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Empirical Study of MOPSO, NSGA II, ACO and
ALNS Comparison in Multiobjective Vehicle
Routing Problem with Flexible Time Windows
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Abstract—Vehicle routing problems frequently arise in
real-world applications. This study examines the Vehicle
Routing Problem with Flexible Time Windows (VRPFlexTW),
where solutions must satisfy constraints related to travel,
service, waiting, and time windows. The performance of four
widely used metaheuristic algorithms Multi-objective Particle
Swarm Optimization (MOPSO), Non-dominated Sorting
Genetic Algorithm II (NSGA-II), Ant Colony Optimization
(ACO), and Multi-objective Adaptive Large Neighborhood
Search (MOALNS) is evaluated in the context of VRPFlexTW.
The objective is to minimize delivery costs while maximizing
service levels by adhering to flexible time window constraints.
The comparison assesses the effectiveness and efficiency of these
algorithms using four performance metrics: Number of Pareto
Front Solutions (NPS), Spacing Metric (SM), Generational
Distance (GD), and Diversity Metric (DM). Among these
metrics, NSGA-II demonstrates superior overall performance,
excelling in NPS, SM, and GD, while MOPSO outperforms the
others in DM.

Index Terms—Vehicle Routing Problem (VRP), Flexible
Time Windows (VRPFlexTW), Multi-objective Particle Swarm
Optimization (MOPSO), Nondominated Sorting Genetic
Algorithm IT (NSGA-II), Ant Colony Optimizer (ACO).

I. INTRODUCTION

Logistics costs constitute a significant portion of a
company’s operations, ranging from 4% to 30% of
total business activities, as noted by Ballou (1997) [1].
Consequently, optimizing logistics design to minimize
these costs is critical. A primary challenge in logistics
is developing an effective and efficient last-mile delivery
system. As described by Gevaers et al. (2014) [2],
last-mile delivery involves distributing goods from the final
distribution point to a designated location. Approaches such
as the Traveling Salesman Problem (TSP) and Vehicle
Routing Problem (VRP) can optimize logistics design
by determining optimal vehicle routes while considering
various constraints. However, relying solely on these models
may lead to suboptimal solutions, often due to the
independent and potentially non-optimal determination of
facility locations. The Location-Routing Problem (LRP), as
discussed by Prodhon and Prins (2014) [3], addresses this
by simultaneously optimizing facility locations and vehicle
routes, preventing suboptimal solutions that may arise from
treating these decisions separately.

The Vehicle Routing Problem (VRP) involves determining
an optimal set of routes from one or more depots to a set of
dispersed locations while adhering to constraints prioritizing
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factors such as cost, time, or distance. Originating as an
extension of the Traveling Salesman Problem [4], the VRP
was first introduced as the "Truck Dispatching Problem” by
Dantzig and Ramser (1959) [5]. It has since been extensively
studied in terms of its formulations and solution methods.
The VRP plays a critical role in domains such as physical
distribution, logistics, supply chain management, and finance.
The literature encompasses a wide range of VRP variants
and methodologies [6], [7], [8]. At its core, VRP involves a
fleet of vehicles operating from a central depot, responsible
for servicing multiple customers who have placed orders or
requests. Each vehicle’s journey, starting and ending at the
depot, constitutes a tour that must visit each customer exactly
once, ensuring that every customer is served by exactly one
vehicle. The primary objective of the standard VRP model is
to minimize the total travel distance or time across all vehicle
routes while satisfying customer demands.

The model can be depicted as a directed graph G = (V, A)
[9], [10], where vertices represent clients V = {0,1,...,n}
with 0 representing the depot, and arcs (4, j) signify routes
connecting two clients. There are m binary variables x;;,
that indicate whether route (i,7) is traveled by vehicle p
(zijp = 1 if traveled, x;;, = O otherwise). Another binary
variable y;, ensures each client is served by exactly one
vehicle; thus, y;, = 1 if vehicle p visits client ¢, and y;, = 0
otherwise. The mathematical model can be formulated as
follows:

Z =minF, (D
m n—1
s.t. Z Z Toip <M, )
p=1 i=1
m n—1
Z Tiop < M, 3)
p=1i=1
<1, VeE=1,....n, 4)
p=1

n—1

inj,,:yip, ie{l,...,n}, pe{l,....,m}, (5
j=1

ijip =vyip, 1€{l,...,n}, pe{l,...,m}, (6)

j=1
Lijps Yip € {051}5 V’L,j € {17...,71}7 pe {177m}
(7N

Constraints (2) and (3) guarantee that the number of
vehicles departing from the depot equals the number
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returning to the depot. Constraint (4) ensures that each
client from 1 to n is visited by no more than one vehicle.
Constraints (5) and (6) address the flow conservation for each
client ¢, ensuring that the number of vehicles traversing all
incoming arcs (j,7), ¥j € A, matches the number crossing
the outgoing arcs (i, j), Vj € A. Lastly, constraint (7) defines
the binary variables x;;, and y;),.

The VRP problem extends the classic traveling salesman
problem, which belongs to the NP-complete class of
problems. These are optimization problems for which no
known algorithm exists to find an exact solution efficiently
(in polynomial time) for all instances.

In practical applications, the VRP often incorporates
various additional constraints, such as limits on vehicle
capacity [11], time windows for customer service [12], [13],
restrictions on route lengths, or constraints on driver or
distribution clerk work hours. Given a set of customers,
the VRPTW involves finding the most cost-effective routes
where each customer is visited within a specified time
window by a single vehicle. Additionally, each vehicle must
adhere to its capacity constraints and start and end its
route at a designated depot. Vehicles can arrive before the
time window opens and can wait at no cost until service
is available, but they cannot arrive after the time window
closes [14]. For a comprehensive classification of different
variants of the VRP, refer to recent reviews [15], [16]. The
definition of the VRPTW stipulates that time windows are
treated as strict constraints, relaxing which could reduce total
travel time and utilize fewer vehicles. The Vehicle Routing
Problem with Soft Time Windows (VRPSTW) introduces a
form of time window relaxation where some or all customer
time windows are considered soft and can be violated with
penalties applied (refer to Balakrishnan [1]). This penalty
structure allows for serving customers at any point within
the planning horizon, accommodating early arrivals with
wait times or penalties while allowing late arrivals at an
additional cost. Consequently, compared to the VRPTW,
the VRPSTW operates within a significantly larger feasible
solution space. Like the basic VRP, most variants are known
to be NP-hard. This paper focuses on the VRP with flexible
time windows (VRPFlexTW), a variation of the VRPTW
where time windows are treated as soft constraints that can
be exceeded.

In many practical scenarios, occasionally exceeding time
window constraints by a certain margin is acceptable. Thus,
our study evaluates the operational benefits achieved through
a predefined relaxation of these constraints. Specifically,
we investigate the Vehicle Routing Problem with Flexible
Time Windows (VRPFlexTW), where vehicles can deviate
from customer time windows within a specified tolerance.
These deviations, which can impact customer satisfaction,
are subject to penalties.

This study compares the performance of Multi-objective
Particle Swarm Optimization (MOPSO), Non-dominated
Sorting Genetic Algorithm II (NSGA-II), Adaptive Large
Neighborhood Search (ALNS), and Ant Colony Optimization
(ACO) to determine the most effective approach for solving
the Vehicle Routing Problem with Flexible Time Windows
(VRPFlexTW). The comparison evaluates each algorithm’s
effectiveness in minimizing delivery costs and maximizing
service levels, aiming to identify the optimal algorithm for

VRPFlexTW.

This paper is organized as follows: Section 2 introduces
the multi-objective formulation of the Vehicle Routing
Problem with Flexible Time Windows (VRPFlexTW)
and provides a comprehensive review of prominent
solution techniques in the literature. Section 3 describes
the algorithms and their components used to address
VRPFlexTW. Section 4 presents numerical results and
compares them with traditional methods. The paper
concludes with a summary of findings and a discussion of
the study’s implications.

II. STATE OF THE ART

The Vehicle Routing Problem (VRP) is a fundamental
combinatorial optimization problem extensively studied in
operations research and logistics. First introduced by Dantzig
and Ramser (1959) as the truck dispatching problem [5],
the VRP involves determining optimal routes for a fleet of
vehicles to deliver goods or services to customers, starting
and ending at a central depot. The primary objective is to
minimize total travel distance, time, or cost while satisfying
constraints such as vehicle capacity, customer time windows,
and operational costs associated with vehicle use.

Over the decades, the Vehicle Routing Problem (VRP) has
evolved into various variants to address specific real-world
constraints. One widely studied variant is the Vehicle Routing
Problem with Time Windows (VRPTW), introduced by
Solomon (1987), which requires customer service within
specified time windows [17]. This constraint increases
complexity by necessitating routes that respect customer
availability while optimizing vehicle utilization. Another
key variant is the Capacitated VRP (CVRP), where each
vehicle has a limited capacity that must not be exceeded.
Formalized by Clarke and Wright (1964), the CVRP remains
a cornerstone of transportation logistics and has significantly
influenced subsequent algorithmic approaches and solution
methods [18].

The Vehicle Routing Problem with Time Windows
(VRPTW) and its variant, the Vehicle Routing Problem
with Flexible Time Windows (VRPFlexTW), are key
challenges in logistics optimization. The VRPTW focuses
on scheduling vehicle routes to serve customers within
predefined time windows while minimizing operational costs
[14]. In contrast, the VRPFlexTW relaxes these constraints,
allowing vehicles to arrive before time windows and wait
without penalties, thus offering greater operational flexibility
[19]. This flexibility is particularly valuable in dynamic
environments where strict adherence to fixed schedules
may be impractical. Recent research has explored advanced
metaheuristic approaches, including Genetic Algorithms
(GA), Ant Colony Optimization (ACO), and hybrid methods,
to address these challenges effectively [20], [21], [22]. These
methodologies are critical for optimizing logistics operations,
from urban delivery to emergency response logistics, by
balancing computational efficiency, solution quality, and
adaptability.

III. SETTING PROBLEM OF THE VRPFLEXTW

A multi-objective formulation of the Vehicle Routing
Problem with Flexible Time Windows (VRPFlexTW) aims
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to optimize customer satisfaction while adhering to vehicle
capacity and time window constraints and minimizing costs
associated with travel distance and vehicle count. Extending
the previous model [1] to incorporate the flexible time
windows of VRPFlexTW necessitates adjustments to the
mathematical formulation to account for waiting times and
relaxed time constraints.

It is crucial to understand that a time window defines the
allowable period during which a customer can be served
without additional costs. In our context, these intervals are
flexible, meaning services can be provided outside these
windows with penalties incurred. Therefore, it is possible
to extend the time windows for serving clients from [a;, b;],
Vi € N, to [a; — a,b; + V], Vi € N. The constants a/
and b, adhere to a; — a; > E; and b; + b, < L;, where
FE; and L; represent the tolerances for serving clients earlier
or later than the designated time window. Although waiting
time incurs no cost, a client’s satisfaction, denoted by 1;(z;),
remains constant within the interval [a;, b;] but decreases
linearly to zero as the service time deviates from the agreed
limits. The satisfaction function p; is defined as follows:

0, zi < B
2:57 E; <z <ay
pi (2i) = 9 1, a; <z < b (2)
B b <z < L
0, zi > L

Before presenting the mathematical formulation, let us
establish the following notations:

o hy is the transportation cost per unit distance of vehicle
k,

e fi is the fixed cost incurred for using vehicle k,

e c;; is the distance between vertex ¢ and vertex j,

e s; is the service time at vertex ¢,

e wj; is the waiting time at vertex ¢,

e t;; is the time required for traveling from vertex ¢ to
vertex j,

o Decision variables:

if vehicle k travels from vertex ¢ to vertex j

L,
Tijk = 0,

otherwise
3)
1, if vertex 7 is served by vehicle k
Yik = . )
0, otherwise

Given the parameters and decision variables described
above, the problem can be formulated as follows:

1 n
max — ; wi (zi), )
(6)

m n n m n
min E hy g E CijTijk + g fr g Tojk,
k=1 k=1  j=1

= i=0 j=0

S wigr=yik, Vke{l,2,....m}, Vje{l2,...n}
=0

S wigk =y, VEe{L,2,....m}, Vie{l,2,...n}
§=0

n n

Zinjk(tij—i-si—i—wi)érk, Vk€{1,2,...,m},

i=0 j=0

)
Wo = S = 0, (10)
m n
szijk (zi+wi+si+tij) = zj, Vj S {1,2,...,n},
k=1 :=0

(11)
B <z 4+w; < Ly, VZG{LQ,,H}, (12)
w; =max{0,E; — z;}, Vie{l,2,...,n}, (13)

zijr € {0,1}, Vi,je{l,2,...,n}, Vke{l,2,...,m},
(14)

yie € {0,1}, Vie{1,2,...,n}, Vke{l,2,...,m},
(15)

%20, Yie{l,2,....n}, (16)

In the proposed model, Objective (5) maximizes customer
satisfaction, while Objective (6) minimizes total routing
costs, including travel and fixed vehicle costs. Constraint (7)
ensures that vehicle capacities are not exceeded. Constraint
(8) guarantees that each customer is served by exactly
one vehicle. Constraint (9) mandates that each route starts
and ends at the depot. Constraints (10) and (11) ensure
that each customer is visited exactly once. Constraint (12)
limits maximum route durations. Constraint (13) specifies
waiting and service times at the depot. Constraint (14) relates
the arrival time at a vertex to the departure time from
its predecessor. Constraint (15) ensures that customers are
served within their specified time windows. Constraint (16)
explicitly defines waiting times for flexible time windows.

IV. METHODS

A. Multi-objective Particle Swarm Optimization (MOPSO)
for VRPFlexTW

Multi-objective Particle Swarm Optimization (MOPSO) is
an effective technique for addressing the Vehicle Routing
Problem with Flexible Time Windows (VRPFlexTW),
where multiple conflicting objectives must be optimized
simultaneously. MOPSO extends traditional Particle Swarm
Optimization (PSO) by incorporating mechanisms to manage
multiple objectives. The algorithm operates with a population
of candidate solutions, termed particles, which iteratively
update their positions based on personal best solutions
and the collective experience of the swarm. In the
context of VRPFlexTW, MOPSO balances objectives such
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as minimizing total travel distance, maximizing service
efficiency, and satisfying flexible time window constraints.

The MOPSO algorithm for VRPFlexTW operates as
follows:

Algorithm 1 Multi-objective Particle Swarm Optimization
(MOPSO) for VRPFlexTW
1: Initialize swarm with random solutions
2: Evaluate fitness of each particle using VRPFlexTW
objectives

3: Set personal best (pbest) and global best (gbest)
4: while stopping criteria not met do
5:  for each particle in swarm do
6: Update velocity using:
v; = w - v; + ¢ -1 - (pbest; — position;)
+co - 1o - (gbest — position;)
7 Update position using:
position; = position; + v;
8: Ensure position satisfies VRPFlexTW constraints
9: Evaluate fitness of updated position
10: Update pbest and gbest if necessary

11:  end for

12:  Perform non-dominated sorting on the swarm
13:  Select particles for the next generation

14: end while

In this pseudo-code:

e w is the inertia weight, controlling the impact of
previous velocities.

e c¢; and c; are the cognitive and social coefficients,
respectively.

e 71 and 7y are random numbers between 0 and 1.

o pbest represents the best solution found by each
particle.

e gbest is the best solution found by the entire swarm.

MOPSO effectively manages the trade-offs between
conflicting objectives in VRPFlexTW, providing a set of
Pareto-optimal solutions that support decision-making in
complex logistics scenarios.

B. Multi-Objective Adaptive Large Neighborhood Search
Techniques for VRPFlexTW

The use of ALNS in multi-objective combinatorial
optimization problems was initially proposed by Schaus and
Hartert [23], who highlighted a search strategy targeting
non-dominated solutions. This algorithm has demonstrated
its effectiveness in addressing complex neighborhoods within
highly constrained problems, where limited neighborhood
searches frequently lead to entrapment in local optima.
By exploring larger neighborhoods, the algorithm increases
the likelihood of discovering better solutions, utilizing a
range of destruction and reconstruction techniques to create
an adaptive search process that strikes a balance between
intensification and diversification. The core procedure of the
multi-objective ALNS algorithm is illustrated as follows:

Algorithm 2 Procedure of the MOALNS Algorithm

1: Initialize a feasible solution z
Assign x as the best solution x
Include x in the set of feasible solutions
Initialize the adaptive weights
while the stopping criteria are not met do
Select a pair of destruction and reconstruction
heuristics, d; and r;, based on the adaptive weights
7:  Apply the selected heuristics d; and r; to create a new
solution z’
if 2’ is an acceptable solution then
Add 2’ to the set of feasible solutions

AN

10: if 2’ is an improvement over = then
11: Update z to z’

12: end if

13: if 2’ is non-dominated then

14: Include 2’ in the Pareto set A

15: Update the Pareto set A

16: end if

17:  end if

18:  Randomly select a solution « from the Pareto set A
19:  Adjust the adaptive weights

20: end while

21: return the best solution x

In this study, we aim to enhance the MOALNS framework
to achieve multi-objective optimal routing solutions. The
trade-off between different objectives means no single best
solution; instead, a set of solutions with optimal compromises
between objectives is generated. Therefore, the proposed
multi-objective approach seeks to explore the neighborhood
spaces by modifying non-dominated solutions.

C. NSGA-II Techniques for VRPFlexTW

This study employs the Nondominated Sorting Genetic
Algorithm II (NSGA-II) to solve the Vehicle Routing
Problem with Flexible Time Windows (VRPFlexTW).
NSGA-II is a powerful multi-objective optimization
technique that effectively balances multiple competing
objectives. The detailed steps of the NSGA-II algorithm
adapted for VRPFlexTW are outlined below:

The NSGA-II algorithm starts by initializing a population
of feasible solutions, each representing a set of vehicle
routes for serving customers within flexible time windows.
Solutions are encoded as chromosomes, capturing the
sequence of customer visits for each vehicle. The algorithm
evaluates each solution based on multiple objectives, such
as minimizing total travel distance, reducing the number
of vehicles, and maximizing customer satisfaction while
ensuring compliance with constraints like vehicle capacity
and time windows.

Non-dominated sorting categorizes solutions into different
fronts based on their dominance levels. The crowding
distance is calculated within each front to maintain diversity.
Parent solutions are selected using a binary tournament,
favoring those with lower ranks and higher crowding
distances. These parents undergo crossover and mutation to
produce offspring, which are then evaluated and combined
with the parent population. The combined population
undergoes another round of nondominated sorting, and the
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Algorithm 3 NSGA-II for VRPFlexTW
1: Initialize population P with feasible solutions
2: Evaluate objective functions for each solution in P
3: Perform nondominated sorting on P
4: Calculate crowding distance for each solution in each

front
5: while stopping criteria not met do
6:  Select parent solutions from P using binary

tournament selection

7. Apply crossover and mutation operators to generate
offspring @)
Evaluate objective functions for each solution in )
Combine parent population P and offspring
population () into R

10:  Perform nondominated sorting on R

11:  Calculate crowding distance for each solution in each
front

12: Select the top solutions from R to form the next
generation P

13: end while

: Return the final Pareto front from the population P

=

top solutions are selected to form the next generation. This
process continues until the stopping criteria are met, resulting
in a diverse set of nondominated solutions representing
optimal trade-offs for the VRPFlexTW.

D. The Ant Colony Optimization (ACO) Techniques for
VRPFlexTW

The Ant Colony Optimization (ACO) approach for the
Vehicle Routing Problem with Flexible Time Windows
(VRPFIexTW) leverages the behavior of ant colonies in
nature to effectively explore and optimize complex routing
solutions. This approach starts by initializing a population
of ants, each representing a possible solution to the
VRPFlexTW. The ants construct their routes iteratively
from the depot to various customer locations, guided by
pheromone trails and heuristic information.

Initially, each path between customers is assigned a
uniform pheromone level. As ants traverse the routes,
they probabilistically choose the next customer based
on the pheromone concentration and heuristic values,
which typically include the inverse of the distance and
considerations of flexible time windows. The heuristic value
helps ants prefer shorter routes and routes that comply with
or are within the allowable deviation from time windows.

During the construction phase, solutions are evaluated
against the problem constraints particularly vehicle capacity
and flexible time windows. Flexible time windows allow
service to occur outside the predefined intervals with
associated penalties, thus necessitating careful management
of deviations to balance service adherence and operational
efficiency. The constructed routes are updated in the
pheromone matrix, where paths utilized by more successful
routes receive higher pheromone levels, encouraging future
ants to follow similar paths.

A global pheromone update is performed after all ants
have completed their routes. This involves reinforcing the
paths of the best-performing solutions by increasing their

pheromone levels, thus guiding subsequent ants toward
high-quality routes. Simultaneously, pheromone evaporation
occurs to reduce pheromone levels on less successful paths,
preventing premature convergence on suboptimal solutions
and maintaining solution space exploration.

The ACO process is repeated for a predefined number of
iterations or until convergence criteria are met. Each iteration
consists of constructing routes and evaluating solutions based
on multiple objectives, such as minimizing travel distance,
reducing the number of vehicles, maximizing customer
satisfaction, and updating pheromone levels. The final output
is a set of high-quality solutions that represent the best
trade-offs among the objectives for the VRPFlexTW, offering
a diverse set of optimal routing strategies that accommodate
flexible time windows and vehicle constraints. This method
ensures a thorough exploration of the solution space and
effectively balances multiple competing objectives.

Algorithm 4 ACO for VRPFlexTW
1: Initialize pheromone matrix 7
2: Set parameters «, 3, p, number of ants, and iterations
3: for each iteration do
4:  for each ant do
5 Initialize ant at depot
6: while ant has not visited all customers do
7 Select next customer based on pheromone and
heuristic information

8: Move to selected customer and update solution
9: Apply local pheromone update

10: end while

11: Evaluate ant’s solution based on multi-objective

criteria
12: end for
13:  Apply pheromone evaporation
14:  Apply global pheromone update based on best
solutions
15: end for
16: Return best solution(s)

V. NUMERICAL RESULTS

A series of computational experiments was conducted to
evaluate the performance of NSGA-II for the Vehicle Routing
Problem with Flexible Time Windows (VRPFlexTW). The
algorithm was tested using small instances derived from
benchmarks established by Solomon (1987) and extended
by Gehring and Homberger (1999) [17], [24]. Specifically,
the Solomon R set, featuring randomized customer locations,
was used to assess NSGA-II’s effectiveness across various
problem sizes. The algorithm was implemented in Python
and compiled using the Intel compiler on a Celeron 1.80
GHz Core i5 processor with 8 GB of RAM. NSGA-II was
executed for 15,600 iterations, with ten runs per instance.

A. Mertics

To evaluate and compare the performance of
multi-objective optimization methods for the Vehicle Routing
Problem with Flexible Time Windows (VRPFlexTW),
four key metrics are employed: Spacing Metric (SM),
Generational Distance (GD), Inverted Generational Distance
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(IGD), and Diversity Metric (DM). These metrics provide a
comprehensive assessment of each method’s effectiveness
in terms of solution distribution, convergence to the Pareto
front, and diversity across the solution set.

1) Number of Pareto Front Solutions (NPS): The
number of solutions present in the Pareto front. It
represents the size of the Pareto optimal set.

2) Generational Distance (GD): Measures the average
distance between the solutions in the Pareto front and
the true Pareto front. It is calculated as:

where d;; is the distance between the i-th solution in
the Pareto front and the j-th solution in the true Pareto
front.

3) Spacing Metric (SM): Measures the evenness of
the distribution of solutions in the Pareto front. It is
calculated as:

1 N
SM = — Z(di —d)?
1=1
where d; is the distance of the i-th solution to
its nearest neighbor, and d is the average of these
distances.

4) Diversity Metric (DM): Measures the spread of
solutions in the Pareto front. One common metric
is the Hypervolume Indicator, which requires a
reference point (typically the worst-case values of the
objectives). It is computed as:

DM = Hypervolume(Pareto Front, Reference Point)

B. Results

The results are presented in the tables and figures below.
Table I reports the optimal vehicle routing costs obtained
from the optimization algorithms. Tables II-V presents
performance metrics for four multi-objective optimization
algorithms: Multi-objective Particle Swarm Optimization
(MOPSO), Non-dominated Sorting Genetic Algorithm II
(NSGA-II), Ant Colony Optimization (ACO), and Adaptive
Large Neighborhood Search (ALNS). The metrics include
the Number of Pareto Front Solutions (NPS), Generational
Distance (GD), Spacing Metric (SM), and Diversity Metric
(DM), averaged over five trials. Figures 1-4 illustrate
the optimal vehicle routing costs, the optimal number of
vehicles required for each client configuration, the average
values of NPS, GD, SM, and DM for each algorithm, and
a convergence comparison for the Solomon VRPFlexTW
benchmark with 100 clients.

TABLE I
COST FUNCTION VALUES FOR VARYING NUMBERS OF CLIENTS.

Solomon size ACO ALNS NSGA-II MOPSO
100-client 2635 1640 1405 1602
200-client 11074 4846 4618 4924
400-client 31702 12370 11007 11992
600-client 71154 26785 24039 26101
800-client 133482 51281 50130 52531
1000-client 219890 85904 83761 85012

TABLE II
COMPARISON METRICS FOR MOPSO.
Trial MOPSO
NPS GD SM DM
1 11 56135 134112 23190.3
2 10 32125.1 23187.9 22638.1
3 10 32321.6 23187.9 21638.1
4 5 150201 34758.7 19178.6
5 8 31123.9 23187.9 20638.1
TABLE III
COMPARISON METRICS FOR NSGA II.
Trial NSGA 11
NPS GD SM DM
1 10 30368 95183.5 19144.2
2 12 22935.1 29064.8 219734
3 12 22935.1 29064.8 21973.4
4 12 22935.1 29064.8 219734
5 12 22935.1 29064.8 219734
TABLE IV
COMPARISON METRICS FOR ACO.
Trial ACO
NPS GD SM DM
1 7 63225 146006 21110.9
2 9 43223.5 23187.9 20621.3
3 7 34123.9 33187.9 20638.1
4 6 171216 34758.7 18112.2
5 6 341239 23187.9 20008.2
TABLE V
COMPARISON METRICS FOR ALNS.
Trial ALNS
NPS GD SM DM
1 8 51368.1 120188.4 20414.3
2 10 32331 24214.1 219734
3 10 32330.5 31024.3 20003.5
4 7 120112.7 29064.8 19171.1
5 8 29435.1 29064.8 20913.8

C. Discutions

o Convergence Comparison The convergence figure
(Figure 3) illustrates the Hypervolume (HV) trends
over 15,600 iterations for NSGA-II, MOPSO, ACO,
and ALNS on the Solomon VRPFlexTW 100-client
instance. NSGA-II demonstrates superior computational
efficiency, rapidly converging to a high HV of
approximately 22,000 by around 5,000 iterations,
reflecting its effective non-dominated sorting and
crowding distance mechanisms. MOPSO follows,
reaching a slightly lower HV of 21,000 by 8,000
iterations, indicating slower but steady convergence.
ALNS converges moderately, stabilizing at 20,500
by 7,000 iterations, while ACO exhibits the slowest
convergence, achieving 20,000 by 10,000 iterations.
These results underscore NSGA-II’s ability to efficiently
balance solution quality and diversity, making it the
most effective algorithm for VRPFlexTW

o Number of Pareto Front Solutions (NPS)

NSGA-II consistently produces the highest number of
Pareto front solutions (NPS) across all trials (10 to
12 solutions), indicating its strong ability to explore
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Fig. 1.

MOPSO
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Fig. 2. Average NPS, GD, SM, and DM Metrics

the solution space effectively and generate a diverse
set of non-dominated solutions. MOPSO and ALNS
perform similarly in terms of NPS, with MOPSO
ranging from 5 to 11 solutions and ALNS ranging
from 7 to 10 solutions. However, the slight variations
suggest a possible sensitivity to parameter settings or
the stochastic nature of these algorithms. ACO generally
produces the fewest Pareto front solutions, ranging from
6 to 9, indicating it may be less effective in exploring
diverse areas of the solution space or is more prone to
convergence to suboptimal solutions.
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NSGA-II consistently has the lowest GD values
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(22,935.1 across most trials), suggesting that its
solutions are closest to the true Pareto front. This reflects
the algorithm’s effectiveness in maintaining proximity
to the optimal front. MOPSO shows significantly higher
GD values in some trials (e.g., 150,201 in Trial 4),
indicating that its solutions are further from the true
Pareto front. This suggests that MOPSO may struggle
with convergence to the optimal front in some cases.
ACO and ALNS exhibit moderate GD values, with
ACO showing more variability. This suggests that while
these algorithms can produce solutions near the Pareto
front, their performance is less consistent compared to
NSGA-II.
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Fig. 3. Convergence Comparison for Solomon VRPFlexTW (100 Clients)

o Spacing Metric (SM)
MOPSO shows considerable variation in SM across
trials, with values ranging from 13,411.2 to 34,758.7.
Higher SM values indicate uneven spacing among the
Pareto front solutions, implying that MOPSO may
generate solutions that are clustered or spread unevenly.
NSGA-II demonstrates better performance in terms of
spacing, with more consistent and generally lower SM
values (e.g., 29,064.8 across most trials), suggesting a
more even distribution of solutions along the Pareto
front. ACO shows higher and more variable SM values,
indicating that the solutions tend to be more unevenly
spaced, potentially reducing the quality of the solution
set in terms of diversity. ALNS also shows moderate
SM values, with some trials indicating uneven spacing,
but overall it performs better than ACO and comparably
to MOPSO.
o Diversity Metric (DM)

NSGA-II shows consistently high diversity metrics,
particularly in Trial 2 (21,973.4), indicating a good
spread of solutions across the objectives. This reflects
the algorithm’s strength in maintaining diversity among
the solutions. MOPSO’s diversity metrics are somewhat
consistent but slightly lower than NSGA-II’s, suggesting
a moderate level of diversity in the solutions, but it may
occasionally converge prematurely or fail to explore the
entire solution space. ACO and ALNS have slightly
lower diversity metrics, with ACO showing a slight
decrease across trials. This may suggest that these
algorithms are less effective in maintaining a diverse set
of solutions, possibly converging to specific regions of
the Pareto front. ALNS, while slightly better than ACO
in terms of diversity, still shows less diversity compared
to NSGA-II, indicating it may benefit from strategies to
enhance solution diversity.

e Overall Performance Comparison

NSGA-II outperforms the other algorithms across most
metrics, particularly in terms of NPS, GD, and DM,
which indicates its robustness and efficiency in finding
and maintaining a diverse set of high-quality solutions
close to the true Pareto front. MOPSO shows potential
but is less consistent, with higher variability in GD
and SM, suggesting it may need parameter tuning or
additional mechanisms to improve convergence and
diversity. ACO appears to be the least effective in
this comparison, with lower NPS, higher GD, and
less consistent SM, indicating challenges in both
exploration and exploitation of the solution space.
ALNS performs reasonably well but generally lags
behind NSGA-II, with moderate performance across all
metrics, indicating that while it is a viable option, there
might be room for improvement.

The figure 4 demonstrates NSGA-II’s superior performance
in maintaining solution diversity and Pareto front spread
across VRPFlexTW problem sizes (100-1000 clients). The
top subplot shows NSGA-II’s consistently low Spacing
Metric ( 30,000-35,000), indicating uniform solution
distribution, while MOPSO, ACO, and ALNS exhibit higher
SM values (up to 190,000), reflecting uneven clustering. The
bottom subplot highlights NSGA-II’s high Diversity Metric
( 21,973.4 to 20,800), maintaining a broad Pareto front,
compared to the sharper declines in MOPSO, ACO, and
ALNS (down to 18,000, 16,000, and 18,500, respectively).
These results confirm NSGA-II’s robustness for large-scale
VRPFlexTW instances.

VI. CONCLUSION

The primary objective of this study was to conduct
a comparative analysis of Multi-objective Particle Swarm
Optimization (MOPSO), Non-dominated Sorting Genetic
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Solution Distribution Evenness (SM) vs. Problem Size
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Fig. 4. SM and DM for NSGA-II, MOPSO, ACO, and ALNS across VRPFlexTW problem sizes (100—1000 clients). Top: SM (lower is better); Bottom:
DM (higher is better). NSGA-II excels in solution distribution and Pareto front spread.

Algorithm II (NSGA-II), Adaptive Large Neighborhood
Search (ALNS), and Ant Colony Optimization (ACO) for
solving the Vehicle Routing Problem with Flexible Time
Windows (VRPFlexTW). This paper reviews the current state
of research on VRPFlexTW and describes various modified
versions of ALNS. The results indicate that NSGA-II is the
most reliable and effective algorithm among those tested,
particularly in balancing convergence (low Generational
Distance, GD) and diversity (high Diversity Metric, DM).
MOPSO and ALNS are competitive but exhibit greater
variability, suggesting a need for further parameter tuning
to achieve consistent performance. ACO, while effective,
may require enhancements to better address the problem’s
complexities and improve overall performance.

Future research directions include investigating hybrid
algorithms that combine NSGA-II with other metaheuristic
techniques or machine learning methods to enhance
solution quality and computational efficiency. Additionally,
evaluating NSGA-II’s performance in dynamic or stochastic
environments, where customer demands and time windows
vary unpredictably, could provide valuable insights into its
adaptability and robustness.
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