented to help a student find the error elements. As
shown in Figure 3, this function highlights the incorrect

elements along with the input form containing the student’s
corresponding input. This allows a student to easily correct
errors. In addition, the other correct elements are displayed,
separated by spaces, to aid comprehensions.

To avoid overuse of the hint function, it becomes available
only after a student attempts to answer at least three times.
Once all the elements in a line are correct, this line is
automatically copied to the answer form.

V. VALUE TRACE PROBLEM

In this section, we present the value trace problem (VTP)
for novice students to understand the semantic behaviours
of Java source codes that often implement fundamental
algorithms or data structures.

A. Definition of VTP
The answer interface to VTP asks a student to guess the

actual value of a variable in the source code. This code
basically implements a fundamental algorithm or a data
structure.

B. User Interface of VTP
Figure 4 shows the answer interface. It consists of a source

code on the left and question-and-answer forms on the right.
If the answer is correct, the colour of the input form keeps
white. If the answer is wrong, it turns red.

C. Automated Question Generation Procedure
A VTP instance can be created through the following

procedure:
1) Select a proper source code, manually.
2) Select the variables to be printed, insert the standard

output commands for them into the source code, and
save it as a text file, manually.

3) Compile and run the source code, and write the standard
outputs into the text file at the bottom, as shown in
Listing 3.

4) With this text file, generate the corresponding HTML,
CSS, and JavaScript files, automatically.

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3526-3544

__

Fig. 2. Error character candidate list.

1 public interface Searching {
2 public new void main (String[] args){
3 double[] arr = {7.8, 8.2, 9.7, 12.6, 9.0}
4 double keyword = 12.6;
5 int index = -1;
6 for(int i = 0; i < arr.length; i++){
7 if(keyword == aarr[i]){
8 Index=i;
9 continue;

10 }
11 if(iindex == -1){
12 System.out.println("Not available");
13 }
14 else{
15 System.out.print("The data you are looking

for is:"+arr[index]+" at index "+ index);
16 }
17 }
18 }
19 }

Listing 2. Example code for CFP.

Fig. 3. Hint function interface.

VI. APPLICATION RESULTS

In this section, to evaluate the study of three exercise
problems in JPLAS for novice students, we show their
application results to first-year undergraduate students in the
information technology department at State Polytechnic of
Malang, Indonesia.

A. Assignment Setup

These students were taking the two related courses at
State Polytechnic of Malang, Indonesia. In the basic Java
programming course, five CTP instances and 10 CFP

instances are assigned. In the algorithms and data structures
course, 10 VTP instances are assigned.

For them, some students submitted the answers before
the deadline, referred to as punctual students. On the
other hand, some students got delayed in their answer
submissions, referred to as delayed students. In this basic
Java programming course, there are 40 punctual students
and 33 delayed students. In the algorithms and data
structures course, there are 46 punctual students and
32 delayed students. For comprehensive evaluations, we
analysed performances of the students in each group and
differences between the two groups.

B. Results of Code Typing Problem

First, we examine the application results of code typing
problem (CTP) instances.

1) CTP Instances: Table III presents the topics and the
corresponding number of lines in each instance. Based on the
students’ solution results, we analysed the average number
of submission attempts and the average correct answer rate.

TABLE III
GENERATED CTP INSTANCES.

instance ID topic # of lines

1 class 16
2 variable 14
3 data type 19
4 operator 20
5 scanner input 16

2) Results of Individual Students: First, we analysed
the results of individual students. For punctual students,
Figure 5 shows the student ID, the average number of
submission attempts, and the correct answer rate for each
student. To improve the visibility in related figures, the
upper limit of the y-axis is fixed to 40.0 submissions and
100.2% accuracy. To reduce overlapping markers caused
by numerous perfect accuracy scores, some 100% points
of correct answer rate are not shown. A total 39 students
(97.5%) achieved a perfect score of 100%, while one student
(2.5%) scored 98.75% (student at ID=16). Given the high
accuracy rates, more challenging CTP instances may be
needed in future iterations. Regarding submission attempts,
37 students (92.5%) submitted their answers an average of
1 to 3 times, while three students (7.5%) required 4 to 5
attempts.

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3526-3544

__

Fig. 4. Answer interface for value trace problem.

1 public class Searching {
2 public static int search(double key, double[]

arr) {
3 for (int i = 0; i < arr.length; i++)
4 if (key <= arr[i]) return (key == arr[i]) ?

i : -1;
5 return -1;
6 }
7 public static void main(String[] args) {
8 double[] data = {2.7, 2.9, 3.04};
9 for (double num : data) System.out.print(

num + " ");
10 System.out.println();
11 int index;
12 for (double key : data)
13 if ((index = search(key, data))!=-1)
14 System.out.println("Data " + key + "

found at index " + index);
15 }
16 }
17
18 Answer :
19
20 2.7 2.9 3.04
21 Data 2.7 found at index 0
22 Data 2.9 found at index 1
23 Data 3.04 found at index 2

Listing 3. Example code for VTP.

For delayed students, Figure 6 shows that most of them
(29 out of 33, or 87.8%) scored 100%, where this rate was
lower than that of punctual students. The student at ID=33
had the highest number of submissions on average, at 5.6
times.

The most common errors among students come from
simple careless typing mistakes. Overall, the students
demonstrated strong proficiency in typing Java codes using
computers.

3) Results of Individual Instances: Next, we analysed
the results of individual CTP instances across two student
groups. Figure 7 shows the ID, average correct answer
rate, and average number of submissions for each instance
per student group. For punctual students, four instances
achieved a 100% correct answer rate, while the instance at

ID=5 reached 99.84% with an average of 1.9 submissions.
For delayed students, all the instances showed the high
accuracy, ranging from 98.03% to 100%, and a slightly
higher submission average than the punctual students. The
instance at ID=1 showed the highest average submissions, 3.9
for punctual students and 3.5 for delayed students. Overall,
the students demonstrated consistent performances.

C. Results of Code Fixing Problem

Second, we examine the application results of code fixing
problem (CFP) instances.

1) CFP Instances: Table IV shows the topic of each
source code, the number of lines, and the number of
injected errors in each instance. From the solution results,
we calculated the average number of submissions and the
average correct answer rate.

TABLE IV
GENERATED CFP INSTANCES.

instance ID topic # of lines # of errors

1 condition part 1 23 8
2 condition part 2 19 8
3 looping part 1 16 6
4 looping part 2 21 7
5 array part 1 14 5
6 array part 2 20 10
7 function part 1 16 7
8 function part 2 20 8
9 sorting 19 5

10 searching 18 5

2) Results of Individual Students: Figure 8 shows the
student ID, the average number of submissions, and the
correct answer rate for each punctual student. 38 students
(95%) scored 100%, while two students (5%) scored 99.52%
(student at ID=8) and 98.89% (student at ID=39), with the
average submission attempts of 2.1 and 10, respectively.
Although both performed well, the student at ID=8 could
have achieved a higher rate with more submissions, while
the student at ID=39 made 10 attempts, indicating a slight

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3526-3544

__

Fig. 5. Individual results for punctual students on CTP.

Fig. 6. Individual results for delayed students on CTP.

performance drop. Among the 40 punctual students, 29
(72.5%) submitted 1–5 times, 10 (25%) submitted 6–10
times, and one student submitted up to 25 times, achieving
a perfect score.

For delayed students, Figure 9 indicates that many of them
maintained the high accuracy, where 22 out of 33 (67%)
achieved a perfect score, although this rate was notably lower
than that of punctual students. The student at ID=33 required
an average of 22.9 submissions, indicating challenges in
solving these problems. The number of submissions by
students increased, suggesting the requirements of more
careful attempts or verifications.

3) Results of Individual Instances: Figure 10 shows
the instance ID, the average correct answer rate, and the
average number of submissions for each instance across
both student groups. The highest number of submissions
occurred for the instance at ID=1 in both punctual and
delayed students, with 9.8 and 6.2 submissions, respectively.

This is because students often require more attempts to
understand in the beginning. Slight accuracy drops were
observed among delayed students in the instances at ID=1
(98.46%), 4 (99.29%), 5 (99.57%), 6 (99.70%), 8 (98.46%),
and 9 (98.26%), where 100% accuracy was achieved in
almost all punctual students. These instances covered more
advanced topics, such as queue, linked list, and tree. They can
be challenging for novice students. Thus, additional supports
or practices will be necessary for students.

4) Results of Hint Function Use: Figure 11 shows the
number of students who used the hint function for each
instance in both student groups. 20 punctual students and
29 delayed students used it. The highest usage was observed
in the instance at ID=1 where students tried to know what it
is. For other instances, only a limited students used it, which
suggests that the hint function is helpful for students who do
not understand Java programming well.

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3526-3544

__

Fig. 7. Individual instance results for CTP.

Fig. 8. Individual results for punctual students on CFP.

D. Results of Value Trace Problem

Third, we examine the application results of value trace
problem (VTP) instances.

1) VTP Instances: Table V shows the topics and the
number of questions for each instance. From the students’
solution outcomes, we analysed both the average number of
submission attempts and the average correct answer rate to
assess their overall performance.

2) Results of Individual Students: Figure 12 shows the
student ID, the average number of submissions, and the
average correct answer rate for each of punctual students.
Among the 46 students, 35 (76%) achieved a 100% correct
rate, and 11 (24%) scored between 90.75% and 99%, with
most over 98%. The lowest score of 90.75% was from the
student at ID=17 with an average of 3.6 submissions. The
student at ID=46 had the highest submission count (20.5)
and a 97.75% correct rate, showing his/her strong effort. The

TABLE V
GENERATED VTP INSTANCES.

instance ID topic # of questions

1 searching 8
2 sorting 8
3 stack 8
4 queue 8
5 singly linked list part 1 10
6 singly linked list part 2 10
7 doubly linked list part 1 10
8 doubly linked list part 2 8
9 tree part 1 10

10 tree part 2 8

students at ID=40, 42, 43, and 45 achieved 100% accuracy
after more than 10 attempts, while the others had good
performances with fewer than 10 submissions.

Figure 13 shows the student ID, the average number of

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3526-3544

__

Fig. 9. Individual results for delayed students on CFP.

Fig. 10. Individual instance results for CFP.

Fig. 11. Hint button click instances.

submissions, and the average correct answer rate for each
of delayed students. Among the 32 students, 29 (91%)
achieved a perfect score of 100%, while three (9%) scored
slightly low, ranging from 92.5% to 98.75%. The lowest
accuracy of 92.5% was observed in the student at ID=32,
who also had the highest number of submissions, 12.2.
Most students completed the assignments with seven or less
submissions, whereas the students at ID=29, 30, 31, and 32
required notably higher attempts. Overall, delayed students
maintained high performance, with only minor accuracy
reductions.

3) Results of Individual Instances: Figure 14 presents
the average correct answer rates and the number of
submission times for each instance across both groups.
All the instances achieved scores above 97%. In punctual

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3526-3544

__

Fig. 12. Individual results for punctual students on VTP.

Fig. 13. Individual results for delayed students on VTP.

students, the instances at ID=2 for sorting and 4 for
queue reached a perfect correct answer rate of 100% with
moderate submission counts. The instances at ID=3 for
stack and 7 for doubly linked lists had the highest average
submissions (10.4), indicating the higher difficulty. In
delayed students, the overall performance improved, with six
instances attaining 100% accuracy and fewer submissions,
suggesting enhanced understanding and efficiency.

VII. DISCUSSIONS

In this section, we discuss the solution results of
the CTP, CFP, and VTP instances to novice students,
to highlight key findings, analyse implications, and note
potential improvements.

A. Individual Problem Performance Comparison between
Student Groups

First, we compare the solution performances of punctual
and delayed students for (CTP, CFP, and VTP), in terms of

the number of answer submissions, and the correct answer
rate.

1) Comparison of Answer Submissions: Table VI presents
the t-test results comparing the average number of answer
submissions between punctual and delayed students across
CTP, CFP, and VTP. In this table, N indicates the number
of students, M does the mean, and SD does the standard
deviation.

For the CTP instances, the average number of submissions
by punctual students was 2.455, and the standard deviation
was 0.897. They were slightly lower than those by delayed
students, 2.722 and 1.053. However, the p-value of 0.255
indicates that this difference is not statistically significant.

For the CFP instances, punctual students submitted
answers more frequently with an average of 4.643
submissions with a standard deviation of 4.036. Delayed
students did them with an average of 3.881 submissions with
a standard deviation of 3.775. However, the p-value of 0.41
suggests that the variation is not statistically significant.

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3526-3544

__

Fig. 14. Individual instance results for VTP.

Similarly, for the VTP instances, punctual students had
a higher average number of submissions of 6.052 with a
standard deviation of 4.568. Delayed students had an average
of 4.650 submissions with a standard deviation of 3.035. The
p-value of 0.107 remains above the 0.05 threshold, indicating
no statistically significant difference between the two groups.

Overall, punctual students tend to submit more answers
than delayed students across all instance types, but the
differences between them are not statistically significant.

TABLE VI
COMPARISON OF AVERAGE NUMBER OF SUBMISSIONS BETWEEN

punctual AND delayed students.

problem punctual students delayed students

type N M SD N M SD

CTP 40 2.455 0.897 33 2.722 1.053
CFP 40 4.643 4.036 33 3.881 3.775
VTP 46 6.052 4.568 32 4.650 3.035

2) Comparison of Correct Rates: Table VII presents the
t-test results for comparing the correct answer rates between
punctual and delayed students across CTP, CFP, and VTP
instances.

In the CTP instances, punctual students achieved a slightly
higher correct answer rate of 0.999 and a smaller standard
deviation of 0.002. Delayed students achieved 0.994 and
0.017 for them, respectively. However, the p-value of 0.059
is just above the 0.05 threshold, indicating that the difference
is not statistically significant.

In the CFP instances, punctual students performed slightly
better, with a mean accuracy of 0.999 and a standard
deviation of 0.002. They are compared to 0.995 with
a standard deviation of 0.010 for delayed students. The
p-value of 0.009 indicates that this difference is statistically
significant.

For the VTP instances, delayed students achieved a higher
mean accuracy of 0.997 with a standard deviation of 0.013.

Punctual students did 0.990 with the standard deviation
of 0.022. However, the p-value of 0.081 indicates that the
difference is not statistically significant.

Overall, punctual students generally showed slightly better
performances in the CTP and CFP instances, and delayed
students slightly outperformed in the VTP instances, where
only the difference in the CFP instance was statistically
significant. The results suggest that the solution accuracy
between the two groups is generally comparable across the
three exercise problems.

TABLE VII
COMPARISON OF AVERAGE CORRECT ANSWER RATES BETWEEN punctual

AND delayed students.

problem punctual students delayed students

type N M SD N M SD

CTP 40 0.999 0.002 33 0.994 0.017
CFP 40 0.999 0.002 33 0.995 0.010
VTP 46 0.990 0.022 32 0.997 0.013

B. Overall Problem Performance Comparison between
Student Groups

Second, we compare the solution performances between
the punctual and delayed students across the three problems,
in terms of the number of the answer submissions, the correct
answer rate, and the time span. The time span refers to the
total duration between the first and last recorded submission
timing for all the exercises by each student. The exercise
problems in JPLAS given to students are open-ended,
accessed anytime and anywhere outside of scheduled class
hours. The time span is the difference between the earliest
and latest submission timing. This can be affected by other
course works or off-campus activities.

Table VIII presents the aggregate t-test results comparing
the performance metrics. For the average number of

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3526-3544

__

submissions, punctual students had an average of 4.462 and a
standard deviation of 3.883. Delayed students had an average
of 3.742 with a standard deviation of 2.940. The p-value
was 0.115, which is above the standard threshold of 0.05,
indicating no statistically significant difference between the
two groups.

For the correct answer rate, punctual students had an
average of 0.014 with a standard deviation of 0.002,
while delayed students had an average of 0.995 with a
standard deviation of 0.013. The p-value was 0.639, which
is also above the standard threshold of 0.05, indicating no
statistically significant difference.

For the time span, punctual students had an average of
1267.1 minutes with a standard deviation of 1694.1. Delayed
students had an average of 3189.8 minutes with a standard
deviation of 6862.6. The p-value was 0.0084, indicating a
statistically significant difference. Further analysis yielded a
t-value of –2.69 and a Cohen’s d of –0.40, suggesting a small
to moderate effect size. These results indicate that punctual
students consistently completed the exercises with a shorter
time span than delayed students. Figure 15 illustrates a box
plot comparing the time span distributions between the two
groups to visualize this difference.

These results suggest that both group students
demonstrated similar performances. The only notable
difference was the time span to complete the exercise
problems. This finding indicates the importance of
encouraging students to complete assignments on time.
Since the tasks were given as optional ones and did not
affect the final grades in this time, many students may have
lacked motivations to complete them on time. To improve
their engagements, we will consider using the exercise
results in final grades evaluations.

TABLE VIII
AGGREGATE COMPARISON OF PERFORMANCE METRICS BETWEEN

punctual AND delayed students ACROSS ALL PROBLEMS.

metric punctual students delayed students

N M SD N M SD

ave. submissions 126 4.462 3.883 98 3.742 2.940
ave. correct rate 126 0.014 0.002 98 0.995 0.013
time span (min) 126 1267.1 1694.1 98 3189.8 6862.6

C. Distribution Analysis of Student Performance

Third, we analyse the distribution of student performances
across the three exercise instances, focusing on submission
frequencies and correct answer rates.

1) Distribution of Average Number of Submissions:
Tables IX and X present the distribution of submission times
in three exercise instances by punctual students and delayed
students, respectively. Clearly, many students submitted
answers within a small range (1–6 attempts) for CTP. From
punctual students, 100% answers were submitted quickly
for CTP, while only 67.39% did so for VTP. From delayed
students, all of them submitted quickly for CTP, while only
78% did so for VTP. This suggests that VTP was the most
challenging one, since it requires a deeper understanding of
the semantic behaviours of a Java source code.

TABLE IX
COMPARISON OF SUBMISSION TIMES FOR three problems BY punctual

students.

range of # of students rate of students (%)

submission time CTP CFP VTP CTP CFP VTP

1-6 40 32 31 100 80.00 67.39
7-12 0 7 9 0 17.50 19.57

13-18 0 0 5 0 0 10.87
19-25 0 1 1 0 2.50 2.17

TABLE X
COMPARISON OF SUBMISSION TIMES FOR three problems BY delayed

students.

range of # of students rate of students (%)

submission time CTP CFP VTP CTP CFP VTP

1-6 33 30 25 100 90.00 78.00
7-12 0 2 7 0 6.00 22.00

13-18 0 0 0 0 0 0
19-25 0 1 0 0 3.00 0

2) Distribution of Average Correct Answer Rates:
Tables XI and XII compare the correct answer rates across
the three problems for punctual and delayed students,
respectively. Most students showed a high correct rate on
CTP and CFP. Actually, 97.5% of punctual students scored
100% on CTP. This rate dropped to 76.08% on VTP. This
drop was also observed in delayed students, showing that
VTP is more challenging for getting correct answers.

TABLE XI
COMPARISON OF CORRECT ANSWER RATES FOR three problems BY

punctual students.

range of correct # of students rate of students (%)

answer rate (%) CTP CFP VTP CTP CFP VTP

85-90 0 2 0 0 5.00 0
91-95 0 0 4 0 0 8.69
96-99 1 0 7 2.50 0 15.21
100 39 38 35 97.50 95.00 76.08

TABLE XII
COMPARISON OF CORRECT ANSWER RATES FOR three problems BY

delayed students.

range of correct # of students rate of students (%)

answer rate (%) CTP CFP VTP CTP CFP VTP

85-90 0 0 0 0 0 0
91-95 3 0 1 9.10 0 3.00
96-99 0 11 2 0 33.00 6.00
100 30 22 29 90.90 67.00 91.00

D. Observation of Common Mistakes

Now, we observe common mistakes among students
appearing in the three problems.

1) CTP Mistakes: Several common mistakes occurred in
both student groups when students worked on CTP instances,
primarily related to syntax errors. Frequent errors appeared
in using the lowercase letter for a class name, capitalizing
the first letter of a modifier, and incorrectly spelling Java
keywords, variables, functions, and parameters.

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3526-3544

__

Fig. 15. Comparison of time span between punctual and delayed students.

2) CFP Mistakes: The most common errors stemmed
from a lack of understanding of the Java grammar, such
as mistakenly writing “class” as “interface,” “new” as
“New,” and “for” as “For.” Other mistakes came from
simple typographical errors due to a lack of attention.
Overall, the types of errors by students were similar in
both student groups. Punctual students tended to show more
efforts in solving the problems, which was reflected in
their marginally higher accuracy rates. Meanwhile, delayed
students demonstrated a variation of programming abilities,
where a few students appeared less motivated.

3) VTP Mistakes: Students often faced issues related to
logical errors, misinterpretations of questions, or difficulties
in understanding English instructions. For example, some
students struggled to grasp the concepts of push and pop
in stack, leading to incorrect responses. The most frequent
mistake involved flawed logic. Some students confused the
functions of add(), remove(), peek(), and print(), leading to
incorrect implementations.

E. Student Feedback Qualitative Response

Table XIII shows the percentages of positive, neutral, or
negative opinions among the students on the three problems.
Most students provided the positive feedback, where CTP
received the highest approval of 80% from the punctual
students and 90% from the delayed students.

Most students provided the positive feedback. CFP
received the highest approval rate of 83% from punctual
students and 75% from delayed students. They provided a
lot of positive feedback for VTP, with the approval rate of
76% from punctual students and 77% from delayed students.
Negative responses came from no more than 15% of them,

TABLE XIII
USER FEEDBACK ON PROBLEMS.

problem punctual students delayed students

type positive neutral negative positive neutral negative

CTP 80% 5% 15% 90% 1% 9%
CFP 83% 2% 15% 75% 10% 15%
VTP 76% 9% 15% 77% 8% 15%

indicating a generally good reception. These results suggest
that students found the proposed three exercise problems
useful.

F. Student Feedback Based on System Usability Scale

The System Usability Scale (SUS) questionnaire was
administered to the students after the exercises to assess
their perception of the system’s usability. Table XIV lists the
questions, where each is answered with a five-point Likert
scale. Table XV explains the meaning of each scale point.

The SUS score was calculated as follows:
1) subtract 1 from each odd-numbered question score.
2) subtract each even-numbered item’s score from 5.
3) sum all the adjusted scores.
4) multiply the total by 2.5.
The SUS score can be interpreted in two ways. The first

one evaluates the acceptability with three categories, “not
acceptable”, “marginal”, and “acceptable”, as shown in Table
XVI. The second one uses five grades (A–E), as shown in
Table XVII.

Among the 73 students who completed the CTP and CFP
instances, 33 responded to the SUS questionnaire. Thus, this
usability analysis may introduce a response bias. Table XVIII

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3526-3544

__

TABLE XIV
System usability scale (SUS) QUESTIONNAIRE.

no question score

1 I think that I would like to use this system frequently. 1 - 5
2 I found the system unnecessarily complex. 1 - 5
3 I thought the system was easy to use. 1 - 5
4 I think that I would need the support of a technical person to be able to use this system. 1 - 5
5 I found the various functions in this system were well integrated. 1 - 5
6 I thought there was too much inconsistency in this system. 1 - 5
7 I would imagine that most people would learn to use this system very quickly. 1 - 5
8 I found the system very cumbersome to use. 1 - 5
9 I felt very confident using the system. 1 - 5
10 I needed to learn a lot of things before I could get going with this system. 1 - 5

TABLE XV
SUS SCORE RESPONSE.

response scale point
Strongly Disagree (SD) 1

Disagree (D) 2
Neutral (D) 3
Agree (A) 4

Strongly Agree (SA) 5

TABLE XVI
SUS ACCEPTABILITY RANGE.

range note
0 - 50.9 Not acceptable

51 - 70.9 Marginal
71 - 100 Acceptable

TABLE XVII
SUS ACCEPTABILITY GRADE.

grade range
A Score >= 80.3
B Score >= 74 and <80.3
C Score >= 68 and <74
D Score >= 51 and <68
E Score <51

presents the SUS score results. The final average SUS score
is 75, which indicates ”Acceptable” for acceptability range
and Grade B for acceptability grade.

Similarly, among the 78 students who completed the VTP
instances, 32 responded to the SUS questionnaire. Table
XIX shows the SUS results. The final recorded average
SUS score was 74.7, which again indicates ”Acceptable” for
acceptability range and Grade B for acceptability grade.

These results suggest that the proposal meets user
expectations in terms of usability. The high SUS scores
reinforce the effectiveness of the interfaces and indicate
satisfactory user experiences.

G. Comparison of Final Exam Scores

To further evaluate the effectiveness of the proposed
three exercise problems by the novice students at State
Polytechnic of Malang, Indonesia, we compared the final
exam scores between the students who completed all the
instances, called solved students, and the students who did
not, called non-solved students. It is noted that they are
different from the previous student groups of punctual and
delayed.

In the basic programming course, solved students consist
of 73 students from 5 classes, while non-solved students

consist of 350 students from 9 classes. Similarly, in the
algorithm and data structure course, solved students consist
of 78 students from 5 classes, whereas non-solved students
consist of 350 students from 9 classes.

Table XX presents the average and the standard deviation
of the final exam scores for both solved and non-solved
students in each course. An independent samples t-test
was conducted to assess the statistical significance of the
differences. In the basic programming course, the p-value is
1.48E-17, which is well below the standard threshold of 0.05.
This leads to the rejection of the null hypothesis and indicates
a statistically significant difference, with solved students
performing better. In the algorithm and data structure course,
the p-value of 0.043 also leads to the rejection of the null
hypothesis and suggests a significant difference. To evaluate
the practical impact of these differences, Cohen’s d was
calculated for the basic programming course, yielding an
effect size of 0.85, which exceeds the 0.8 threshold and thus
indicates a large effect. For the algorithm and data structure
course, the effect size was 0.28, this indicates a small effect
size.

These findings confirm that solved students performed
better academically compared to non-solved students,
suggesting the proposal positively contributed to student
learning outcomes.

VIII. CONCLUSIONS

This paper presented a study of three exercise problems in
the Java Programming Learning Assistant System (JPLAS)
that are dedicated to novice students. They include the code
typing problem (CTP), the code fixing problem (CFP), and
the value trace problem (VTP). For their evaluations, we
assigned the generated instances to first-year undergraduate
students at the State Polytechnic of Malang, Indonesia.
Most students correctly solved all the questions despite
a significant difference in the time span for completing
the exercises, and provided positive feedback on them by
rating them in the acceptable category and a grade B in
the SUS testing. The students who completed the instances
outperformed the final exam scores of those who did
not. Thus, the effectiveness and validity of the proposal
are confirmed. In future works, we will generate new
instances on advanced topics to enhance logical thinking
and programming skills and assign them to students for
evaluations.

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3526-3544

__

TABLE XVIII
SUS SCORES BY STUDENTS SOLVING CTP AND CFP.

respondent Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 SUS score
1 4 3 4 4 5 3 5 3 3 3 62.5
2 4 2 4 1 5 2 5 1 5 1 90.0
3 3 2 4 4 5 3 3 3 4 5 55.0
4 5 1 5 2 5 1 5 1 4 2 92.5
5 4 2 4 3 5 2 5 2 5 2 80.0
6 5 1 5 1 5 1 5 1 5 1 100.0
7 3 4 3 3 3 3 4 2 3 3 52.5
8 4 2 2 2 3 3 4 1 4 2 67.5
9 5 1 5 1 5 1 5 1 5 1 100.0
10 4 2 4 2 4 2 4 2 4 2 75.0
11 5 1 5 1 5 1 5 1 5 1 100.0
12 3 3 3 3 4 3 3 3 3 3 52.5
13 4 3 4 4 4 3 4 2 4 4 60.0
14 4 4 4 4 5 3 4 3 5 4 60.0
15 4 4 3 4 4 3 4 3 3 3 52.5
16 5 3 5 3 5 3 3 3 4 3 67.5
17 5 2 5 3 4 2 4 2 5 4 75.0
18 4 3 3 5 4 4 5 4 5 4 52.5
19 4 2 4 1 4 2 5 2 4 2 80.0
20 3 1 5 1 5 1 5 1 5 1 95.0
21 5 2 5 4 5 3 5 4 5 3 72.5
22 3 3 3 3 3 3 3 3 3 3 50.0
23 4 1 5 2 5 1 4 1 5 3 87.5
24 4 2 5 5 4 1 5 1 4 1 80.0
25 4 2 3 3 4 3 4 2 4 2 67.5
26 5 4 4 2 4 3 4 4 5 3 65.0
27 5 3 5 1 4 2 5 1 5 3 85.0
28 4 2 4 1 4 2 5 1 4 1 85.0
29 4 2 2 2 3 2 3 3 2 2 57.5
30 5 3 5 3 5 1 5 5 5 2 77.5
31 5 1 5 1 5 1 5 1 5 1 100.0
32 4 1 5 1 1 1 4 1 4 1 82.5
33 5 2 5 1 5 1 5 1 4 1 95.0

average score (final result) 75.0

TABLE XIX
SUS SCORES BY STUDENTS SOLVING VTP.

respondent Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 SUS score
1 5 1 5 1 5 1 5 1 5 1 100.0
2 5 3 5 3 4 3 5 3 5 3 72.5
3 4 2 4 2 4 2 4 2 4 2 75.0
4 5 4 5 3 5 1 5 1 5 3 82.5
5 5 3 5 3 5 1 5 1 5 1 90.0
6 3 3 3 2 3 3 4 1 5 1 70.0
7 5 1 5 2 5 3 5 1 5 2 90.0
8 3 3 3 3 3 3 3 3 5 1 60.0
9 3 3 3 3 4 3 4 3 3 3 55.0
10 5 1 5 1 5 1 2 1 5 1 92.5
11 3 1 5 1 3 1 4 1 4 1 85.0
12 4 3 3 1 3 5 3 2 3 2 57.5
13 5 1 5 2 5 1 5 4 5 1 90.0
14 5 1 5 1 5 1 5 3 3 2 87.5
15 3 2 3 3 5 1 5 2 5 1 80.0
16 5 1 5 3 5 1 5 3 5 1 90.0
17 5 3 5 3 5 1 5 3 5 1 85.0
18 5 1 5 1 5 1 5 1 5 1 100.0
19 4 4 4 4 4 4 4 4 4 4 50.0
20 3 3 3 3 3 3 3 3 3 3 50.0
21 3 3 4 3 4 3 4 3 4 3 60.0
22 3 5 3 2 5 1 3 1 5 1 72.5
23 5 1 5 3 5 1 5 3 5 1 90.0
24 4 4 4 3 4 5 5 2 4 5 55.0
25 5 1 3 1 5 1 4 1 5 2 90.0
26 5 4 4 1 4 2 4 1 4 1 80.0
27 4 2 4 2 4 4 4 1 4 1 75.0
28 3 2 2 3 3 3 3 3 3 1 55.0
29 3 3 3 3 3 3 3 3 3 1 55.0
30 3 3 4 2 3 2 4 2 4 2 67.5
31 4 5 3 5 4 1 5 2 3 5 52.5
32 4 2 4 2 4 2 4 2 4 2 75.0

average score (final result) 74.7

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3526-3544

__

TABLE XX
STUDENT FINAL EXAM SCORES.

student basic programming algo. & data structure

groups N M SD N M SD

Solved 73 76.88 9.24 78 69.37 23.24
Non-Solved 350 63.66 16.53 350 63.58 19.65

REFERENCES

[1] N. Singh, S. S. Chouhan, and K. Verma, “Object oriented
programming: concepts, limitations and application trends,”
Proceedings of 5th Int. Conf. Information Systems and
Computer Networks (ISCON), Mathura, India, 2021, pp1–4.
https://doi.org/10.1109/ISCON52037.2021.9702463

[2] H. Winkelmann and H. Kuchen, “Constraint-logic object-oriented
programming on the Java virtual machine,” Proceedings of 37th
ACM/SIGAPP Symp. Applied Computing (SAC ’22), Virtual Event,
2022, pp1258–1267. https://doi.org/10.1145/3477314.3507058

[3] P. Vats, Z. Aalam, S. Kaur, A. Kaur, and S. Kaur, “A multi-factorial
code coverage based test case selection and prioritization for object
oriented programs,” ICT Systems and Sustainability, M. Tuba, S.
Akashe, and A. Joshi, Eds., Singapore: Springer, 2021, pp721–731.
https://doi.org/10.1007/978-981-15-8289-9 69

[4] D. I. De Silva, P. T. Jayasinghe, A. T. Illesinghe, D. E.
H. Mallawaarachchi, C. S. Vithanage, and S. Vidhanaarachchi,
“CodeRookie: educational Java programming environment for
beginners,” Lecture Notes in Networks and Systems. Springer
Nature: Proceedings of Ninth International Congress Information and
Communication Technology, X.-S. Yang, S. Sherratt, N. Dey, and A.
Joshi, Eds., vol. 1013, 2024, Singapore., pp243–253. https://doi.org/
10.1007/978-981-97-3559-4 19

[5] D. Xu, F. Liu, B. Wang, X. Tang, D. Zeng, H. Gao, R. Chen, and Q.
Wu, “GenesisRM: A state-driven approach to resource management
for distributed JVM web applications,” Future Generation Computer
Systems, vol. 163, Art. no. 107539, Feb. 2025. https://doi.org/10.1016/
j.future.2024.107539

[6] E. Marevac, E. Kadušić, N. Živić, N. Buzaija, and S. Lemeš,
“Framework design for the dynamic reconfiguration of IoT-enabled
embedded systems and “on-the-fly” code execution,” Future Internet,
vol. 17, no. 1, Art. no. 23, 2025. https://doi.org/10.3390/fi17010023

[7] S. Barakat, A. Martin-Lopez, C. Müller, S. Segura, and A. Ruiz-Cortés,
“The IDL tool suite: specifying and analyzing inter-parameter
dependencies in web APIs,” SoftwareX, vol. 29, Art. no. 101998, Feb.
2025. https://doi.org/10.1016/j.softx.2024.101998

[8] N. Funabiki, Y. Matsushima, T. Nakanishi, K. Watanabe, and
N. Amano, “A Java programming learning assistant system using
test-driven development method,” IAENG International Journal of
Computer Science, vol. 40, no.1, pp38–46, 2013.

[9] K. H. Wai, N. Funabiki, S. T. Aung, R. Hashimoto, D. Yokoyama,
and W.-C. Kao, “Analysis of solution results of code writing
problems for basic object-oriented programming study in university
Java programming course,” Proceedings of International Conference
Information and Education Technology (ICIET), pp87–92, March
2024. https://doi.org/10.1109/ICIET60671.2024.10542814

[10] S. T. Aung, N. Funabiki, Y. W. Syaifudin, H. H. S. Kyaw, S. L.
Aung, N. K. Dim, and W.-C. Kao, “A proposal of grammar-concept
understanding problem in Java programming learning assistant
system,” Journal of Advances in Information Technology, vol. 12, no.
4, Nov. 2021. https://doi.org/10.12720/jait.12.4.342-350

[11] N. Funabiki, K. K. Zaw, M. Kuribayashi, and W.-C. Kao, “Value trace
problems for graph theory algorithms in Java programming learning
assistant System,” International Journal of Information and Education
Technology, vol. 7, no. 5, May. 2017. https://doi.org/10.18178/ijiet.
2017.7.5.897

[12] Y. Jing, N. Funabiki, S. T. Aung, X. Lu, A. A. Puspitasari, H. H.
S. Kyaw, and W.-C. Kao, “A proposal of mistake correction problem
for debugging study in C programming learning assistant system,”
International Journal of Information and Education Technology, vol.
12, pp1158–1163, 2022. https://doi.org/10.18178/ijiet.2022.12.11.1733

[13] N. Funabiki, Tana, K. K. Zaw, N. Ishihara, and W.-C. Kao,
“A graph-based blank element selection algorithm for fill-in-blank
problems in Java programming learning assistant system,” IAENG
International Journal of Computer Science, vol. 44, no. 2, pp247–260,
2017.

[14] H. H. S. Kyaw, S. S. Wint, N. Funabiki, and W.-C. Kao, “A code
completion problem in Java programming learning assistant system,”

IAENG International Journal of Computer Science, vol. 47, no. 3,
pp350–359, 2020.

[15] X. Lu, N. Funabiki, K. H. Wai, S. T. Aung, M. Mentari, and W.-C.
Kao, “An implementation of phrase fill-in-blank problem for test
code reading study in Java programming learning assistant system,”
Proceedings of 13th International Conference Advances in Information
Technology (IAIT ’23), Bangkok, Thailand, 2023, Art. no. 38, pp1–5.
https://doi.org/10.1145/3628454.3631856

[16] H. Fang, Y. Cai, E. Tempero, R. Kazman, Y.-C. Tu, J. Lefever, and E.
Pisch, “A holistic approach to design understanding through concept
explanation,” IEEE Transactions on Software Engineering, vol. 51, no.
2, pp449–465, Feb. 2025. https://doi.org/10.1109/TSE.2024.3522973

[17] I. Riouak, N. Fors, G. Hedin, and C. Reichenbach, “IntraJ:
an on-demand framework for intraprocedural Java code analysis,”
International Journal on Software Tools Technology Transfer,
vol. 26, no. 6, pp687–705, Dec. 2024. https://doi.org/10.1007/
s10009-024-00771-0

[18] M. Fawad, G. Rasool, and M. B. Riaz, “Refactoring Android
source code smells from Android applications,” IEEE Access,
vol. 13, pp14122–14150, 2025. https://doi.org/10.1109/ACCESS.2025.
3529687

[19] K. Lano, Q. Xue, and H. Haughton, “A concrete syntax
transformation approach for software language processing,” SN
Computer Science, vol. 5, no. 645, June 2024. https://doi.org/10.1007/
s42979-024-02979-y

[20] M. Mentari, N. Funabiki, Noprianto, Y. W. Syaifudin, K. H. Wai, K.
C. Brata, and P. Puspitaningayu, “A study of code typing problems as
start-up programming practices in Java programming learning assistant
system,” Proceedings of 5th International Conference on Information
Technology and Education Technology (ITET), 2024, pp45–50. https:
//doi.org/10.1109/ITET64267.2024.00017

[21] Y. Zhang, R. Liang, Y. Li, and G. Zhao, “Improving Java learning
outcome with interactive visual tools in higher education,” Lecture
Notes on Data Engineering and Communications Technologies:
Artificial Intelligence in Education: Emerging Technologies, Models
and Applications, E. C. K. Cheng, R. B. Koul, T. Wang, and X.
Yu, Eds., AIET 2021, Mar. 2022, Singapore: Springer., vol. 104,
pp183–195. https://doi.org/10.1007/978-981-16-7527-0 17

[22] F. Dobslaw, K. Angelin, L.-M. Öberg, and A. Ahmad, “The gap
between higher education and the software industry — a case study on
technology differences,” Proceedings of 5th European Conf. Software
Engineering Education (ECSEE), Seeon/Bavaria, Germany, 2023,
pp11–21. https://doi.org/10.1145/3593663.3593690

[23] G. Alfarsi, R. Tawafak, S. Malik, and B. H. Khudayer, “Facilitation for
undergraduate college students to learn Java language using E-learning
model,” International Journal of Interactive Mobile Technologies
(iJIM), vol. 16, no. 8, pp4–17, 2022. https://doi.org/10.3991/ijim.
v16i08.28689

[24] C. M. Kandemir, F. Kalelioglu, dan Y. Gülbahar, “Pedagogy
of teaching introductory text-based programming in terms of
computational thinking concepts and practices,” vol. 29, no. 1,
pp29–45, 2021. https://doi.org/10.1002/cae.22374

[25] N. C. C. Brown, P. Weill-Tessier, M. Sekula, A.-L. Costache, and
M. Kölling, “Novice use of the Java programming language,” ACM
Transactions on Computing Education (TOCE), vol. 23, no. 1, article
no. 10, pp1–24, Dec. 2022. https://doi.org/10.1145/3551393

[26] L. Belcastro, R. Cantini, F. Marozzo, A. Orsino, D. Talia, and P.
Trunfio, “Programming big data analysis: principles and solutions,”
Journal of Big Data, vol. 9, Art. no. 4, Jan. 2022. https://doi.org/10.
1186/s40537-021-00555-2

[27] J. Skalka, M. Drlik, L. Benko, J. Kapusta, J. C. Rodrı́guez del
Pino, E. Smyrnova-Trybulska, A. Stolinska, P. Svec, and P. Turcinek,
“Conceptual framework for programming skills development based
on microlearning and automated source code evaluation in virtual
learning environment,” Sustainability, vol. 13, no. 6, Art. no. 3293,
2021. https://doi.org/10.3390/su13063293

[28] J. Francis, “Coding boot camps for refugees,” Guide to mobile data
analytics in refugee scenarios: the ‘data for refugees challenge’ study,
A. A. Salah, A. Pentland, B. Lepri, and E. Letouzé, Eds. Cham:
Springer International Publishing, 2019, pp67–85. https://doi.org/10.
1007/978-3-030-12554-7 4

[29] Y. Zhang and Y. Ouyang, “Designing a course of programming
language foundations that closely combines practice,” Proceedings of.
ACM Turing Award Celebration Conference - China (ACM TURC
’21), Hefei, China, 2021, pp8–14. https://doi.org/10.1145/3472634.
3472637

[30] A. Akkaya and Y. Akpinar, “Experiential serious-game design for
development of knowledge of object-oriented programming and
computational thinking skills,” Computer Science Education, vol.
32, no. 4, pp476–501, 2022. https://doi.org/10.1080/08993408.2022.
2044673

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3526-3544

__

[31] H. Liu, “Comparative application of teaching methods in C language
and JAVA programming courses,” International Journal of New
Developments in Education, vol. 6, no. 1, pp126–131, 2024. https:
//doi.org/10.25236/IJNDE.2024.060122

[32] W. O. Apeanti and D. D. Essel, “Learning computer programming
using project-based collaborative learning: Students’ experiences,
challenges, and outcomes,” International Journal of Innovation and
Education Research, vol. 9, no. 8, pp191–207, 2021. https://doi.org/
10.31686/ijier.vol9.iss8.3278

[33] D. I. De Silva, K. A. S. N. Perera, R. A. H. B. Ranasinghe,
B. D. Gunawardena, R. R. A. N. N. Jayawardena, and S.
Vidhanaarachch, “CodePedia: Crafting the ultimate Java learning
odyssey for novice programmers,” Proceedings of 9th International
Congress on Information and Communication Technology, Singapore:
Springer, 2024, pp55–64. https://doi.org/10.1007/978-981-97-3562-4
5

[34] C. Dong, Y. Jiang, Y. Zhang, Y. Zhang, and H. Liu, “ChatGPT-based
test generation for refactoring engines enhanced by feature analysis
on examples,” Proceedings of 2025 IEEE/ACM 47th International
Conference on Software Engineering (ICSE), Los Alamitos, CA,
USA, May 2025, pp2714–2725. https://doi.org/10.1109/ICSE55347.
2025.00210

[35] K. C. Cababasay, M. J. C. Notarte, G. P. Tan, J. A. Catain, A. P.
Valdez, G. T. Salvador, “HanAPP Buhay: Android Java-based mobile
commerce application for freelance home service providers and client
job seekers,” Proceedings of SMART GENCON, 2022, pp1–12. https:
//doi.org/10.1109/SMARTGENCON56628.2022.10083985

[36] A. Khaoula, L. Mohamed, E. Aya, A. O. Younes, L. M. Driss, O.
Mustapha, “EduXgame: gamified learning for secondary education,”
Software Impacts, vol. 24, Art. no. 100761, 2025. https://doi.org/10.
1016/j.simpa.2025.100761

[37] R. Kaliisa, S. López-Pernas, K. Misiejuk, C. Damşa, M.
Sobocinski, S. Järvelä, and M. Saqr, “A topical review of
research in computer-supported collaborative learning: questions
and possibilities,” Computers & Education, vol. 228, Art. no. 105246,
2025. https://doi.org/10.1016/j.compedu.2025.105246

[38] Krismadinata, Efan, C. Boudia, J. Jama, and A. Y. Saputra,
“Effect of collaborative programming on students achievement
learning object-oriented programming course,” International Journal
of Information and Education Technology, vol. 13, no. 5, pp792–800,
2023. https://doi.org/10.18178/ijiet.2023.13.5.1869

[39] S.-F. Wen, “Context-based support to enhance developers’ learning
of software security,” Education Sciences, vol. 13, no. 7, June 2023.
https://doi.org/10.3390/educsci13070631

[40] D. Miedema, T. Taipalus, V. V. Ajanovski, A. Alawini, M. Goodfellow,
M. Liut, S. Peltsverger, and T. Young, “Data systems education:
curriculum recommendations, course syllabi, and industry needs,”
Proceedings of 2024 Working Group Reports on Innovation and
Technology in Computer Science Education (ITiCSE 2024), Milan,
Italy, 2025, pp95–123. https://doi.org/10.1145/3689187.3709609

[41] E. Dickey, A. Bejarano, and C. Garg, “AI-Lab: A framework
for introducing generative artificial intelligence tools in computer
programming courses,” SN Computer Science, vol. 5, Art. no. 720,
2024. https://doi.org/10.1007/s42979-024-03074-y

[42] N. Bergaoui and S. A. Ghannouchi, “A BPM-based approach for
ensuring an agile and adaptive learning process,” Smart Learning
Environments, vol. 10, Art. no. 40, 2023. https://doi.org/10.1186/
s40561-023-00259-5

[43] A. Birillo, M. Tigina, Z. Kurbatova, A. Potriasaeva, I. Vlasov, V.
Ovchinnikov, and I. Gerasimov, “Bridging education and development:
IDEs as interactive learning platforms,” Proceedings of 1st ACM/IEEE
Workshop on Integrated Development Environments (IDE ’24),
Lisbon, Portugal, 2024, pp53–58. https://doi.org/10.1145/3643796.
3648454

[44] M. A. Amasha, M. F. Areed, D. Khairy, S. M. Atawy, S. Alkhalaf,
and R. A. Abougalala, “Development of a Java-based mobile
application for mathematics learning,” Education and Information
Technologies, vol. 26, no. 1, pp945–964, 2021. https://doi.org/10.1007/
s10639-020-10287-0

[45] K. D. Cuervo-Cely, J. J. Ramı́rez-Echeverry, and F. Restrepo-Calle,
“Computer-assisted gamification in a computer programming course:
an experience report,” Proceedings of 13th International Conference
on Education, Research and Innovation (ICERI), 2020, pp6006–6015.
https://doi.org/10.21125/iceri.2020.1291

[46] T. M. H. T. Azmi, S. Baharudin, S. Ahmad, and N. M. Diah,
“Developing and executing pedagogical virtual game-based learning
for Java programming,” Proceedings of 2024 IEEE International
Conference on Computing (ICOCO), 2024, pp190–195. https://doi.org/
10.1109/ICOCO62848.2024.10928230

[47] P. Orvalho, M. Janota, and V. Manquinho, “GitSEED: a Git-backed
automated assessment tool for software engineering and programming

education,” Proceedings of 2024 ACM Virtual Global Computing
Education Conference (SIGCSE Virtual 2024), Virtual Event, NC,
USA, 2024, pp165–171. https://doi.org/10.1145/3649165.3690106

[48] Y. Wang, “Interactive methods to enhance attention in Java learning
for underprivileged children: A case study from Singapore’s code
for all program,” in B. K. Smith and M. Borge, Eds., Learning and
Collaboration Technologies, HCII 2025, Lecture Notes in Computer
Science, vol. 15808, Cham: Springer, 2025, pp345–354. https://doi.
org/10.1007/978-3-031-93746-0 29

[49] Y. Qian and J. Lehman, “Students’ misconceptions and other
difficulties in introductory programming: a literature review,” ACM
Transactions on Computing Education, vol. 18, no. 1, pp1–24, Oct.
2017. https://doi.org/10.1145/3077618

[50] X. Chang, B. Wang, and B. Hui, “Towards an automatic
approach for assessing program competencies,” Proceedings of the
12th International Learning Analytics and Knowledge Conference
(LAK22), pp119–129. Association for Computing Machinery. https:
//doi.org/10.1145/3506860.3506875

Mustika Mentari received the B.S. degree in computer science from
Brawijaya University, Indonesia, in 2011, and the M.S. degree in informatics
from Sepuluh Nopember Institute of Technology, Indonesia, in 2014. In
2015, she joined the State Polytechnic of Malang, Indonesia, as a lecturer.
She is currently a doctoral student in the Graduate School of Environmental,
Life, Natural Science and Technology at Okayama University, Japan. Her
research interests include educational technology, artificial intelligence, and
computer vision. She is a student member of IEICE.

Nobuo Funabiki received the B.S. and Ph.D. degrees in mathematical
engineering and information physics from the University of Tokyo, Japan,
in 1984 and 1993, and the M.S. degree in electrical engineering from Case
Western Reserve University, USA, in 1991 respectively. From 1984 to 1994,
he was with Sumitomo Metal Industries, Ltd., Japan. In 1994, he joined the
Department of Information and Computer Sciences at Osaka University,
Japan, as an assistant professor, and became an associate professor in 1995.
In 2001, he moved to the Department of Information and Communication
Systems at Okayama University as a professor. His research interests include
computer networks, optimization algorithms, educational technology, and
web application systems. He was a vice president of IEEE Consumer
Technology Society in 2023 and 2024. He is a member of IEEE, IEICE,
and IPSJ.

Safira Adine Kinari received the B.S. degree in computer engineering
from Sepuluh Nopember Institute of Technology, Indonesia, in 2023. She is
currently pursuing a M.S. degree in the Graduate School of Environmental,
Life, Natural Science and Technology at Okayama University, Japan.
Her research interests include educational technology and cross-platform
application development. She is a student member of IEICE.

Komang Candra Brata received the B.S. degree in informatics from
Brawijaya University, Indonesia, in 2012, and the M.S. degree from the
Department of Computer Science and Information Engineering, National
Central University, Taiwan, in 2014. He is an associate professor at the
Faculty of Computer Science at Brawijaya University, Indonesia. He is
currently a doctoral student in the Graduate School of Environmental,
Life, Natural Science and Technology at Okayama University, Japan. His
research interests include software engineering and information technology,
user experience, HCI, intuitive mobile applications, distributed systems, and
augmented reality. He is a member of IAENG.

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3526-3544

__

Noprianto received the B.S. degree in informatics engineering from
AKAKOM Yogyakarta, Indonesia, in 2011, and the M.S. degree in electrical
and information technology engineering from Gadjah Mada University,
Indonesia, in 2017. In 2019, he joined the State Polytechnic of Malang,
Indonesia, as a lecturer. He is currently a doctoral student in the Graduate
School of Environmental, Life, Natural Science and Technology at Okayama
University, Japan. His research interests include Internet of Things about air
quality.

Yan Watequlis Syaifudin received the B.S. degree in Informatics from
Bandung Institute of Technology, Indonesia, in 2003, the M.S. degree in
Information Technology from Sepuluh Nopember Institute of Technology,
Indonesia, in 2011, and the Ph.D. degree in the Graduate School of Natural
Science and Technology at Okayama University, Japan, in 2021. In 2005,
he joined the State Polytechnic of Malang, Indonesia, as a lecturer and
is currently an associate professor and head of the Applied Informatics
Laboratory in the Department of Information Technology. His research
interests include learning system and technology, database technology,
blockchain, and smart farming. He is the director of Academic Association
of Creative Economy and is a member of IEEE, IAENG, and Consumer
Technology Society.

Triana Fatmawati received the B.S. degree in informatics engineering
from Bandung Institute of Technology, Indonesia, in 2003, and the M.S.
degree in industrial engineering and management from Bandung Institute
of Technology, Indonesia, in 2008. She began her career as a lecturer in the
Information Systems program at the Polytechnic of STMI Jakarta, Indonesia,
from 2005 until 2022. In 2023, she joined the State Polytechnic of Malang,
Indonesia, as a lecturer. Her research interests include information systems,
machine learning, and software engineering.

Indra Dharma Wijaya received the B.S. degree from National Institute of
Technology, Malang, Indonesia, in 1997, the M.S. degree in management
information technology from Sepuluh Nopember Institute of Technology,
Indonesia, in 2006, and the Ph.D. degree from Brawijaya University,
Indonesia, in 2025. In 2008, he joined the State Polytechnic of Malang,
Indonesia, as a lecturer. His research interests include management
information systems, information technology adoption, and information
technology in business.

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3526-3544

__

