
 

 

  

Abstract—The assessment of wind resources is crucial for 

wind farm siting and wind power forecasting. Currently, wind 

measurement data is often impacted by natural and human 

factors, leading to a high incidence of anomalies and missing 

values. This study introduces an LSTM-IDW-GBRT 

spatiotemporal ensemble model that leverages both temporal 

and spatial correlations of wind resources to interpolate 

regional wind speed fields effectively. The model integrates the 

Long Short-Term Memory (LSTM) neural network for 

capturing temporal dependencies in wind speed, the Inverse 

Distance Weighting (IDW) method for spatial correlation, and 

the Gradient Boosting Regression Tree (GBRT) model to 

integrate these single models and optimize the final interpolated 

wind speed predictions. By comparing the proposed ensemble 

model with its constituent sub-models, traditional wind speed 

interpolation approaches, and state-of-the-art neural network 

architectures, the results indicate that the LSTM-IDW-GBRT 

ensemble model outperforms both individual models and the 

traditional MCP linear regression model in wind speed 

interpolation, with particularly improved performance in 

inland and high-altitude areas and during periods of wind speed 

fluctuations. The ensemble model achieved mean error metrics 

of 0.8362 (MSE), 0.6778 (MAE), and 0.8746 (RMSE), 

representing improvements of 56.9%, 32.5%, and 37.9%, 

respectively. The proposed model shows strong applicability for 

wind speed interpolation and prediction, significantly 

enhancing the accuracy of wind resource assessments. 

 
Index Terms— Long Short-Term Memory neural network, 

Inverse Distance Weighting, the Gradient Boosting Regression 

Tree, wind speed interpolation 
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I. INTRODUCTION 

HE global development of renewable energy has 

witnessed remarkable progress. According to the 

International Renewable Energy Agency (IRENA), the 

global renewable energy generation capacity reached 4,448 

GW in 2024, reflecting a year-on-year increase of 15.1% [1]. 

Among these sources, wind and solar energy have emerged 

as the fastest-growing forms, accounting for over 30% of 

global renewable energy production in 2023 [2]. China plays 

a pivotal role in this global transition toward renewable 

energy. In 2023, China’s renewable energy installed capacity 

exceeded 1,000 GW, constituting 43.5% of the global total 

[3]. Notably, in the wind energy sector, China achieved a 

wind power capacity of 440 GW, which is the world leader 

[4]. The Chinese government has set ambitious targets, 

aiming to expand wind and solar capacity to 1,200 GW by 

2030 and increase the share of non-fossil fuels in total energy 

consumption to 80% by 2060 [5]. 

Wind power constitutes a cornerstone of China’s 

renewable energy strategy, contributing significantly to 

carbon emission reductions and reducing reliance on fossil 

fuels. In 2023, wind power generation accounted for a 

substantial portion of the national electricity output, playing a 

vital role in ensuring the stability of the power system and 

advancing the green transition [6]. However, the planning 

and operation of wind power projects hinge on precise wind 

resource assessments, with the acquisition of reliable wind 

speed data being the core requirement [7]. Manwell et al. 

highlights that the accuracy of wind speed data directly 

influences the economic viability of wind farms and the 

efficiency of grid scheduling [8]. Accurate wind speed data 

are essential for estimating the potential power output of 

wind farms, yet this process is fraught with challenges. 

Environmental and human-induced factors—such as 

equipment malfunctions, extreme weather, communication 

failures, and inadequate maintenance—can lead to anomalies 

or gaps in the data [9][10]. 

Currently, wind resource assessment is categorized into 

regional and site-specific evaluations. Regional wind 

resource assessment predominantly employs numerical 

simulation techniques. For instance, Wang et al. [11] 

developed a mesoscale high-resolution numerical simulation 

system tailored to China’s climatic characteristics using the  

Climate Four-Dimensional Data Assimilation (CFDDA) 

climate four-dimensional data assimilation technique and the 
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Weather Research and Forecasting (WRF) numerical weather 

prediction model. This system generated a 30-year gridded 

dataset of wind energy resources, elucidating the 

spatiotemporal distribution characteristics of wind resources 

across China. Similarly, Yang et al [12] utilized the WRF 

model with the  Mellor-Yamada-Janjic (MYJ) boundary 

layer scheme and the Monin-Obukhov surface layer scheme 

to simulate wind speed data, albeit at the cost of substantial 

high-performance computing resources. Meng et al [13] 

explored the relationship between the third moment of wind 

speed and Weibull distribution parameters, proposing a 

method to calculate the third moment that enhances 

parameter estimation accuracy and improves fitting 

precision. 

Site-specific wind resource assessment typically involves 

installing wind measurement towers or meteorological 

stations in the vicinity of prospective wind farm sites, 

conducting measurements and observations over an annual 

cycle. The Measure-Correlate-Predict (MCP) algorithm is 

commonly employed, leveraging the principle of spatial 

correlation to establish a model between observed wind 

speeds and the target wind farm site, thereby estimating local 

wind resources based on historical data [10]. Several mature 

wind resource assessment software packages integrate a 

variety of MCP algorithms. For example, Windographer 

offers eight widely used MCP methods, including linear 

regression, Weibull fitting, quicksort, orthogonal regression, 

wind speed ratio, variance ratio, matrix time series, and 

vertical stratification algorithms [14][15]. Nevertheless, wind 

speed interpolation and prediction methods, such as 

statistical models (e.g., MCP, AutoRegressive ensemble 

Moving Average (ARIMA)) and physical models (e.g., 

Numerical Weather Prediction (NWP)), are limited to 

establishing mathematical relationships between 

observations. These approaches often overlook the statistical 

characteristics of spatiotemporal correlations within the data, 

struggling to capture the complex spatiotemporal variability 

of wind speeds. Moreover, single models exhibit inherent 

limitations when addressing both temporal and spatial 

information [16]. Consequently, numerous researchers have 

turned to artificial intelligence (AI)-based hybrid models for 

wind speed interpolation and prediction, achieving promising 

results. In recent years, deep learning models, particularly 

Long Short-Term Memory (LSTM) networks, have garnered 

attention due to their capability to handle temporal 

dependencies in sequential data. Hybrid models integrating 

LSTM with other techniques have demonstrated remarkable 

performance. For instance, Li et al. [17]proposed a hybrid 

model combining Improved Complete ensemble Empirical 

Mode Decomposition with Adaptive Noise (ICEEMDAN), 

Multi-scale Fuzzy Entropy (MFE), LSTM, and Informer for 

short-term wind speed forecasting, outperforming traditional 

methods. Similarly, Zhang et al. [18]introduced a novel 

hybrid model for short-term wind speed prediction, 

leveraging advanced machine learning algorithms enhanced 

by data preprocessing and feature selection techniques to 

improve accuracy. Liu et al. [19]developed a deep 

learning-based wind speed forecasting approach that 

integrates Empirical Wavelet Transform (EWT),  LSTM, and 

Elman neural networks(ENN), effectively capturing both 

linear and nonlinear patterns in wind speed data and thereby 

enhancing prediction precision. Hybrid models often 

incorporate optimization algorithms to fine-tune parameters. 

For example, Wang et al. [20] employed a hybrid model 

based on grey relational analysis and support vector 

machines optimized by the cuckoo search algorithm, 

achieving superior short-term wind speed forecasting results 

compared to standalone models. Gradient Boosting 

Regression Trees (GBRT), as an ensemble learning method, 

enhance model generalization by combining multiple weak 

learners through gradient boosting, with its mathematical 

foundation established by Friedman [21]. Mohandes et al. 

demonstrated GBRT’s efficacy in wind speed prediction, 

particularly when integrating diverse features [22]. 

Furthermore, compared to wind speed interpolation 

based solely on a single station’s time series, incorporating 

data from neighboring stations yields more accurate results. 

Lima et al. [23] combined NWP models with statistical 

techniques, employing a regional atmospheric modeling 

system for wind speed forecasting in two distinct Brazilian 

regions and using Kalman filtering to reduce systematic 

errors. Their findings offer valuable insights for achieving 

more precise wind power studies. Wang et al. [24] 

established and trained multiple neural network models using 

wind speed data from wind farms and nearby meteorological 

stations, optimizing model parameters with a particle swarm 

optimization algorithm to enhance wind resource assessment 

accuracy. Lin et al. [25]  proposed a hybrid approach based 

on Graph Attention Networks (GAT) and an optimizable 

graph matrix, utilizing geographic information, Dynamic 

Time Warping (DTW), and Maximal Information Coefficient 

(MIC) to construct novel parameters for optimizing the 

matrix, effectively integrating spatial and temporal features 

to improve wind speed prediction accuracy. Baïle et al. 

investigated how utilizing wind speed data from nearby 

meteorological stations can enhance short-term wind speed 

forecasts at a specific location. Their study demonstrated that 

incorporating spatiotemporal information from neighboring 

stations can significantly improve forecast accuracy, 

particularly within the 1 to 6-hour prediction window, with 

root mean square error (RMSE) reductions of up to 20% [26]. 

Additionally, Reinhardt evaluated 12 wind speed 

interpolation methods (e.g., Inverse Distance 

Weighting(IDW), Kriging, and linear regression) to address 

data gaps at wind farm sites using neighboring station data, 

finding Kriging to be the most effective in most cases, while 

IDW excelled in areas with dense station coverage [27]. 

Palutikof et al. validated the applicability of IDW in complex 

terrains, further reinforcing its utility [28]. 

Building on these advancements, this study proposes an 

ensemble LSTM-IDW-GBRT model for wind speed 

interpolation. The model first employs LSTM to capture 

temporal dependencies within wind speed time series, then 

utilizes IDW to leverage wind speed data from neighboring 

stations for spatial interpolation, and finally integrates these 

components using GBRT to enhance overall prediction 

accuracy. This approach fully exploits the temporal and 

spatial characteristics of the data, offering a novel solution 

for wind speed interpolation in multi-terrain regions. 
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Fig.1.  Illustration of the LSTM model

II. Technical PRINCIPLES 

A.  LSTM 

Based on Recurrent Neural Network (RNN), the LSTM 

network adds a gating mechanism. It introduces a "forget 

gate" to discard unnecessary information, an "input gate" to 

store new useful information, and an "output gate" to produce 

output based on the current cell state, thereby effectively 

alleviating the gradient vanishing and exploding problems 

that are inherent to RNNs when modeling long-range 

dependencies[29]. Through these gate mechanisms, LSTM 

can more effectively capture long-term dependencies, which 

is essential for time-varying data like wind speed. The 

working principle of LSTM in wind speed prediction is 

detailed in [17] , and its workflow is shown in Figure 1. 

B.  IDW 

The IDW interpolation method is a distance-based 

spatial interpolation technique [30]. Its core idea is to 

estimate the value of an unknown point by taking a weighted 

average of known point values, where each weight is 

determined by a distance function between the known and 

unknown points. Specifically, given a set of known points 

and their corresponding values on a two-dimensional plane, 

the estimation process for an unknown point’s value is as 

follows: 

Step 1 Calculate the distance between each known point 

and the unknown point. 

                       

2 2

0 0( ) ( )i i id x x y y= − + −
 
           （1） 

where ( , )i jx y represents the coordinates of the i-th known 

point 
0 0( , )x y  represents the coordinates of the unknown 

point, and id  denotes the distance between the i-th known 

point and the unknown point. 

Step 2 Calculate the weight for each known point value 

based on the distance obtained in Step 1: 

     

1
i P

i

w
d

=                                （2） 

where iw  represents the weight of the i-th known point 

value, and P is a distance exponent parameter that controls 

the influence of distance on the weight。 

Step 3 Based on the distances and weights calculated in 

the previous steps, the value of the unknown point can be 

estimated using the following formula: 

1
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i
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w z
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=

=

=
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
                               （3） 

where
0z   and 

iz  represent the estimated value at the 

unknown point and the value at the i-th known point, 

respectively, and n is the total number of known points. 

The Inverse Distance Weighting (IDW) interpolation 

method is recognized for its simplicity, ease of 

implementation, and its ability to account for spatial 

correlations in the data. This method is particularly effective 

for interpolating in cases where the data are irregularly 

distributed. In the context of meteorological data collected 

from sparsely and unevenly distributed wind farm stations, 

the IDW method facilitates interpolation by utilizing data 

from proximate stations, thereby generating gridded 

estimates for the wind farm locations and their surrounding 

areas. 

C.  GBRT 

Gradient Boosting Regression Tree (GBRT) is a decision 

tree algorithm within the gradient boosting framework. It 和

adds new tree models in a Boosting iterative process to 

correct the residuals of previous models, thereby enhancing 

accuracy. In each iteration t , the GBRT algorithm calculates 

the residual 
, 1( )i t i t ir y F x−= − , where iy  is the observed 

value, and 
1( )t iF x−

 represents the model output at the current 

iteration. A new decision tree ( )th x  is then trained on the 

residuals as target values, and the model is updated as 

1( ) ( ) ( )t t tF x F x h x−= +  , where ν is the learning rate. 

The final output is the weighted sum of all tree models. In this 

study, the GBRT model is used to integrate the interpolation 

results from the LSTM model and the IDW method, thereby 

producing the final ensemble interpolated wind speed values. 

A. Pearson Correlation Coefficient Method 

As a phenomenon of air flow, wind speed in neighboring 

regions within the same time period exhibits spatial 

correlation. To verify the spatial correlation of wind speed in 

adjacent regions at the same time, this study employs the 

Pearson correlation coefficient method. The Pearson 

correlation coefficient is a measure used to assess the strength 

of the linear relationship between two variables, and its 

calculation formula is as follows: 

( )
,

2 2

1 1
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where X and Y are continuous variables, cov( , )X Y  

denotes the covariance matrix between X and Y, 
X  and 

Y  represent the standard deviations of X and Y, and 
X  

and 
Y are the means of X and Y, respectively.  

The Pearson correlation coefficient ranges from -1 to 1, 

where -1 indicates a perfect negative correlation, 1 indicates a 

perfect positive correlation, and 0 means no linear correlation 

between the variables. The closer the Pearson correlation 

coefficient is to 1 or -1, the stronger the linear relationship 

between the variables. Generally, a coefficient greater than 

0.4 indicates a strong positive correlation between the two 

variables. 

III. BUILDING the ensemble Model 

Given the temporal and spatial correlations in wind speed 

data, an ensemble model based on the spatiotemporal 

characteristics of LSTM-IDW-GBRT is constructed. This 

model integrates data from neighboring meteorological 

stations, which exhibit spatial correlation, along with 

historical wind speed data from the target station, which 

reflects temporal correlation. The specific workflow of the 

model is illustrated in Figure 2. 
 

Based on the model workflow, for a meteorological station 

with wind speed data that requires interpolation, two nearby 

stations are selected. Initially, historical data from all three 

stations undergoes data prepossessing, where single 

anomalous or missing values are filled using the mean of 

adjacent time points. Subsequently, to verify the spatial 

correlation among the stations’ wind speeds, the Pearson 

correlation coefficient method is applied to calculate the 

correlation coefficients between each pair of the three 

stations' wind speed data. 

Using the processed data from each station, the LSTM 

model and IDW interpolation method are applied for fitting 

and training. The historical data of the target station needing 

interpolation is input into the LSTM model through a 12-step 

rolling training procedure. The wind speed data from nearby 

stations is then used to compute the IDW interpolated wind 

speed for the target station, with the optimal parameters for 

IDW selected based on the target station’s historical wind 

speed data. Finally, the outputs from the LSTM and IDW 

models, alongside the actual historical data, are integrated 

into the GBRT model for ensemble learning.” 

This study evaluates the interpolation results using three 

error metrics: Mean Absolute Error (MAE), Mean Squared 

Error (MSE), and Root Mean Square Error (RMSE). The 

formulas for these error metrics are as follows: 

1

1
ˆMAE | |

n

i i

i

y y
n =

= −                               (5) 
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= −                                 (6) 
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1

1
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n

i i

i

y y
n =

= −                            (7) 

where n is the number of interpolated output values, 

iy
represents the true wind speed value, and 

ˆ
iy
 denotes the 

wind speed value output by the interpolation model. 

IV. Case Study Analysis 

A. Data Description and Preprocessing 

Shandong Province, located in the eastern coastal region of 

China, has a warm temperate monsoon climate, primarily 

featuring plains and hills, along with mountain ranges and 

low-lying coastal areas. The region's wind resources are 

favorable, influenced mainly by the East Asian monsoon and 

sea-land winds. To evaluate the interpolation effectiveness of 

the proposed ensemble model for wind speed data with 

partial missing values, four sets of meteorological stations are 

selected from national basic meteorological stations within 

Shandong Province, based on the regional topography. Each 

group consists of three meteorological stations and includes 

data on wind speed, station ID, and latitude and longitude. 

The wind speed data spans the entire year of 2022, with a 

time resolution of 1 hour and a sampling interval of 2 minutes, 

yielding 8,760 wind speed entries per station. Figure 3 shows 

the spatial distribution of each group of meteorological 

stations, labeled from left to right as Group A, Group B, 

Group C, and Group D. The wind speed data and basic 

information for each station are summarized in Table 1. 

Historical data

Historical data

Station 1 wind 

speed data

Station 2 wind 

speed data

Station 3 wind 

speed data

Train the LSTM model

Verify data spatial correlation

Determine the optimal IDW 

parameters

Train the GBRT model to ensemble

Data preprocessing

Wind speed of the 

station to be measured

Wind speed data 

of Station 2

Wind speed data 

of Station 3

Integrated model rolling prediction of 

wind speed during the test period  
Fig. 2.  Integration model LSTM-IDW-GBRT flow chart
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Fig. 3.  Map of location of weather stations 

TABLE I 
TABLE OF BASIC WEATHER STATION INFORMATION 

Group Station ID  Longitude  Latitude  Elevation (m) Data Volume Characteristics 

A 

54913 116.49 35.45 62.3 8760 

Uniform elevation, inland area 54916 116.51 35.34 51.7 8760 

54918 116.58 35.36 62.3 8760 

B 

54822 117.44 36.52 47.4 8760 

Low average elevation, mountainous region 
54829 117.52 36.46 85.7 8760 

54830 117.56 36.49 34.4 8760 

C 

54848 119.25 35.59 82.6 8760 

High average elevation 54940 119.12 35.45 148.2 8760 

54945 119.32 35.26 36.9 8760 

D 

54776 122.42 37.24 47.7 8760 

Coastal area 
54777 122.04 37.12 118.0 8760 

54871 122.29 36.56 9.8 8760 

Total  105120  

Among the groups, Group A represents an inland area with 

relatively uniform altitude, Group B is a mountainous region 

with a lower average altitude, Group C has a higher and more 

uneven altitude distribution, and Group D is a coastal area. 

For occasional single missing or anomalous values in the 

raw data, a nearest-neighbor interpolation method is applied 

due to the continuity of time series data. Specifically, if ix  is 

a wind speed value that needs to be filled, the average of the 

wind speeds from the previous time point xi-1 and the next 

time point 1ix +   is used to fill ix ,  as follows: 

1 1

2

i i
i

x x
x − ++

=
                   

   (8) 

 

Following data cleaning, the complete wind speed data for 

each meteorological station in 2022 was divided, with the 

first 80% designated as the training set for training the LSTM, 

IDW, and GBRT ensemble models, and the remaining 20% 

allocated as the test set for interpolation validation. 

Figure 4 presents the box plots of actual wind speeds for 

each station after data preprocessing. In each box plot, the 

central line represents the median wind speed at the 

respective station, while the height of the box corresponds to 

the interquartile range (IQR), spanning from the first quartile 

(Q1) to the third quartile (Q3). A taller box indicates a larger  

IQR, reflecting greater variability in the data. Outliers are 

marked by diamond symbols, signifying values that fall 
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substantially outside the interquartile range. 

From Figure 4, it is evident that although the distribution 

of actual wind speed data exhibits minor variations across 

stations, it remains relatively consistent overall. Notably, 

each station shows a significant number of high wind speed 

peaks. The median wind speed for Group D, comprising three 

coastal meteorological stations, is comparatively higher, with 

a greater frequency of high wind speeds. This suggests that 

coastal stations experience more pronounced wind speed 

fluctuations and a higher occurrence of strong winds. 

B. Verifying Spatial Correlation 

To investigate the inter-station correlations of wind speed 

sequences within each group and to further inform the 

integration strategy of spatial information in the wind speed 

interpolation model, this study calculates the Pearson 

correlation coefficients between all pairs of 12 

meteorological stations. The results are illustrated in Figure 5. 

In this figure, both the numerical values and the shape of 

ellipses in the heatmap intuitively convey the spatial 

correlation of wind speeds between stations. As observed in 

Figure 5, the wind speed sequences of stations within the 

same group exhibit generally strong correlations, with most 

inter-station coefficients exceeding 0.5. For instance, in 

Group A, the coefficient between stations A-54913 and 

A-54916 reaches as high as 0.71; in Group B, the correlation 

between B-54829 and B-54822 is 0.65, and between B-54829 

and B-54830 is 0.75. These values reflect a high degree of 

temporal synchronicity, indicating consistent wind speed 

variation patterns under similar climatic and topographical 

conditions, thus laying a solid foundation for using data from 

neighboring stations in spatial interpolation. 

 
Fig.4.   Box plot of wind speed at each meteorological station 
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Fig.5.   Box plot of wind speed at each meteorological station 

 

In contrast, wind speed correlations between stations from 

different groups are significantly lower, with most 

coefficients below 0.4 and some even under 0.3. For example, 

the correlation between A-54913 and D-54776 is only 0.26, 

and between B-54830 and D-54777 merely 0.19. These 

results confirm the existence of pronounced spatial 

attenuation in wind speed: as geographical distance increases, 

the spatial correlation of wind speed diminishes accordingly. 

This spatial heterogeneity poses a challenge to interpolation 

model construction, particularly in regions with large spatial 

spans or complex terrain, where traditional distance-based 

methods such as IDW may suffer from performance 

degradation. 

A closer examination of intra-group spatial structure 

reveals micro-level differences as well. For example, in 

Group C, while the correlation between C-54848 and 

C-54940 is 0.69, that between C-54848 and C-54945 drops to 

0.42. This disparity indicates that even within the same 

subregion, wind speed variation can still be affected by 

factors such as terrain features, microclimate conditions, or 

the layout of measurement stations. Such local spatial 

heterogeneity further underscores the necessity of 

incorporating a correlation-weighted mechanism into the 

interpolation process. 

Additionally, although Group D exhibits relatively lower 

overall correlation compared to inland groups, the 

inter-station correlation among D-54776, D-54777, and 

D-54871 remains above 0.65. This suggests that in complex 

terrains such as coastal areas, spatial correlation—while 

generally weaker—can still be maintained at moderate to 

high levels within local subregions. This provides practical 

feasibility for interpolation at edge stations or in areas with 

complex geographical features. 

In summary, the spatial correlation structure revealed by 

Figure 5 offers important insights for model development. On 

one hand, the strong intra-group correlation supports the 

effectiveness of IDW-based methods and spatially weighted 

regressions such as MCP. On the other hand, the observed 

spatial heterogeneity and correlation decay with distance 

offer a theoretical basis for incorporating spatial feature 

extraction mechanisms in the ensemble model—specifically, 

leveraging IDW for spatial trend estimation and LSTM for 

capturing temporal dependencies. Future studies may further 

incorporate a spatial correlation weighting matrix to 

dynamically adjust the influence of neighboring stations 

during interpolation, thereby improving both the accuracy 

and robustness of wind speed interpolation models. 

C.  Results Analysis 

This section evaluates the performance of the 

LSTM-IDW-GBRT ensemble model in wind speed 

interpolation tasks. By integrating observational data from 

target meteorological stations and comparing the fitting 

results of various models, the study assesses the proposed 
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model’s superiority in terms of interpolation accuracy and 

stability across multiple dimensions, including error metrics, 

fitting curves, terrain differences, and model structural 

advantages. 

Figure 6 presents the radar charts of interpolation error 

metrics for four representative target stations from different 

groups (A-54918, B-54830, C-54940, and D-54777), 

comparing the proposed LSTM-IDW-GBRT model against 

baseline models such as LSTM, IDW, linear regression, 

segmented spline interpolation, and polynomial interpolation. 

The radar plots clearly indicate that the proposed ensemble 

model achieves the smallest coverage area in MSE, MAE, 

and RMSE, while the R² values are significantly higher than 

those of the other methods, highlighting its superiority in 

both fitting accuracy and stability. 

Specifically, for station B-54830, the RMSE of the 

ensemble model is substantially lower than that of individual 

models such as LSTM and IDW, indicating that it not only 

fits the overall trend but also maintains high accuracy during 

periods of substantial wind speed fluctuation. Similarly, for 

stations A-54918 and C-54940, the ensemble model 

demonstrates lower error volatility compared to spline and 

polynomial interpolation, reflecting its enhanced ability to 

capture spatiotemporal patterns. Quantitatively, the average 

MSE, MAE, and RMSE across the four target stations are 

0.639, 0.5045, and 0.897, respectively—more than 30% 

lower than those of traditional interpolation 

models—demonstrating a significant improvement in overall 

performance. 

To further validate the model’s ability to track temporal 

wind speed fluctuations, Figure 7-10 illustrates the 

interpolation curves of actual wind speed values versus 

predicted values across multiple randomly selected time 

intervals at the four target stations. The results show that the 

LSTM-IDW-GBRT interpolation curves closely follow the 

actual wind speed trends in most cases, particularly during 

periods of high-frequency oscillations and abrupt changes. 

For example, in Figure 8, station 54940 experiences a sharp 

rise and fall in wind speed between October 10 and 14, 2022. 

During this period, LSTM and IDW models exhibit delayed 

responses or underfitting, whereas the ensemble model 

accurately captures the trend and maintains a low prediction 

error. Additionally, in Figure 9, station 54777 shows a steady 

wind speed increase over several consecutive periods. 

Traditional methods such as linear regression or polynomial 

interpolation often suffer from edge-effect errors under such 

conditions, while the ensemble model yields consistent 

outputs aligned with the actual trend, demonstrating 

robustness to both short-term stability and mid-term 

variability. 

This study also explores the model’s generalization ability 

by examining performance across two major terrain 

categories: inland and coastal stations. Stations A-54918, 

B-54830, and C-54940 represent inland areas with high 

inter-station correlation, while station D-54777 represents a 

coastal area with complex topography. Results show that the 

ensemble model achieves higher accuracy and consistency in 

inland areas, with station A-54918 yielding an MSE of 

0.3813 and an MAE of 0.473, outperforming all baseline 

methods. Even in coastal terrain, such as at station D-54777, 

the ensemble model maintains an RMSE of 1.319, about 40% 

lower than that of the IDW method. This demonstrates the 

model's robustness in adapting to varying terrain conditions 

and superior error suppression performance, especially in 

regions where traditional interpolation methods tend to 

struggle. Further analysis reveals that the average RMSE for 

inland stations is 0.7265, compared to 1.319 for coastal 

stations—a difference of 0.5925—which aligns with the 

well-known physical relationship between terrain complexity 

and wind speed variability. It also suggests that the ensemble 

model can adaptively adjust its weighting mechanism based 

on input features, thereby exhibiting strong terrain 

adaptability. 

In summary, the ensemble model’s outstanding 

interpolation accuracy and stability are attributable to its 

ensemble modeling of temporal and spatial features. The 

LSTM module effectively captures long-term dependencies 

and seasonal trends in wind speed sequences via its memory 

gate mechanisms. The IDW module incorporates spatial 

correlation by leveraging data from nearby stations, 

enhancing the model’s sensitivity to local spatial variations. 

The GBRT module, acting as a nonlinear regression 

integrator, combines the outputs of LSTM and IDW, 

delivering a more adaptive interpolation outcome. This 

multicomponent architecture—characterized by temporal 

sensing, spatial reasoning, and model fusion—not only 

compensates for the limitations of single models under 

complex conditions but also enhances the model’s robustness 

to data anomalies and abrupt changes, ensuring interpolation 

results remain closely aligned with actual wind speed 

dynamics. 

To quantify the model's advantages more precisely, Table 

2 lists the percentage reductions in error metrics across the 

four target stations. The ensemble model achieves average 

reductions of 56.4% in MSE, 37.15% in RMSE, and 32.55% 

in MAE, indicating not only improved accuracy but also 

greater stability with reduced error variability. 

Further analysis of the standard deviation of prediction 

errors across the four stations confirms that the ensemble 

model yields significantly lower error fluctuations than 

traditional models. For instance, at station B-54830, the 

RMSE from the IDW model varies widely across different 

time points, while the ensemble model consistently maintains 

prediction error within ±0.3. This result highlights the 

superior error control capacity of the proposed method, 

effectively minimizing interpolation bias caused by data 

non-stationarity or irregular station placement. 

To further demonstrate the superiority of the proposed 

model, we conduct comparative experiments against several 

state-of-the-art neural network architectures. Specifically, we 

include Informer, a cutting-edge temporal transformer-based 

forecasting model; CNN-BiLSTM-AM, which utilizes a 

convolutional neural network for feature extraction followed 

by a BiLSTM enhanced with a self-attention mechanism for 

prediction; and VMD-GRU-MC, which integrates 

Variational Mode Decomposition (VMD) for signal 

decomposition, a Gated Recurrent Unit (GRU) network for 

forecasting, and a Markov Chain-based (MC) component for 

error correction. The comparative results are presented in 

Table 3 and Figure 11-18. 

Among all evaluated models, the proposed model achieved 

the best overall performance at Station 54918, with the 
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lowest Mean Squared Error (MSE = 0.3813), Mean Absolute 

Error (MAE = 0.473), and Root Mean Squared Error (RMSE 

= 0.6175), alongside the highest coefficient of determination 

(R² = 0.6451). In contrast, the Informer, CNN-BiLSTM-AM, 

and VMD-GRU-MC models yielded significantly higher 

error metrics and lower R² values, with VMD-GRU-MC 

recording the poorest performance. As illustrated in Figure 8, 

the predicted wind speed series from the proposed model 

closely follows the actual fluctuations, accurately capturing 

both the sharp rises and sudden drops. This alignment 

suggests a superior ability to track local variations and 

temporal trends, which baseline models fail to achieve 

consistently. 

At Station 54830, the proposed model again exhibited 

strong predictive capabilities, outperforming all baselines 

with the lowest MSE (0.5461), MAE (0.5717), and RMSE 

(0.739), and the highest R² value (0.882). While the Informer 

model showed relatively better performance than 

CNN-BiLSTM-AM and VMD-GRU-MC, it still lagged 

behind the proposed model in all metrics. From the time 

series comparison in Figure 8, the proposed model 

demonstrates a remarkable ability to trace the wind speed 

trends, particularly in capturing turning points and trend 

reversals. In contrast, other models tend to either oversmooth 

the predictions or introduce significant lag, leading to 

suboptimal forecasting accuracy. 

For Station 54940, the proposed model delivered the most 

accurate results, achieving the lowest MSE (0.6775), MAE 

(0.6527), and RMSE (0.8231), as well as the highest R² value 

(0.6775). The gap between the proposed model and the 

baselines, especially VMD-GRU-MC (MSE = 1.6903, R² = 

0.432), is notably large. As shown in Figure 8, the proposed 

model's predictions maintain a strong correspondence with 

the observed wind speed curve, effectively reflecting both 

high-frequency oscillations and long-term trends. This 

indicates the model’s strong capability in adapting to both 

short-term fluctuations and overall temporal structure—an 

aspect where baseline methods frequently falter. 

Although Station 54777 presented greater forecasting 

challenges for all models, the proposed model still 

outperformed the baselines in most metrics, recording the 

lowest MAE (1.0139) and RMSE (1.3190), and a competitive 

R² of 0.6401. While the Informer model slightly 

outperformed in terms of R² (0.7376), it incurred higher 

errors in other metrics. From the temporal trend depicted in 

Figure 8, the proposed model achieves a better fit with the 

observed wind speed curve, particularly in capturing broader 

trend patterns and abrupt wind changes. Meanwhile, the 

baseline models exhibit noticeable lag or fail to adapt to rapid 

transitions, undermining their practical applicability in 

dynamic scenarios. 

Across all four stations, the proposed model consistently 

outperforms the baseline methods in terms of MSE, MAE, 

RMSE, and R², demonstrating its superior accuracy and 

generalization ability. The improvements are particularly 

evident in stations with more complex or volatile wind 

patterns, where conventional models struggle to adapt to 

sudden changes. Visual comparisons in Figure 15-18 further 

reinforce these findings, showing that the proposed model is 

better aligned with the ground truth time series, especially in 

capturing both sharp transitions and smooth trend variations. 

These results collectively validate the effectiveness of the 

proposed approach in delivering robust and precise wind 

speed forecasting under diverse conditions. 

 

 
Fig. 6.  Comparison of Error Metrics for Wind Speed Interpolation Results of Various Models 
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V. CONCLUSION 

To address the issues of spatial unevenness, sparse 

observation points, and missing values in wind speed data 

over complex terrains, this study proposes a spatiotemporal 

wind speed interpolation method—the LSTM-IDW-GBRT 

ensemble model. This model innovatively integrates Long 

Short-Term Memory (LSTM) networks, the Inverse Distance 

Weighting (IDW) method, and Gradient Boosting Regression 

Trees (GBRT), which are respectively responsible for 

capturing temporal dependencies, spatial correlations, and 

nonlinear fitting capabilities of wind speed data. This 

integration enables accurate interpolation of missing wind 

speed values across multi-terrain regions. The model was 

systematically validated using real-world wind speed data 

from 12 meteorological stations in Shandong Province, and 

the experimental results demonstrate that the proposed 

method outperforms conventional and single-model 

approaches in terms of interpolation accuracy, stability, and 

adaptability. The main conclusions are summarized as 

follows. 

Firstly, in terms of temporal modeling, the LSTM 

network effectively captures long-term trends and periodic 

patterns in wind speed series through its memory gate 

mechanism, and maintains strong predictive ability even 

during periods of high fluctuation. Secondly, the IDW 

method utilizes spatial information from neighboring stations 

to perform interpolation, demonstrating strong adaptability in 

regions with dense station distribution. Finally, the GBRT 

model nonlinearly integrates the outputs from the LSTM and 

IDW modules, effectively fusing temporal and spatial 

features, and thereby improving overall interpolation 

accuracy and compensating for the limitations of individual 

models in handling complex spatiotemporal dependencies. 

In the experimental analysis, four representative target 

stations (A-54918, B-54830, C-54940, and D-54777) were 

selected, located across different terrain types including 

inland, mountainous, and coastal areas. A comprehensive 

comparison was conducted between the proposed model and 

several baseline methods, including LSTM, IDW, linear 

regression, polynomial interpolation, and segmented spline 

interpolation, using common error metrics such as MSE, 

MAE, RMSE, and R². The results indicate that the proposed 

ensemble model achieved the lowest error at all target 

stations, with average reductions in MSE, MAE, and RMSE 

of 56.4%, 32.55%, and 37.15%, respectively, significantly 

outperforming the comparison methods. The model exhibited 

the highest fitting accuracy in inland regions, and also 

maintained strong error suppression capabilities in complex 

coastal terrain, demonstrating excellent generalization and 

robustness. In addition, by evaluating the proposed model 

across four geographically distinct regions, we further 

validate its robustness and adaptability. The results show that 

the proposed approach consistently achieves the best 

performance under varying terrain conditions, outperforming 

both state-of-the-art neural architectures and ensemble-based 

models. Among the baseline methods, Informer demonstrates 

relatively stable and competitive performance across all sites, 

though it still falls short of the proposed model. In contrast, 

CNN-BiLSTM-AM and VMD-GRU-MC exhibit noticeably 

inferior accuracy and generalization capabilities, particularly 

in regions with more complex or rapidly changing wind 

dynamics. These findings suggest that the proposed model is 

better equipped to handle diverse environmental settings and 

spatial heterogeneity. 

In conclusion, the proposed LSTM-IDW-GBRT 

ensemble model exhibits remarkable advantages in 

interpolation accuracy, structural rationality, and broad 

applicability. It provides a practical solution for various 

real-world applications such as wind resource assessment, 

wind farm site selection, and short-term wind power 

forecasting. Future work may extend this model to other 

geographical regions for wind speed imputation and 

forecasting, further enhancing its utility and decision-support 

capabilities within smart energy systems.

 
Fig. 7.  Forecast results of Group A meteorological station 54918 
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TABLE II 
TABLE OF PREDICTION ERROR RESULTS 

Group Station ID Prediction Method MSE MAE RMSE R2 

A 54918 

LSTM 0.7983 0.6872 0.8935 0.3863 

IDW 1.2662 0.6699 1.1253 0.4844 

Polynomial Interpolation 0.9072 0.7733 0.9525 0.3260 

Segmentation Spline Interpolation 1.1242 1.0271 1.0603 0.3070 

Linear Regression 0.4540 0.5260 0.6730 0.5373 

Proposed Model 0.3813 0.4730 0.6175 0.6451 

B 54830 

LSTM 1.0815 0.8075 1.0399 0.3755 

IDW 0.7306 0.6463 0.8548 0.8240 

Polynomial Interpolation 0.9059 0.9458 0.9518 0.6872 

Segmentation Spline Interpolation 1.1919 0.8845 1.0918 0.5884 

Linear Regression 0.5960 0.6020 0.7720 0.8312 

Proposed Model 0.5461 0.5717 0.7390 0.8820 

C 54940 

LSTM 1.1940 0.8607 1.0927 0.4740 

IDW 1.6920 1.0364 1.3008 0.3270 

Polynomial Interpolation 0.9265 0.8323 0.9625 0.5470 

Segmentation Spline Interpolation 0.9335 0.9050 0.9662 0.5610 

Linear Regression 0.7399 0.6978 0.8601 0.5840 

Proposed Model 0.6775 0.6527 0.8231 0.6270 

D 54777 

LSTM 2.8458 1.3068 1.6870 0.2161 

IDW 4.9619 1.7380 2.2275 0.2048 

Polynomial Interpolation 0.9138 0.8374 0.9559 0.4770 

Segmentation Spline Interpolation 1.0685 1.0013 1.0337 0.4290 

Linear Regression 2.1290 1.1320 1.4590 0.3463 

Proposed Model 1.7399 1.0139 1.3190 0.6401 

 

 

 
Fig. 8.  Forecast results of Group B meteorological station 54830 
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Fig. 9.  Forecast results of Group C meteorological station 54940 

 
Fig. 10.  Forecast results of Group D meteorological station 54777 
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TABLE III 
 RESULTS WITH MODERN MODELS 

Group Station ID Prediction Method MSE MAE RMSE R2 

A 54918 

Informer 0.7983 0.675 0.8889 0.3863 

CNN-BiLSTM-AM 0.9112 0.77 0.9546 0.4844 

VMD-GRU-MC 0.9552 0.756 0.9774 0.3260 

The Proposed Model 0.3813 0.473 0.6175 0.6451 

B 54830 

Informer 0.76 0.706 0.8718 0.7376 

CNN-BiLSTM-AM 0.87 0.773 0.9327 0.6996 

VMD-GRU-MC 0.95 0.744 0.9747 0.6719 

The Proposed Model 0.5461 0.5717 0.739 0.882 

C 54940 

Informer 1.2816 1.2816 1.2816 0.603 

CNN-BiLSTM-AM 1.4396 0.98 1.1998 0.578 

VMD-GRU-MC 1.6903 0.977 1.3001 0.432 

The Proposed Model 0.6775 0.6527 0.8231 0.6775 

D 54777 

Informer 2.2 1.244 1.48 0.7376 

CNN-BiLSTM-AM 2.39 1.174 1.5 0.6996 

VMD-GRU-MC 2.6 1.233 1.6 0.6719 

The Proposed Model 1.7399 1.0139 1.3190 0.6401 

 

 
Fig. 11. Evaluation Metrics of Results compared with Modern Models of station 54918 

 
Fig. 12. Evaluation Metrics of Results compared with Modern Models of station 54830 
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Fig. 13. Evaluation Metrics of Results compared with Modern Models of station 54940 

 
Fig. 14. Evaluation Metrics of Results compared with Modern Models of  station 54777 

   
Fig. 15.  Results compared with Modern Models of Group A meteorological station 54918 
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Fig. 16.  Results compared with Modern Models of Group B meteorological station 54830 

 

 
Fig. 17.  Results compared with Modern Models of Group C meteorological station 54940 
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Fig. 18.  Results compared with Modern Models of Group D meteorological station 54777 
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