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Abstract—Amid increasing global economic uncertainty, 

local government debt burdens have significantly intensified, 
triggering growing concerns regarding cross-regional debt 
contagion risks. Traditional approaches, such as Copula-based 
models, effectively capture static dependencies but lack 
responsiveness to dynamic policy environments. Conversely, 
Multi-Agent Reinforcement Learning (MARL) offers strong 
adaptability for strategic optimization but often falls short in 
accurately modeling complex dependency structures. To 
overcome these limitations, this research introduces the 
Dynamic Copula-Reinforcement Learning Contagion Model 
(DCRL-CM), effectively integrating the strengths of both 
methodologies to dynamically model debt contagion pathways. 
Employing empirical data from 16 cities in Anhui Province, 
China, the DCRL-CM robustly characterizes the evolution of 
inter-city debt dependencies under diverse economic and fiscal 
conditions, allowing for dynamic strategic adjustments. The 
proposed model demonstrates superior forecasting 
performance regarding debt risk contagion. Dynamic 
simulations unveil spatially heterogeneous risk transmission 
patterns and highlight a distinct core-periphery contagion 
structure. Compared with traditional static models, the 
DCRL-CM substantially enhances the accuracy of modeling 
nonlinear debt contagion dynamics, effectively mitigating 
systemic risk amplification in core urban areas while 
facilitating decentralized risk management practices regionally. 
These results provide a solid analytical foundation for the 
dynamic management of regional governmental debt risks and 
offer critical policy insights for strengthening fiscal resilience 
and advancing sustainable economic development. 
 

Index Terms—regional government debt risk, dynamic 
contagion model; multi-agent reinforcement learning; Copula 
function  
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I. INTRODUCTION 

N recent years, the contagion effect associated with 
regional government debt has emerged as a critical focus in 

global economic research. Amid escalating uncertainties 
surrounding global economic growth, numerous regional 
governments have encountered progressively burdensome 
debt obligations[1]. This scenario not only endangers local 
economic stability but also exacerbates systemic contagion 
risks through fiscal interdependencies among regions, 
potentially destabilizing broader national economies[2]. 
Since the outbreak of the COVID-19 pandemic in 2020, 
nations worldwide have adopted substantial fiscal stimulus 
packages to mitigate economic disruptions, consequently 
triggering significant increases in regional government 
indebtedness[3]. To sustain local economies during this 
challenging period, regional authorities have notably 
elevated public expenditure and intensified debt issuance, 
sharply amplifying their cumulative debt burdens. 
Concurrently, recessionary pressures triggered by the 
pandemic, coupled with declining tax revenues, have 
considerably undermined regional governments' fiscal 
capabilities and debt-servicing capacities[4, 5]. Against this 
backdrop, the transmission of debt risks across regions has 
become increasingly pronounced. If left unaddressed, these 
vulnerabilities could precipitate nationwide debt crises, 
further jeopardizing macroeconomic stability. Indeed, since 
the pandemic's onset, regional governments globally have 
faced mounting fiscal pressures as increased 
pandemic-related expenditures and reduced revenues have 
created a vicious cycle of escalating debt burdens, diminished 
repayment abilities, and heightened dependency on 
refinancing, thus fostering structural debt vulnerabilities in 
numerous regions[6]. 

To elucidate the dynamic characteristics and transmission 
pathways associated with regional government debt risk, 
numerous studies have employed various methodologies to 
capture dependency structures. Among these methods, the 
Copula approach has emerged prominently, given its 
effectiveness in modeling complex risk contagion 
phenomena due to its ability to accurately represent nonlinear 
dependencies[7]. By separately defining marginal and joint 
distributions, Copula methods provide substantial flexibility 
for constructing intricate dependency frameworks among 
financial variables. Specifically, techniques such as t-Copula 
and Vine Copula have demonstrated notable efficacy in 
capturing tail dependencies, thus making them particularly 
suitable for analyzing extreme dependence relationships 
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inherent in debt-risk contagion networks[8].Nonetheless, 
despite its advantages, the traditional Copula methodology 
inherently captures static dependency structures, limiting its 
effectiveness in dynamically changing environments, 
particularly those influenced by economic policy shifts[9, 10]. 
In rapidly evolving financial conditions, fixed dependency 
frameworks might inadequately reflect the adaptive 
complexities inherent in debt contagion pathways [11], 
thereby restricting their applicability in risk forecasting and 
management. Consequently, researchers have increasingly 
sought more adaptive modeling approaches. Multi-agent 
reinforcement learning (MARL), in particular, has gained 
considerable attention in financial modeling due to its 
adaptability and potential for strategic optimization. 
Reinforcement learning leverages iterative trial-and-error 
processes combined with policy optimization, thereby 
offering unique advantages for simulating intricate 
interactions among financial agents [12, 13]. In multi-agent 
settings, coordinated decision-making effectively 
encapsulates the systemic interdependencies, and such 
frameworks have already been successfully applied in 
various financial contexts, including investment management, 
market dynamics, and trading behaviors[14-16]. Recent 
developments in deep reinforcement learning have further 
augmented the capabilities of MARL, enabling sophisticated 
deep-network architectures to devise strategies and optimize 
decision-making processes efficiently. Thus, MARL 
represents a particularly promising approach for addressing 
complex contagion risks associated with multi-regional 
government debt[17]. 

While both Copula methods and MARL possess distinct 
advantages for financial risk modeling, existing research has 
yet to integrate these methodologies to examine regional 
government debt contagion. Traditional Copula models 
typically fall short in capturing real-time dependency shifts 
caused by dynamic economic policies and external 
shocks[18]. In contrast, although MARL effectively captures 
adaptive and strategic agent interactions, it struggles to 
accurately represent the intricate dependency structures 
among financial entities[19]. To overcome these limitations, 
this study proposes a novel integrated framework that merges 
Copula modeling with MARL, thus forming an adaptive and 
dynamic contagion model. This integrated approach 
successfully identifies contagion pathways of regional 
government debt risk within dynamic and uncertain 
environments. By simultaneously modeling sophisticated 
dependency structures and dynamically simulating 
policy-driven regional responses, the proposed methodology 
provides a more comprehensive and realistic depiction of the 
complex interactions and path dependencies inherent in debt 
contagion phenomena. 

The primary contribution of this study is the development 
of an innovative debt contagion model that integrates Copula 
methods with MARL, addressing critical shortcomings 
inherent in traditional dynamic risk modeling approaches. By 
leveraging MARL’s adaptive modeling capabilities, the 
proposed framework effectively analyzes debt contagion 
under diverse policy scenarios and external economic shocks, 
yielding valuable theoretical insights and practical 
recommendations for regional government debt management. 
This integration not only enhances the theoretical 
understanding of financial risk contagion but also establishes 

a novel methodological foundation that can inform the 
formulation and optimization of regional fiscal policies. 

II. THEORETICAL MODEL 

Compared to traditional static Copula models and 
single-government decision-making frameworks, the 
proposed DCRL-CM model effectively captures the dynamic 
nature of government debt risks as well as intricate 
inter-regional interactions under changing economic 
conditions. By integrating the GARCH(1,1)-t mode [20] for 
accurate estimation of marginal distributions and employing 
the Vine Copula decomposition method[21] for constructing 
high-dimensional dependency structures, the proposed model 
robustly characterizes nonlinear and tail dependencies among 
regional risk indicators, particularly during economic 
downturns and periods of policy uncertainty. Furthermore, by 
conceptualizing regional governments as intelligent agents 
operating within a Centralized Training and Decentralized 
Execution (CTDE) framework [22], the model supports 
coordinated policy optimization. This design explicitly 
addresses the dynamic trade-offs between fiscal revenue 
generation and effective debt risk management, thus 
providing enhanced policy guidance and adaptability. 

A. Assumptions 

In this study, we begin by assuming that the government 
debt risk indicators for each region are represented by 
sufficiently long and stationary time series. This assumption 
enables reliable application of the GARCH (1,1)-t model, 
effectively capturing volatility clustering and heavy-tailed 
distributions typically observed in financial data. 
Furthermore, in constructing the high-dimensional joint 
distribution, we posit that conditional Copula parameters 
depend on bounded exogenous macroeconomic 
variables—such as GDP growth and fiscal 
self-sufficiency—and historical residual values. Ensuring 
boundedness is critical for maintaining numerical stability 
during parameter estimation. By employing suitable 
nonlinear transformations (e.g., logit or hyperbolic tangent), 
we further guarantee that estimated parameters consistently 
remain within their theoretically permissible ranges. 
Additionally, we conceptualize each regional government as 
an intelligent decision-making agent, assuming that their 
state and action spaces are either finite or compact, and their 
corresponding reward functions are continuous and 
differentiable. These assumptions satisfy the necessary 
conditions for applying classical Markov game theory and 
conducting convergence analyses in multi-agent frameworks. 
Lastly, we adopt a "slowly changing environment" 
assumption, indicating that dynamic Copula parameters 
evolve more gradually compared to agents' decision-making 
processes. Consequently, the environment can be 
approximated as quasi-static within each short-term 
analytical interval. Collectively, these assumptions lay a 
rigorous theoretical foundation essential for model 
development, algorithm design, empirical analysis, and 
subsequent theoretical validation. 

B. Marginal distribution modeling 

Building upon the framework introduced by Han et al.[23], 
this study employs a time-varying Copula model to examine 
the dependency structure among local government debt risk 
indicators. Additionally, macroeconomic variables are 
incorporated as exogenous drivers, enabling dynamic 
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analysis of the impacts of policy shifts and external shocks on 
risk contagion pathways. Initially, marginal distributions for 
diverse debt-risk indicators are estimated separately; 
subsequently, Copula functions are utilized to model the 
interdependencies among these indicators. Let ( )I ti denote 

the observation of the i-th debt-risk indicator at time t (e.g., 
outstanding debt balance, growth rate, or interest payment 
ratio). To effectively capture the volatility clustering and 
heavy-tailed characteristics commonly found in financial 
time series data, this research applies the GARCH(1,1)-t 
model, formulated as follows: 
 ( ) ( ),i i iI t t     

 ( ) ( ) ( ), ( ) ~ ( ) 0 1 ,i i i i it h t t t t    （ ，）  (1) 

 2( ) ( 1) ( 1),i i i i i ih t t h t         

where, i and ( )i t  are the mean and random noise 

respectively; ( )i t follows a Student-t distribution with i  

degrees of freedom; ( )ih t  is the conditional variance. The 

parameters { , , }i i i   satisfy 0, 0, 0i i i     , and 

1i i   to ensure model stationarity. Once the marginal 

parameters have been estimated, the corresponding 
cumulative distribution function ( )Fi   is used to transform 

the residuals into probability variables: 
 ( ) ( ( )) (0,1),u t F ti i i   (2) 

which serve as the input data for subsequent joint distribution 
modeling. 

C. Construction of a high-dimensional dynamic copula 
model 

Because multiple debt-risk indicators are involved, 
directly fitting a high-dimensional Copula model can lead to 
an excessive number of parameters, making estimation 
difficult. To address this, we employ a Vine Copula 
decomposition, representing the joint distribution of N 
indicators, denoted by 1( ,..., )NH I I , as a product of multiple 

bivariate conditional Copulas. Concretely, we define  
  1( ) ( ), , ( ) ,Nu t u t u t   (3) 

and based on either a C-vine or D-vine structure, we have 

 

1

1 ,1 1
( , , )

| ( ( ), ( )| ( )),

N N k

N j jk j

j j k S

H I I c

k s u t u t u t

 

 



 



    (4) 

where , | ( )j j kc S   denotes the Copula density between 

dimensions j and j+k, conditional on the variables in the set 
S(t). 

To capture the influence of shifts in economic conditions 
(e.g., macroeconomic recessions or fiscal policy adjustments) 
on the dependency structures of regional debt risks, we 
introduce time-varying mechanisms. Specifically, let 

, | ( )j j k s t  denote the parameter(s) of each conditional 

Copula at time t. We then specify an update function: 

  , | , |( ) ( 1), ( ), ,j j k S j j k St t Z t        (5) 

where ( )   is a mapping that adjusts the Copula parameters 

based on their previous values , | ( 1)j j k s t  , current macro 

variables Z(t), and a set of hyperparameters  . Through this 

dynamic update rule, our model can more accurately reflect 

how economic environment changes affect inter-regional 
debt risk dependence. The update function ( )  can be 

designed as either a linear or nonlinear mapping. To ensure 
that updated parameters remain within theoretically 
permissible bounds, we often apply a logit or hyperbolic 
tangent transformation. For example, one might choose 

 ( ) tanh ,
2

x
x

    
 

 (6) 

which maps any real input x into the interval (-1,1). To 
further strengthen the theoretical foundation, we provide a 
rigorous proof of the stability and parameter sensitivity of the 
update function in the proof of Theorem 1. 

Theorem 1 (contraction property and local stability of 
dynamic copula parameter updates): Let : X X  be an 

update function defined on a complete normed space 
( ,|| ||X  ). Suppose  satisfies the Lipschitz continuity 

condition with a constant [0,1]L , meaning that for any 

,x y X : 

 || ( ) ( ) || || || .x y L x y     (7) 

Define the update process recursively as  1 .n nx x    

Under these assumptions: 
(1) contraction mapping:   is a contraction mapping, so 

there exists a unique fixed point *x X such that 
* *( )x x  ;  

(2) convergence: for any initial point 0x X , the iterative 

sequence  nx converges to x . Moreover, the error bound 

satisfies:  

 * *
0|| || || ||n

nx x L x x   ;  (8) 

(3) parameter stability: if  is differentiable, then by the 
mean value theorem[24], for any x and any small perturbation 

x  we have  
 || ( ) ( ) || || ( ) || || || .x x x x x        (9) 

Under the Lipschitz condition, we require that 
 || ( ) || , .x L x X     (10) 

This ensures that small perturbations in the input result in 
proportionally small changes in the output, demonstrating 
that  exhibits relatively low parameter sensitivity. 

Proof of theorem 1: Given that   is Lipschitz continuous 
[25] on X with constant  0,1L ,  for any initial 

point 0x X , there exists 

 1 1 1( ) ( )n n n n n nx x x x L x x       ‖ ‖ ‖ ‖ ‖ ‖ (11) 

where L is the Lipschitz constant. By recursively iterating, we 
obtain 

 1 1 0|| || || || .n
n nx x L x x     (12) 

Moreover, for any m>n, applying the triangle inequality 
yields 

 

1

1 01

1
ꞏ 1 01

m
k

k n k n

x x x x L x xm n k k

nL x x
L

 

 

    

 


 ‖ ‖ ‖ ‖ ‖ ‖

‖ ‖.

 (13) 

Since 0 1L  , it follows that as n , nL converges to 0. 

Consequently, || ||m nx x tends to 0, which implies that the 

sequence  nx is a Cauchy sequence.  
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As the space X is complete, this Cauchy sequence must 

converge to some *x X . By the continuity of  , taking the 
limit as n gives  

  * *
1 ( ) ( ),n n n

n n n
x lim x lim x lim x x

  
        (14) 

demonstrating that *x is a fixed point of  .  
To prove the uniqueness of the fixed point, suppose there 

exists another fixed point *y X . Then, by the Lipschitz 

condition, 

 * * * * * *|| || || ( ) ( ) || || || .x y x y L x y       (15) 

Since 1L , the only possibility is * *|| 0||x y  , which 

implies that * *x y . Thus, the fixed point is unique. Finally, 

if  is differentiable and satisfies | ( ) |x L  , then for any 

small perturbation x , the mean value inequality yields  
 || ( ) ( ) || || || .x x x L x       (16) 

This shows that the mapping  is relatively insensitive to 
small changes in its argument, ensuring that each iterative 
update remains stable. Moreover, the convergence rate is 
characterized by  

 * *
0|| || || ||,n

nx x L x x    (17) 

which implies that the sequence converges at a geometric rate 
determined by the constant L . This behavior ensures 
excellent robustness and stability in numerical 
implementations.  

D. Multi-Agent reinforcement learning system 

Building upon the high-dimensional dynamic Copula 
model, we seek to capture the decision interactions among 
regional governments in debt management by treating each 
regional government as an agent and constructing a 
multi-agent reinforcement learning (MARL) system. For 
each agent i, its state vector ( )iS t is composed of the 

following three components: 
(1) local debt risk indicators derived from the GARCH 

(1,1)-t model (e.g., debt balance, debt growth rate, interest 
burden, etc.); 

(2) Dependence parameters extracted from the dynamic 
Vine Copula model, such as the correlation coefficients 

, ,i j t with other regions; 

(3) Exogenous macroeconomic variables ( )Z t , for 

instance, GDP growth rate and fiscal self-sufficiency. 
We denote the overall system state as  

 1 2( ) { ( ), ( ), ,S t S t S t  ( )}dS t .  (18) 

The action ( )ia t taken by agent i includes decisions on debt 

issuance, risk management measures, and fiscal strategies. 
To balance the government’s pursuit of fiscal revenue against 
the goal of reducing debt risk, we define the following reward 
function: 
      ( ) ( ), ( ) 1 ( ), ( ) ,i i i i ir t a t S t a t S t       (19) 

where i  measures fiscal revenue, i captures the risk of 

debt default or contagion, and  0,1   is a weighting 

coefficient. During the training phase, we adopt a centralized 
training, decentralized execution (CTDE) framework. Each 
agent shares global state information while training, and 
updates its policy via multi-agent reinforcement learning 

algorithms such as MADDPG [26] or QMIX[27]. The 
objective is to maximize each agent’s discounted cumulative 
reward: 

 
0

( ) ,
i

t
i

t

max r t







 
 
  

   (20) 

where i denotes the policy function of agent i, and 

(0,1)  is the discount factor. To demonstrate that the 

system still converges to a local equilibrium after introducing 
dynamic Copula parameters (i.e., dynamic environmental 
changes), we propose the following theorem. 

Theorem 2 (Existence of local Nash equilibrium in a 
multi-agent system under a time-varying environment).           
Consider a Markov game with d agents, where the state space 
S and each agent’s action space iA  are either finite or 

compact, and the reward function ( , )ir s a  is continuous in 

both s and a. We introduce a dynamic Copula parameter 
( )t  to capture the time-varying nature of the environment, 

but assume that within each short time interval of length T� , 
( )t can be approximated as constant. If the following 

conditions hold: 
(1) the state and action spaces are finite or compact, and 

the reward function ( , )ir s a is continuous; 

(2) during each stage [ , )t t T  , the exogenous parameter 

( )t  changes slowly enough that ( ) ( )t t     for all 

 0, T   ; 

(3) Within each stage, the agents are trained for a 
sufficiently large number of iterations, satisfying conditions 
on diminishing learning rates and stochastic approximation; 

(4) Each agent’s policy ( )i ia s ∣  is continuously 

differentiable with respect to its parameters, and the reward 
function is differentiable with respect to the actions. 
Then, at the end of each stage, there exists a set of strategies 

 *
i such that 

  
1* ( ), ( ) ,

i

t T t
i it

arg max r s a


   
  


       (21) 

meaning that within each stage, the system approximately 
attains a local Nash equilibrium. Moreover, as the number of 
training iterations within each stage tends to infinity, the 
approximation error converges to zero. 

Proof of Theorem 2. Below is the detailed proof process: 
(1) stagewise near‐staticity and local equilibrium existence: 

during the k-th stage, which corresponds to the time interval 
the time interval [ , ( 1) ]k T k T   , we assume that for any 

 ,( 1)t k T k T     the environmental parameter ( )t  

satisfies 
 || ( ) || ,k kt     (22) 

where k  is sufficiently small. Owing to the structural 

robustness commonly observed in Markov games[28], this 
implies that the environment can be regarded as 
“approximately stationary.” Concretely, for all states s and 
actions a,  
 1 1

( , )
|| ( , ; ( )) ( , ; ,) ||t t t t t t k k

s a
max P s s a t P s s a     ∣ ∣  (23) 

where k is a constant related to the structure of the game. 
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Therefore, over this stage, the actual Markov game can be 
treated as a “quasi-static” game: 

  1  , , ( , ; ),{ } , ,,N
k k i iG S A P s a r B T  ∣  (24) 

In the above finite state–action game setting, classical 
Markov game theory has established that: for a finite time 
horizon, one can use the Kakutani–Glicksberg–Fan fixed 
point theorem [29] to prove the existence of at least one (local) 
Nash equilibrium; for the infinite discounted time horizon 
case, a similar existence result can be obtained via the 
Shapley equation. Consequently, in each stage Gk , there 
exists at least one (local) Nash equilibrium strategy profile: 

 * * * *
,1 ,2 ,( , , , );k k k k N      (25) 

(2) quasi-convergence of intra-stage strategy updates: in 
the k-th phase, consider k as a fixed parameter. Each agent 

can employ various learning algorithms for Markov games 
(e.g., multi-agent policy gradient, Q-learning, value function 
decomposition, etc.). Let  

  1
, , ,,..., N

k n k n k n     (26) 

denote the policies of all agents at the n-th iteration. Taking 
policy gradient as an example, the update for a single agent i 
can be expressed as the following stochastic approximation:  

  , 1 , , , ,    ; ,,
i

i i i i
k n k n k n i k n k n kJ     


        (27)  

where [ ]   projects onto the feasible policy space (e.g., a 

probability simplex), ,k n  is the step size, and 
i iJ  is an 

unbiased estimator of the gradient of the payoff function iJ  

(which can be derived from sampled trajectories). In the 
multi-agent setting, if appropriate smoothness assumptions 
are satisfied—along with independent sampling or a mixing 
Markov decision process—and if the learning rates meet 

certain convergence conditions (e.g., ,k nn
   , and 

2
,k nn

   ), then in the fixed game environment k , the 

joint policy ,k n  of all agents may converge to a local Nash 

equilibrium (or, in the worst case, to a stable fixed point). 
Formally, 

 *
, .  k n k

n
lim  


  (28) 

If each phase is limited to kM  iterations, then there is a small 

discrepancy between the final policy , kk M and *
k : 

 *
,|| || ,

kk M k k     (29) 

where 0k
   as kM  . In other words, if sufficiently 

many iterations are performed in a single phase, the policy 
can become arbitrarily close to a local Nash equilibrium; 

(3) environmental updates and the continuous dependence 
of policies: Suppose that at the end of phase k, the 
environment parameters are updated according to  

 1 , || || ,k k k k k  
       (30) 

where k
  is sufficiently small. From the earlier Lipschitz or 

continuity assumptions, it follows that for all ( , )s a ,  

 1 0( | , ; ) ( | , ; ) ,k k kP s a P s a c       ‖ ‖ (31) 

where 0c  is some constant. This implies that the dynamic 

model of game 1kG   is very close to that of kG . 

Consequently, its local Nash equilibrium *
1k   should also be 

close to *
k . Formally, 

 * *
1 1|| || || ||k k kc     . (32) 

Hence, when k  is small, the optimal (or local Nash) 

strategies of the new and old phases remain close to each 

other. Because * *
1|| ||k k    is small, using *

k  (the 

converged policy from the previous phase) as the initial 
policy for phase (k+1) requires only a small number of 

iterations to converge to *
1k  . If only a finite number of 

iterations is performed, the resulting policy still approximates 
*

1k  . If the phase is sufficiently long or the number of 

iterations is large, the error can be reduced to an arbitrarily 
small level. 

Thus, the proof presented above substantiates the 
conclusion stated in Theorem 2: within each nearly static 
analytical phase, multi-agent policy updates converge to a 
local Nash equilibrium. Furthermore, this convergence 
process demonstrates continuous stability concerning minor 
variations in environmental parameters. 

Theorem 3: Global stability and convergence of the 
alternating iterative update algorithm. In the system 
described above, if the dynamic copula parameter update 
function ( )  satisfies a Lipschitz continuity condition , and 

if the multi-agent policies are capable of converging to a local 
equilibrium in a fixed environment, then by adopting an 
alternating iterative update strategy (i.e., updating the agents' 
policies first in each phase and then updating the copula 
parameters), the overall system parameters will converge to a 
fixed point, and the system will exhibit global asymptotic 
stability. 

Proof of Theorem 3: Let p denote the collection of all agent 
policies, which belongs to the policy space P; let c denote the 
set of all dynamic copula parameters, which belongs to the 

parameter space C (for example, kC   ), and assume that 
C is a complete space. We define the overall parameter vector 
as 
 ( , ),x p c  (33) 

which resides in the space 
 .X P C   (34) 
An appropriate norm is chosen, for instance, 
 .|| || || || || ||P Cx p c   (35) 

Under a fixed dynamic copula parameter, the agent policies 
can be updated to new policies after sufficient training. We 
denote this update process by the mapping 
 : ,pT P P  (36) 

and assume that pT  satisfies the Lipschitz continuity 

property. That is, there exists a constant [0,1)pL   such that 

for any 1 2,p p P ,  

 1 2 1 2|| ( ) ( ) || || ||p p P p PT p T p L p p   . (37) 

Similarly, the update process for the dynamic copula 
parameters is represented by the mapping 
 : ,cT C C  (38) 

with the update given by 
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 1 ( ) ( , ( ), )t c t tc T c c Z t     , (39) 

where the function ( )   satisfies a Lipschitz continuity 

condition. That is, there exists [0,1)cL   such that for any 

1 2,c c C ,  

 1 2 1 2|| ( ) ( ) || || ||c c C c CT c T c L c c   . (40) 

From the proof of the preceding theorem, it is known that cT  

is a contraction mapping, and its iteration sequence 
converges to a unique fixed point.  

We now define the overall update mapping as  

  : , with ( , ) ( ), ( )p cT X X T p c T p T c  . (41) 

To prove that T is a contraction mapping, let  1 1 1,x p c  

and  2 2 2,x p c  be any two points in X. Then, 

 
1 1 2 2

1 2 1 2

|

.

| ( , ) ( , ) ||

|| ( ) ( ) || || ( ) ( ) ||
X

p p P c c C

T p c T p c

T p T p T c T c

 
  

 (42) 

By using the respective Lipschitz properties, we obtain 

 
1 1 2 2

1 2 1 2

( , ) ( , )

.
X

p P c C

T p c T p c

L p p L c c

 

  

‖ ‖

‖ ‖ ‖ ‖
 (43) 

Let  
 max{ , }.p cL L L  (44) 

Then, 

 
 

1 2 1 2

1 2 1 2 1 2 ,

p cP C

P C X

L p p L c c

L p p c c L x x

  

     ‖ ‖ ‖ ‖
 (45) 

where 1L   since both pL  and cL  are less than 1. Therefore, 

T is a contraction mapping. According to the Banach 
fixed-point theorem[30], there exists a unique fixed point 

* * *( , )x p c  in the complete space X. Moreover, for any 

initial point 0x X , the iterative sequence defined by 

1 ( )n nx T x   satisfies 

 * *
0|| || || || .n

nx x L x x    (46) 

Through the complete mathematical proof presented above, 
we have demonstrated that under the assumption that both the 
multi-agent policy update mapping pT and the copula 

parameter update mapping cT  are contraction mappings, the 

overall update mapping  

  ( , ) ( ), ( )p cT p c T p T c  (47)  

is also a contraction mapping. By the Banach fixed-point 
theorem, the overall system parameters will converge 
globally to a unique fixed point, and the convergence rate is 
geometric. This result not only guarantees the local stability 
and robustness of the dynamic Copula parameter update 
process, but also provides a rigorous mathematical basis for 
the theoretical convergence and global stability of the system 
in real economic scenarios (such as the transmission of debt 
risk among regional governments due to economic 
fluctuations and policy adjustments). 

E. Coupling mechanism between reinforcement learning 
and dynamic copula updates 

Combining the previous sections, we have constructed a 
dynamic Copula model together with a multi-agent 
reinforcement learning system and devised an alternating 
iterative update mechanism between the two components. 

The specific procedure is as follows: 
(1) initialization: Historical data are used to estimate the 

parameters of the GARCH (1,1)-t model for each debt risk 
indicator, compute the residuals, and transform them into 

( )iu t . A Vine Copula model is then fitted to the initial 

sample to obtain the initial dynamic Copula parameters 

, | (0)j j k S ; 

(2) stage-wise policy training: The entire time series is 
partitioned into several short-term phases. Within each phase, 
the dynamic Copula parameters are assumed to be fixed at 

k . Each agent selects actions ( )ia t  based on the state ( )S t  

(which includes debt indicators, Copula parameters, and 
exogenous variables) and receives feedback according to the 
reward function ( )ir t . Using a centralized training with 

decentralized execution (CTDE) framework, the agents 
update their respective policies until convergence is reached 
within the phase; 

(3) parameter update: Based on the most recent economic 
data and debt risk information, the dynamic Copula 
parameters are updated using the function 

  , | ( 1) , | ( ) , ( ),j j k S t j j k S t Z t       ,  (48) 

ensuring via Theorem 1 that the updated parameters remain 
within the valid domain; 

(4) alternating iteration: Steps 2 and 3 are repeated until the 
overall system parameters—comprising both the agent 
policies and the dynamic Copula parameters—stabilize, 
thereby achieving global convergence. 

Through this alternating iterative coupling mechanism, the 
model is not only capable of capturing the risk contagion 
effects among regional governments arising from economic 
fluctuations and fiscal policy adjustments, but also simulates 
the dynamic decision-making processes of governments 
engaged in interactive games. This, in turn, provides a 
rigorous theoretical foundation and strategic 
recommendations for practical economic policy-making. 

III. INDICATOR SYSTEM CONSTRUCTION 

A. Data sources 

This study focuses on the 16 cities of Anhui Province, 
China, using relevant data from 2013 to 2022. The data 
primarily come from the CSMAR database purchased by the 
author’s institution, big data analysis platforms, the China 
Statistical Yearbook, the China Financial Yearbook, the 
Anhui Statistical Yearbook, and the Anhui Statistical 
Bulletin. The Lagrange multiplier method is applied to 
handle missing data for certain years. 

B. Indicator Construction 

Using the 16 cities of Anhui Province as case studies, this 
research develops a comprehensive indicator system 
comprising three primary dimensions: debt risk, economic 
environment, and regional contagion (Table I). This indicator 
framework aims to quantitatively assess the debt pressure, 
economic conditions, and regional contagion characteristics 
for each city, serving as critical input data for the multi-agent 
reinforcement learning model. Specifically, the 
multidimensional indicator system developed in this study 
captures key factors influencing the transmission of local 
government debt risks. Debt risk indicators measure the scale, 
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growth dynamics, and default pressures associated with local 
government indebtedness, thereby establishing an essential 
foundation for understanding risk transmission mechanisms 
and identifying vulnerabilities in debt accumulation that 
could impact fiscal sustainability. Indicators of the economic 
environment assess the structural capacity of local 
governments to manage and respond effectively to debt risks. 
Metrics such as GDP growth, fiscal autonomy, per capita 
income, and fixed asset investment elucidate each region’s 
debt-bearing capability and resilience, highlighting how 
economic conditions moderate contagion processes. Finally, 
regional contagion indicators encompass financial linkages, 
debt correlations, structural economic similarities, and trade 
interdependencies among the cities, revealing spatial 
channels and mechanisms through which risks propagate. 
These indicators facilitate the identification of regional 
spillover effects and provide a theoretical basis for 
coordinated risk mitigation strategies. Collectively, this 
structured and empirically actionable indicator system not 
only supports robust theoretical analysis but also informs 
practical policy formulation, thereby enhancing strategies 
aimed at mitigating and controlling the spread of local 
government debt risks. 

 
TABLE I 

DEBT RISK INDICATORS 

Indicator 
Category 

Indicator name Symbol 

Debt Risk 
Indicators 

Debt Balance Ratio DR 
Debt Dependency Ratio DDR 

Interest Payment Burden Ratio DIBR 
Debt Growth Rate DGR 

Economic 
Environment 

Indicators 

GDP Growth Rate GDPGR 
Fiscal Self-sufficiency Ratio FSR 

Per Capita GDP PCGDP 
Fixed Asset Investment Growth Rate FAIGR 

 
 

Regional 
Contagion 
Indicators 

Fiscal Dependence Between Cities IFD 
Debt Correlation with Neighboring Cities NDC 

Economic Structure Similarity ESS 

Inter-city Trade Dependence ITD 

 

C. Parameter Design 

In the empirical analysis of the DCRL–CM model, 16 
cities in Anhui Province are selected as case study subjects to 
construct a dynamic dependency framework based on debt 
risk, economic environment, and regional contagion 
indicators. To ensure the model’s accuracy and contextual 
relevance, parameter ranges are carefully designed to reflect 
the actual economic and fiscal characteristics of these cities, 
thereby providing realistic initial conditions for model 
training. Table II presents the parameter configurations 
employed for the 16 cities, enabling the model to simulate the 
dynamic characteristics of debt risk contagion across regions 
with greater realism and fidelity. 

 
TABLE II 

PARAMETER DESIGN FOR THE 16 CITIES IN ANHUI PROVINCE WITHIN THE 

DCRL-CM MODEL 

Parameter Category Indicator Name Range 

Debt Risk Indicators 

Debt-to-GDP Ratio 15% - 40% 
Debt Dependency Ratio 50% - 200% 

Debt Interest Burden Ratio 5% - 20% 
Debt Growth Rate 2% - 15% 

Economic 
Environment 

Indicators 

GDP Growth Rate 3% - 10% 
Fiscal Self-sufficiency 

Ratio 
50% - 150% 

Per Capita GDP 40,000 - 120,000 

Fixed Asset Investment 
Growth Rate 

5% - 20% 

Regional Contagion 
Indicators 

Inter-city Fiscal 
Dependence 

5% - 15% 

Neighboring Debt 
Correlation 

0.2 - 0.8 

Economic Structure 
Similarity 

0.5 - 1 

Inter-city Trade 
Dependence 

10% - 30% 

Inter-city Fiscal 
Dependence 

5% - 15% 

Reinforcement 
Learning and Copula 

Parameters 

Discount Factor 0.9 
Learning Rate 0.01 

Dynamic Reward Weight 0.5 
Copula Dependency 

Parameter 
0.3 

D. Dynamic Evolution of Marginal Distributions and 
Copula Parameter 

This study begins by employing the GARCH (1,1)-t model 
to estimate the marginal distributions of key city-level debt 
risk indicators, including debt growth rates and outstanding 
debt ratios. The GARCH (1,1)-t specification is well suited to 
capturing the volatility clustering and heavy-tailed behavior 
frequently observed in financial and fiscal time series. In this 
framework, the parameters ω, α, and β represent the constant 
term, the ARCH effect, and the GARCH effect, while ν 
denotes the degrees of freedom in the student-t distribution, 
reflecting the severity of tail risk. Model parameters are 
estimated via maximum likelihood estimation, with model 
adequacy assessed using standard selection criteria such as 
the Akaike information criterion (AIC). As shown in Table 
III, the estimated values of α + β approach unity for most 
cities, highlighting a pronounced persistence in volatility. 
Furthermore, the majority of cities exhibit significant 
heavy-tail properties, evidenced by degrees of freedom (ν) 
generally below 10. Economically, this implies that local 
governments' debt levels are particularly susceptible to 
extreme fluctuations in response to fiscal expansions or 
external shocks, leading to intensified funding needs and 
pronounced volatility patterns. 

Following the estimation of marginal distributions, this 
study applies the Vine Copula framework to examine the 
multidimensional dependence structure of inter-city debt 
risks. To capture the evolving nature of these linkages under 
shifting macroeconomic conditions and local policy 
dynamics, time-varying Copula parameters are introduced. 
Specifically, exogenous macroeconomic variables—such as 
GDP growth rates and fiscal self-sufficiency levels—are 
embedded into the correlation coefficients and 
tail-dependence parameters of the Copula functions, enabling 
a dynamic representation of the intensity of inter-city risk 
linkages. Figure 1 and Table IV present average Kendall’s τ 
values for selected city pairs over three periods: 2013–2015, 
2016–2018, and 2019–2022. The results reveal a marked 
increase in correlation for core city pairs, such as 
Hefei–Wuhu and Hefei–Ma'anshan, particularly from 2016 
onward, indicating a significant strengthening of debt-risk 
interdependence. By contrast, pairs such as 
Huangshan–Chizhou and Xuancheng–Tongling, which 
exhibited notable linkages in earlier periods, experienced a 
substantial decline in correlation following the economic 
downturn after 2019. This divergence suggests that, amid 
growing regional economic disparities, cities with weaker 
economic interdependence or dissimilar industrial structures 
were less likely to sustain strong debt-risk connections over 
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time. 
TABLE IV 

GARCH (1,1)-T PARAMETER ESTIMATES FOR THE DEBT GROWTH RATES 

OF 16 CITIES 

City Pair 2013–2015 2016–2018 2019–2022 

Hefei – Wuhu 0.39 0.54 0.62 

Hefei – Ma’anshan 0.4 0.52 0.59 

Hefei – Lu’an 0.34 0.48 0.51 

Wuhu – Ma’anshan 0.36 0.47 0.54 

Bengbu – Huainan 0.31 0.33 0.35 

Fuyang – Bozhou 0.45 0.43 0.38 

Huangshan – Chizhou 0.46 0.42 0.36 

Xuancheng – Tongling 0.37 0.41 0.43 

Anqing – Chizhou 0.41 0.44 0.46 

Huaibei – Suzhou 0.3 0.32 0.34 

Building on the earlier results from the GARCH (1,1)-t 
model, the observed variation in volatility dynamics and tail 
behavior across cities—driven by economic fluctuations and 
fiscal policy shifts—translates into differentiated intensities 
of risk linkage within the Copula framework. Under 
conditions of macroeconomic stability and increasing fiscal 
interdependence among cities, regional correlation 
coefficients tend to rise in tandem. Conversely, external 
shocks that induce divergence in industrial structures or 
exacerbate imbalances in fiscal burdens lead to weakened 
linkages among certain city pairs, amplifying temporal 
“center–periphery” disparities. Taken together, the insights 
from marginal distribution modeling and dynamic Copula 
analysis offer a coherent and mutually reinforcing 
perspective on inter-city debt risk relationships. These 
findings establish a solid empirical foundation for the 
subsequent quantification of debt-risk contagion pathways 
and the design of coordinated response strategies within the 
MARL framework. 
 

 

 
Fig. 1. City debt risk linkage (Kendall’s ) 2019-2022 

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3583-3599

 
______________________________________________________________________________________ 



 

TABLE III 
GARCH (1,1)-T PARAMETER ESTIMATES FOR THE DEBT GROWTH RATES OF 16 CITIES 

City ω (Std. Err.) α (Std. Err.) β (Std. Err.) α+β ν (Std. Err.) Log-Likelihood AIC 

1 
0.012** 
(0.005) 

0.098** 
(0.020) 

0.842*** 
(0.030) 

0.94 
8.37 

(1.12) 
-426.35 862.71 

2 
0.009 

(0.006) 
0.123*** 
(0.018) 

0.795*** 
(0.025) 

0.918 
7.24 

(1.35) 
-439.12 888.25 

3 
0.015** 
(0.007) 

0.088** 
(0.021) 

0.876*** 
(0.028) 

0.964 
9.53* 
(1.78) 

-414.86 843.72 

4 
0.014** 
(0.005) 

0.142*** 
(0.017) 

0.771*** 
(0.023) 

0.913 
6.28** 
(1.25) 

-453.17 924.35 

5 
0.016** 
(0.006) 

0.115*** 
(0.019) 

0.825** 
(0.031) 

0.94 
8.05 

(1.47) 
-429.62 869.23 

6 
0.010 

(0.004) 
0.129** 
(0.023) 

0.802*** 
(0.029) 

0.931 
7.52* 
(1.66) 

-432.85 877.7 

7 
0.018** 
(0.007) 

0.092* 
(0.049) 

0.844*** 
(0.028) 

0.936 
6.91** 
(1.30) 

-438.71 891.42 

8 
0.013** 
(0.005) 

0.101*** 
(0.015) 

0.809*** 
(0.022) 

0.91 
9.20* 
(1.83) 

-421.09 856.18 

9 
0.017** 
(0.006) 

0.080** 
(0.025) 

0.876*** 
(0.024) 

0.956 
6.57** 
(1.12) 

-447.44 912.88 

10 
0.011 

(0.007) 
0.137*** 
(0.018) 

0.794** 
(0.034) 

0.931 
7.03** 
(1.24) 

-450.52 919.03 

11 
0.008 

(0.004) 
0.094** 
(0.031) 

0.852*** 
(0.027) 

0.946 
8.66 

(1.39) 
-439.7 889.41 

12 
0.020** 
(0.006) 

0.079* 
(0.041) 

0.870*** 
(0.026) 

0.949 
5.98** 
(1.09) 

-445.89 909.77 

13 
0.015** 
(0.006) 

0.110** 
(0.022) 

0.822*** 
(0.025) 

0.932 
6.24** 
(1.40) 

-434.26 880.53 

14 
0.021*** 
(0.007) 

0.087** 
(0.026) 

0.815** 
(0.033) 

0.902 
9.32 

(1.67) 
-418.55 853.1 

15 
0.014* 
(0.008) 

0.125** 
(0.020) 

0.792*** 
(0.029) 

0.917 
7.15** 
(1.56) 

-454.31 926.62 

16 
0.019** 
(0.006) 

0.091** 
(0.027) 

0.834*** 
(0.030) 

0.925 
6.02** 
(1.41) 

-441.83 891.6 

Notes: Parentheses show standard errors. *p<0.10, **p<0.05, ***p<0.01. 

E. Multi-Agent Strategy Convergence and Dynamic Game 
Characteristics 

Building on the previously established marginal 
distribution and dynamic Copula modeling, this study further 
conceptualizes the local governments of 16 cities as 
autonomous agents within a MARL framework, 
implemented using a CTDE approach. By holding Copula 
parameters fixed at each stage and iteratively updating 
decision-making strategies, the model captures the dynamic 
strategic interactions among cities in relation to debt issuance, 
risk management, and fiscal balance objectives. The analysis 
also assesses the convergence properties of these inter-city 
games and explores the emergence of strategic differentiation 
across regions once equilibrium is reached. The primary 

empirical results are presented from three perspectives: 
strategy convergence dynamics, reward trajectory evolution, 
and the emergence of core–periphery patterns in policy 
behavior. 

The training process of MARL systems typically involves 
complex, nonlinear dynamics. During the centralized training 
phase, agents have access to global state information, 
including city-level debt indicators, time-varying Copula 
correlation coefficients, and relevant macroeconomic 
variables. This shared information environment facilitates 
coordinated strategy optimization and significantly enhances 
overall system performance. As shown in Figure 2, the 
evolution of the average reward across all cities reflects the 
typical trajectory of agent behavior, progressing from 
early-stage exploration to eventual strategic convergence. 

 

 
Fig 2. Dynamic evolution of average rewards in multi-Agent reinforcement learning 
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 In the initial training phase (Episodes < 100), agent 
strategies are underdeveloped and often exhibit biased risk 
assessments. Some cities pursue aggressive debt expansion to 
boost short-term fiscal revenues, resulting in high volatility 
and low average system rewards. During the intermediate 
phase (Episodes 100–300), ongoing updates to value 
functions allow agents to refine their strategies, leading to 
more balanced trade-offs between revenue generation and 
risk control. This stage is marked by a steady increase in 
average rewards, albeit with fluctuations, as agents adjust to 
dynamic interdependencies. In the later phase (Episodes > 
300), the reward trajectory stabilizes at a higher level, 
signaling that agents have converged toward robust local 
equilibria. At this stage, additional training iterations yield 
only marginal performance improvements. Following 
convergence of the training process, cities exhibit marked 
heterogeneity in their debt issuance behavior, risk 
management intensity, and fiscal balancing strategies. 

Figure 3 presents average annualized debt issuance levels 
and corresponding risk management weights under 
converged strategies. Core cities (e.g., Hefei, Wuhu, 
Ma’anshan) typically adopt moderate borrowing (~4–5%) 
combined with robust risk management (>0.60), achieving 

superior performance (>0.70). In contrast, peripheral cities 
(e.g., Bozhou, Fuyang, Suzhou), facing greater fiscal 
pressures, opt for aggressive borrowing (~6%) with relatively 
weaker risk controls, resulting in comparatively lower returns. 
This divergence aligns with dynamic Copula dependency 
findings: core cities, with stronger interdependencies and 
higher sensitivity to external shocks, learn to adopt cautious 
fiscal strategies within the MARL framework, whereas 
peripheral cities prioritize immediate fiscal needs, accepting 
elevated risk. 

Observed strategic convergence highlights a critical 
trade-off between fiscal expansion and risk mitigation among 
regional governments. Core cities, notably Hefei, centrally 
positioned within the debt-risk transmission network (Figure 
4), effectively balance growth with stability, exerting positive 
spillovers on neighboring cities. In contrast, peripheral cities 
such as Fuyang and Bozhou typically adopt reactive fiscal 
behaviors, increasing exposure to tail risks during adverse 
conditions and reinforcing structural asymmetries. This 
pattern aligns with Copula analysis results, underscoring how 
external shocks (e.g., interest rate hikes) disproportionately 
impact peripheral cities, thereby undermining their fiscal 
sustainability.  

 

 
Fig 3. Key strategy metrics and equilibrium reward by city 
 

 

 
Fig 4. Regional fiscal risk network in Anhui province 
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The tail-risk heatmap derived from the Copula analysis in 
Figure 5 further validates the aforementioned findings. As 
clearly illustrated, Hefei exhibits notably strong tail-risk 
correlations with its surrounding cities, underscoring its 
central role in regional risk transmission. Conversely, Figure 
5 also highlights relatively weaker tail-risk associations 
among peripheral cities, indicating that these cities tend to 
become isolated risk clusters when facing external shocks, 
thereby limiting their ability to achieve effective 
collaborative risk management. 

F. Debt Risk Spillover Pathways and Contagion Patterns 

The preceding network topology analysis underscores the 
structural vulnerabilities arising from aggressive debt 
strategies adopted by peripheral cities under fiscal constraints, 
revealing divergent pathways of risk accumulation under 
different policy regimes. Figure 6 further illustrates how 
policy interventions shape the dynamic evolution of inter-city 

risk correlations, as captured by the trends in Copula 
coefficients. Specifically, under stringent debt-control 
policies, the overall level of risk correlation increases steadily, 
suggesting that rigid fiscal constraints—though designed to 
curb systemic risk—may inadvertently intensify risk 
clustering due to insufficient external liquidity. In contrast, 
when central fiscal authorities enhance transfer payments to 
peripheral cities, a pronounced decline in risk correlation is 
observed. This pattern indicates that improved liquidity 
support through central transfers can effectively mitigate the 
accumulation and transmission of systemic risk. These 
findings demonstrate the stabilizing role of central 
government transfer policies in dampening contagion 
intensity across the regional debt-risk network, thereby 
validating the conclusions drawn from both the MARL 
simulations and the structural risk-network analyses. 

 

 
Fig 5. Copula tail-risk heatmap among Anhui province Cities 

 

 
Fig 6. Network graph of debt risk linkages among cities in Anhui province 
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Figure 7 maps debt-risk diffusion across 16 cities under 
escalating shocks, corroborating insights from marginal 
distributions, dynamic Copulas, and MARL simulations. 
Peripheral cities, hampered by limited fiscal capacity, 
persistently issue more debt (darker nodes), securing only 
transient gains when conditions are benign. As external 
shocks intensify, default pressure rises and risk rapidly 
cascades along high-risk corridors—especially among Lu’an, 
Suzhou, and Bozhou—forming tight vulnerability clusters. 
Even where some cities adopt prudence, highly leveraged, 
densely connected nodes remain pivotal risk hubs. The 
pattern exposes the structural fragility of fiscally constrained 
peripheral clusters and the enduring challenge of 
systemic-risk control in a decentralized fiscal regime. 

Network topology analysis highlights structural 
vulnerabilities stemming from aggressive borrowing by 
fiscally constrained peripheral cities, illustrating divergent 
risk trajectories under varying policy regimes. Figure 8 
demonstrates that strict debt-control policies, despite aiming 
to reduce systemic risk, inadvertently heighten inter-city risk 
correlation by limiting external liquidity. Conversely, 
increased central government transfer payments to peripheral 
cities effectively reduce risk correlations, mitigating systemic 
risk accumulation and diffusion. Thus, central fiscal transfers 
play a stabilizing role, moderating risk transmission and 
reducing contagion intensity across the regional debt network, 
consistent with findings from MARL simulations and 
structural network analyses. 

 

 
Fig 7. Network contagion and evolutionary dynamics of urban debt risks under different economic scenarios 

 

 
Fig 8. Trend of Copula mean coefficients under different policies 
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The contagion patterns described above indicate that core 
cities do not invariably function as stabilizers. When 
confronted with adverse external conditions or surging local 
debt levels, they may propagate tail risks outward to 
peripheral regions. Meanwhile, peripheral cities, constrained 
by limited fiscal resources and industrial diversity, are more 
susceptible to cascading reactions at particular junctures or 
through specific transmission channels. If policy 
interventions strategically enhance fiscal support and 
optimize debt-issuance regulations in peripheral regions, it 
could partially reshape the inherent "core-periphery" risk 
structure of the existing network, leading to a more 
decentralized and resilient inter-city linkage. Nevertheless, 
uneven development across cities may still concentrate 
vulnerabilities at critical nodes during shocks, posing 
ongoing challenges for regional macroprudential oversight 
and cross-city fiscal coordination. 

G. Robustness Tests 

To further validate the robustness of the model in capturing 
risk dependence structures, we examined and compared the 
performances of three distinct Copula models: Gaussian 
Copula, t-Copula, and Vine Copula. Figure 9 illustrates the 
visualization results of dependency structures under these 
different Copula specifications. As depicted in the Gaussian 
Copula, the correlations among variables appear relatively 
weak, with data points dispersedly distributed and notably 
lacking significant clustering in the tail regions. This 
highlights the Gaussian Copula’s limitations in capturing 
extreme events or tail-risk contagion. In contrast, the 
t-Copula model exhibits pronounced heavy-tail 
characteristics and strong tail dependencies, evidenced by 
substantial data clustering in extreme regions. This trait 
demonstrates the t-Copula’s greater suitability for modeling 
extreme events commonly observed in financial market risk 
transmission. However, considering the complexity and 
potential stage-specific characteristics of real-world risk 
contagion mechanisms, we further employed the Vine 
Copula model to capture more detailed dynamic variations in 
risk dependencies.  

 
Fig 9. Comparison of different Copula models 

 
The results in Figure 9 reveal a clear two-stage dependence 

structure: in the initial stage, data points show weak and 
dispersed dependencies, whereas after crossing a certain risk 
threshold, they exhibit distinctly strong and concentrated 

dependencies. This two-phase characteristic enables the Vine 
Copula model to effectively differentiate between the initial 
propagation and outbreak stages of regional government debt 
risks. Thus, the robustness analysis presented above indicates 
that the Vine Copula model employed in this study 
demonstrates robust performance and high applicability, 
accurately capturing the complex dependency structures and 
dynamic tail-risk characteristics inherent in the regional 
debt-risk contagion process. 

Following the comparative analysis of dependency 
structures across various Copula models discussed earlier, 
this study next evaluates the robustness of marginal 
distributions. This step aims to confirm that the overall model 
consistently captures how debt risk dynamically evolves 
under different volatility assumptions. Figure 10 shows 
volatility sequences produced by three commonly used 
volatility models: GARCH (1,1)-t, EGARCH (1,1)-t, and 
GJR-GARCH (1,1)-t. Specifically, the GARCH (1,1)-t 
model (top of Figure 10, highlighted in blue) displays 
symmetric and smooth fluctuations, suggesting that the 
volatility response to positive and negative market shocks 
remains relatively balanced. In contrast, the EGARCH (1,1)-t 
model (middle of Figure 10, represented by the red curve) 
exhibits noticeable asymmetry, characterized by sustained 
increases in volatility following negative market shocks. The 
GJR-GARCH (1,1)-t model (bottom of Figure 10, shaded 
green) typically shows abrupt jumps in volatility in response 
to negative returns, clearly reflecting the leverage effect, 
which amplifies the impact of negative shocks. By comparing 
these results with Figure 10, we observe that although each 
volatility model reacts differently to negative shocks, the 
general cyclical patterns and tail-risk behavior are consistent 
with the contagion paths previously identified using Copula 
models. This indicates that substituting the GARCH (1,1)-t 
with either EGARCH (1,1)-t or GJR-GARCH (1,1)-t does 
not significantly alter the main findings. Thus, the study's key 
conclusions regarding the dynamic evolution and tail-risk 
amplification of regional government debt risk remain robust, 
irrespective of whether symmetric or asymmetric volatility 
assumptions are applied. After verifying the robustness of the 
Copula dependence structure and the GARCH-based 
marginal distributions, this study further investigates the 
sensitivity of the MARL model parameters to evaluate its 
robustness and applicability under various strategy settings. 
Specifically, this paper adjusted the discount factor, learning 
rate, and dynamic reward weights between returns and risks 
within the reward function, subsequently observing changes 
in cities’ debt management strategies, risk contagion 
pathways, and systemic risk levels.  

As indicated in Figure 11, increasing the discount factor 
from 0.9 to 0.99 significantly shifts agents’ preferences 
toward long-term gains, prompting them to adopt strategies 
that reduce short-term debt expansion while enhancing risk 
controls. However, excessively high learning rates may 
induce substantial strategic fluctuations or impede 
convergence, negatively affecting the model’s predictive 
accuracy. Additionally, varying the dynamic weights of risk 
and return in the reward function considerably impacts how 
cities balance fiscal revenues against debt risk management. 
Overall, despite specific model parameters influencing 
detailed characteristics of debt management strategies and 
risk contagion dynamics, the overarching risk hierarchy and 
contagion pathways remain stable. This outcome 
demonstrates that the MARL model constructed in this study 
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maintains robust performance and adaptability across diverse 
reinforcement learning parameter configurations. 

To thoroughly evaluate the advantages of the DCRL-CM 
model in controlling debt risk contagion pathways and 
managing risks, this study conducts a comparative analysis 
against the static Copula model and the traditional regression 
model. In managing debt risk, the DCRL-CM model 
demonstrates a clear advantage in controlling cross-regional 
contagion effects. Figure 12 presents the contagion intensity 
distribution of debt risks across 16 cities for the three models: 
DCRL-CM, static Copula, and traditional regression. 
Leveraging a multi-agent reinforcement learning mechanism, 
the DCRL-CM model dynamically adjusts its management 
strategies based on the risk levels in different regions. As 
shown in Figure 12, the overall contagion intensity for the 

DCRL-CM model is lower, especially in high-risk areas 
where it effectively mitigates contagion effects. This 
balanced distribution of contagion intensity across cities 
reflects the model’s stability and adaptability in 
multi-regional settings. In contrast, the static Copula model, 
with its fixed dependency structure, lacks the ability to adapt 
to contagion effects in real-time under dynamic conditions. 
Compared to the DCRL-CM model, the contagion intensity is 
higher, with certain regions displaying a marked increase in 
contagion intensity. The traditional regression model, which 
relies on historical data for linear regression analysis, exhibits 
the highest contagion intensity among the three models, 
showing stronger cross-regional contagion effects along 
major contagion pathways. 

 
Fig 10. Robustness check: distinct marginal volatility patterns 
 

 
Fig 11. Parameter sensitivity analysis in reinforcement learning 
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Fig 12. Contagion intensity distribution across 16 cities for DCRL-CM, static Copula, and traditional regression models 

 

IV. DISCUSSION 

The study results indicate that the DCRL–CM model, by 
integrating dynamic Copula with multi-agent reinforcement 
learning, effectively captures the evolving contagion 
pathways and intensities of government debt risk. This 
integration significantly enhances adaptability in modeling 
interregional debt risk dependencies and improves risk 
control outcomes. Specifically, the model not only 
demonstrates stronger risk mitigation in high-risk areas but 
also achieves decentralized risk management across regions 
through coordinated optimization among multiple agents. 
Compared to traditional static Copula and regression models, 
the DCRL-CM model offers greater flexibility in capturing 
cross-regional dynamic risk, particularly showing a robust 
real-time adjustment capacity under changing policies and 
market fluctuations. This innovation holds substantial 
application value in the fields of debt contagion risk warning 
and control. Additionally, the DCRL-CM model excels in 
predictive accuracy, with the lowest cumulative prediction 
error over multiple iterations, highlighting that its dynamic 
dependency structure and reinforcement learning mechanism 
capture time-varying characteristics of debt risk, slow the 
accumulation of error, and significantly improve the 
reliability of risk forecasting. This feature provides 
policymakers with a crucial risk monitoring tool in complex, 
multi-regional debt environments.  

Consistent with Luo et al.[31], this study finds that 
dynamic Copula models effectively identify nonlinear 
interregional dependencies, particularly exhibiting high 
sensitivity to contagion risk during economic crises or policy 
shifts. Unlike Pham et al.’s analysis[32] focused on tail 
dependence, this study extends beyond tail dependence by       
simulating dynamic contagion pathways and using 
reinforcement learning to dynamically optimize contagion 
mechanisms, offering a more comprehensive understanding 
of debt risk propagation. Similar to Lee et al.’s findings [33] 
on the East Asian sovereign debt market, this study identifies 
dual contagion effects within and across regions, indicating 
that risk can spread both within cities and across city 
boundaries. However, through the application of a 

multi-agent coordination mechanism, the study achieves 
dynamic adjustments in cross-regional risk control. 
Furthermore, unlike Huynh et al.’s work [34] on bank system 
contagion, this study’s DCRL-CM model uses reinforcement 
learning to enhance strategic flexibility in debt management, 
extending risk control applicability beyond local banking 
systems to the broader context of regional government debt 
environments. 

While the DCRL-CM model offers certain advantages in 
capturing and controlling dynamic contagion of risk, there 
are some limitations. For instance, in adjusting dependency 
parameters dynamically, the model heavily relies on data, 
and its computational complexity can pose challenges in 
practical applications due to limitations in data availability 
and computational resources. Additionally, sample size 
limitations may affect the model’s generalizability, 
suggesting that future research could expand the sample 
scope to verify the model’s applicability across different 
regions. Future studies might also focus on simplifying the 
model’s computational complexity or incorporating more 
external environmental variables to enhance robustness. For 
cities with low-risk control effectiveness, such as Huainan, 
further parameter optimization is needed to improve the 
model’s risk management capabilities. 

V. CONCLUSION 

A. Research Conclusions 

This study proposes and validates a Dynamic Copula and 
Reinforcement Learning-based Contagion Model 
(DCRL-CM), which integrates a time-varying Copula 
approach with multi-agent reinforcement learning (MARL) 
to explore the contagion paths and dynamic characteristics of 
regional government debt risks. The findings demonstrate the 
model's significant advantages in capturing the dynamic 
dependency structure of multi-regional debt risks and 
effectively controlling cross-regional risks, as reflected in the 
following aspects: 

(1) The time-varying Copula method effectively captures 
the nonlinear dynamic dependency characteristics of regional 
debt risks under policy adjustments and external shocks. 
Particularly during economic downturns or periods of 
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heightened fiscal pressure, the model exhibits high sensitivity 
to tail risks. The results quantitatively reveal the amplifying 
effects of macroeconomic and fiscal conditions on the 
coupling of regional debt risks; 

(2) The multi-agent reinforcement learning framework 
enables dynamic coordination and optimization of fiscal and 
risk control strategies across regions. In the context of 
high-risk events, city-level agents can adjust debt issuance 
and risk management strategies based on reinforcement 
learning feedback mechanisms, dynamically achieving a 
balance between returns and risks. This demonstrates the 
model's adaptability and flexibility in multi-regional dynamic 
environments; 

(3) Compared to traditional static Copula and regression 
models, the DCRL-CM model exhibits significantly stronger 
real-time adjustment capabilities under dynamic conditions, 
enhancing its effectiveness in capturing and managing 
evolving debt risk interdependencies. 

B. Policy Recommendations 

Based on the study’s conclusions, policy recommendations 
are proposed across three dimensions-fiscal management, 
economic structure, and risk monitoring-to mitigate the risk 
of debt contagion among regional governments: 

(1) Regional governments should establish a fiscal 
coordination mechanism and emergency plans to enhance 
information sharing and coordinated responses. Setting up an 
inter-regional fiscal coordination committee with unified 
emergency protocols and information– sharing standards 
can ensure a swift and collaborative approach, with regular 
communication and training sessions. A permanent risk 
monitoring and emergency drill system should be established 
to simulate economic shocks, test emergency response 
capabilities, and continually optimize plans. Developing a 
fiscal information–sharing platform for real-time access to 
fiscal data will strengthen overall response readiness. 
Diversifying debt instruments and financing channels can 
reduce reliance on single sources and mitigate external shock 
impacts. Using adaptive models, such as the DCRL-CM, to 
dynamically adjust debt management strategies can allow 
flexibility in responding to economic changes; 

(2) High interdependence between regional economies can 
exacerbate debt risk contagion. Promoting economic 
diversification, particularly in cities heavily dependent on 
specific industries, can alleviate systemic impacts of 
localized economic downturns, thus effectively reducing debt 
risk transmission. For instance, in cities with a strong reliance 
on manufacturing, introducing high-value technology sectors 
and supporting small and medium-sized enterprises (SMEs) 
can enhance economic resilience and diversity. Supporting 
local business innovation and attracting investment, 
especially in high – growth industries, can also foster 
economic diversification, lessening the adverse effects of 
economic volatility. By promoting industrial diversification, 
regional economic stability is bolstered, reducing the 
negative impacts of fluctuations. Additionally, strengthening 
collaboration and complementarity between industries across 
regions can reduce dependence on single sectors, increasing 
regional resilience and mitigating the systemic impact of debt 
risk; 

(3) Key contagion nodes in debt risk should be closely 
monitored, with early warning systems in place to detect risk 
signals promptly and prevent further spread. Leveraging big 
data and artificial intelligence, an intelligent debt risk 

monitoring platform could be established to continuously 
assess the fiscal conditions of regional governments in 
real-time, improving data collection and analysis efficiency, 
and enabling faster identification of potential risks with 
targeted interventions. A regional data warehouse could 
standardize and share fiscal data, using machine learning to 
automatically detect risk patterns and generate alerts. 
Artificial intelligence can conduct multi-dimensional data 
correlation analysis, predicting potential contagion pathways 
and offering decision support. An integrated smart 
monitoring platform linked to local fiscal systems could 
enable real-time updates and automated risk assessments. 
Furthermore, enhancing inter-regional risk information 
sharing mechanisms ensures that cities can quickly access 
relevant debt risk information, creating a coordinated 
response mechanism to curb debt risk contagion in its early 
stages. 

C. Research Limitations and Future Directions 

While integrating dynamic Copula with multi-agent 
reinforcement learning (MARL) improves the model's 
adaptability to dynamic environments, it also significantly 
increases computational complexity. This is particularly 
evident when high-dimensional multi-regional data is 
introduced, as the model's training time and resource 
requirements may pose challenges for real-time applications 
in resource-constrained settings. To address these limitations, 
future research could explore more efficient MARL 
algorithms or adopt distributed computing frameworks to 
reduce computational complexity. For instance, employing 
graph neural networks (GNNs) could enhance the efficiency 
of modeling inter-regional dependency networks. GNNs are 
well-suited for capturing the relational structure among 
regions, potentially reducing the computational burden while 
maintaining high accuracy.  

Additionally, this study primarily considers 
macroeconomic variables such as GDP growth rates and 
fiscal self-sufficiency as external shock factors. However, 
other dimensions—such as environmental, social, and 
political variables—are not fully accounted for, which may 
constrain the model's robustness in addressing complex 
external environmental changes. Future research should 
incorporate variables from these dimensions into the 
analytical framework to better capture a broader range of 
external shock factors. This would enhance the model's 
comprehensiveness and applicability in diverse and evolving 
contexts. 
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