
 

  
Abstract —It is essential for individuals involved in 

construction engineering to be adequately protected by the use 
of safety helmets. In response to the challenges associated with 
false positives and missed detections in helmet-wearing 
detection within complex environments, this study introduces a 
hybrid architectural algorithm termed Mamba-YOLO, which 
integrates a state-space model with Convolutional Neural 
Networks (CNNs). Initially, we propose the CDown 
downsampling module, which combines pooling downsampling 
with convolutional downsampling. This method is employed in 
Mamba-YOLO to efficiently reduce the model's parameters 
while simultaneously enhancing its learning capabilities. 
Furthermore, we introduce the Lightweight-C2f module within 
Mamba-YOLO, specifically designed to improve the model's 
ability to perceive object scales by reusing feature information 
and expanding receptive fields. Additionally, we propose the 
Mamba-Head, characterized by a hybrid architecture that 
incorporates a state-space model. The Mamba-Head facilitates 
a global receptive field through the cross-scan module, thereby 
enhancing the model's sensitivity to global contextual 
information. Following this, we conduct a series of experiments 
to evaluate the model's performance, which includes ablation 
studies, comparative experiments, and assessments against 
state-of-the-art models. The results indicate that 
Mamba-YOLO demonstrates significant efficacy in the task of 
helmet-wearing detection. 
 

Index Terms—State space model, Vmamba, YOLO, 
Helmet-wearing detection 

I. INTRODUCTION 
he development of urbanization has led to an increased 
demand for the construction of modern facilities. 

However, the diverse environments of construction sites 
expose numerous workers to a variety of occupational 
hazards, including falls from heights, mechanical injuries, 
and impacts from falling objects. Such accidents not only 
pose a significant risk to the physical health of workers but 
also place a considerable burden on their families. Safety 
helmets are widely regarded as essential components of 
personal protective equipment for ensuring the safety of 
workers in hazardous environments [1]. The use of safety 
helmets by workers during the execution of their duties has 
been shown to be an effective measure for preventing or 
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reducing accidents [2]. Nevertheless, due to negligence and 
other factors, there are occasional instances of workers 
forgetting to wear helmets or wearing them incorrectly. 
Consequently, numerous scholars have conducted extensive 
research on safety helmet-wearing detection. Given the 
non-intrusive nature of computer vision technology, the 
majority of studies in this field have been based on it. 

In 2004, Wen et al. [3] employed the Hough transform 
method to detect the arc contours of safety helmets and 
subsequently inferred whether a helmet was being worn by 
the worker. However, reliance on contour characteristics 
alone renders this method susceptible to false detections. 
Furthermore, this approach requires high-definition indoor 
images, limiting its applicability in complex environments 
such as construction sites. To reduce the noise present in the 
images, Cai et al. [4] utilized a combination of threshold 
segmentation and morphological operations, specifically the 
open and closed operators, to preprocess the background of 
the images. They then established empirical parameters to 
assess the ratio of candidate regions to the minimum 
circumscribing circle, thereby facilitating the detection of 
miners' helmet-wearing status. In the study by Shrestha et al. 
[5] on the detection of helmet-wearing status among 
construction workers, Haar features were utilized to perform 
facial detection first, which were then combined with edge 
detection algorithms to analyze the contour and color of 
safety helmets. In 2015, Park et al. [6] employed histogram of 
oriented gradients (HOG) and support vector machines 
(SVM) technologies to detect humans and safety helmets. 
Subsequently, the geometric and spatial relationships 
between the human and helmet were matched in order to 
ascertain whether workers were wearing helmets. Rubaiyat et 
al. [7] extracted frequency domain information from images 
that were segmented by a discrete cosine transform 
(DCT)-based Gaussian mixture model and then extracted 
HOG features from the DCT coefficients. Subsequently, they 
employed SVM to ascertain the presence of interest objects 
and utilized the feature extraction method of color and 
circular Hough transform (CHT) to determine the 
helmet-wearing status of construction workers. In addition, 
Doungmala et al. [8] also proposed a method for the detection 
of safety helmets based on Haar features and CHT. In the 
study by Kang et al. [9], the ViBe background modelling 
algorithm was employed to detect moving objects within 
substations, and the C4 real-time human classification 
framework was then utilized to accurately locate them. 
Furthermore, according to the positioning results, the 
helmet-wearing detection was achieved through the head 
position, color space transformation, and color feature 
discrimination. Wu et al. [10] developed a color-based hybrid 
descriptor using local binary patterns (LBP), Hu moments 
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invariants (HMI), and color histograms (CH) to extract 
features of helmets with different colors. Subsequently, a 
hierarchical support vector machine (H-SVM) classifier was 
constructed for the purpose of detecting helmets, which 
achieved an average recognition rate of 90.3% on their 
private dataset. Jin et al. [11] employed the deformable part 
model (DPM) algorithm to extract worker regions and then 
utilized color space conversion and color feature matching 
techniques to isolate the helmet area. Subsequently, a 
combination of HOG and SVM was applied within the 
identified region to detect helmet-wearing. 

While the traditional image processing methods mentioned 
earlier can initially detect the wearing of safety helmets, they 
are limited in their ability to manage complex construction 
environments and objects of varying scales. To address these 
limitations and further enhance the reliability and practicality 
of safety helmet detection methods, many researchers have 
begun to focus on studies utilizing deep learning algorithms. 

In the study on helmet-wearing state detection conducted 
by Li et al. [12], an enhanced Faster R-CNN algorithm was 
employed to identify both the helmet and its wearer. 
Subsequently, the geometric relationships between these 
elements were utilized to determine the state of 
helmet-wearing. Wang et al. [13] improved the backbone of 
YOLOv3 by integrating cross-stage partial networks 
(CSPNet) and spatial pyramid pooling (SPP) architectures, 
resulting in a significant increase in accuracy compared to the 
original algorithm. However, the uniform scale of the objects 
in the datasets used for training limited the model's sensitivity 
to multi-scale objects. In the research by Gu et al. [14], a 
three-point positioning method and skin color detection were 
used to identify the head regions of construction workers, 
while YOLOv4 was employed to detect the helmet regions. 
An evaluation of the helmet-wearing states among 
construction workers was subsequently conducted by 
examining the intersection of the helmet and head regions. 
Zhou et al. [15] proposed an attention mechanism-based 
helmet detection algorithm, referred to as AT-YOLO. First, 
channel attention modules and spatial attention modules were 
integrated into the backbone and neck networks of YOLOv3, 
thereby enhancing the network's feature perception. Second, 
the DIoU (Distance Intersection over Union) bounding box 
regression loss function was utilized to accelerate network 
training convergence while improving detection capabilities 
for small objects. The experimental results demonstrated that 
the improved algorithm achieved a high mean Average 
Precision (mAP). Jin et al. [16] further enhanced the 
YOLOv3 model for helmet detection. Initially, the 
K-means++ algorithm was applied to improve the size 
matching of prior anchor boxes. Subsequently, the 
depth-wise coordination attention (DWCA) mechanism was 
incorporated into the backbone network, enhancing the 
model's ability to distinguish between foreground and 
background. In a private dataset, the improved algorithm 
exhibited a 3% increase in mAP compared to YOLOv5. 
Based on the Single Shot Multibox Detector (SSD) 
framework, Han et al. [17] proposed an enhanced object 
detection algorithm that significantly improved the precision 
of helmet detection. This improved algorithm refined the 
feature information of target regions by applying spatial 
attention mechanisms to low-level features and channel 

attention mechanisms to high-level features, respectively. 
Additionally, a feature pyramid network (FPN) and a 
multi-scale perception module were introduced to bolster the 
algorithm's robustness in detecting multi-scale objects. An 
adaptive adjustment method for anchor boxes was also 
designed according to the scale distribution of anchors across 
layers. By regarding helmet-wearing detection as a task 
involving strong semantic keypoint detection, Song et al. [18] 
proposed a novel anchor-free object detection model, named 
as the reciprocal bidirectional feature pyramid detector 
(RBFPDet), which can achieve almost real-time detection in 
complex backgrounds. In the study of Liu et al. [19], a spatial 
position relation capsule network (SPRCapsNet) was 
employed to discern whether the helmet was properly 
positioned relative to the face and then to detect the 
helmet-wearing status. In order to reduce the computational 
cost, the algorithm implemented a segmentation of the deep 
feature maps into smaller patches, which were then 
transformed into vectors that served as the primary capsules. 
Subsequently, a dynamic routing algorithm was adopted to 
learn the spatial relationships between local image features. 
Finally, a decision optimization process was conducted based 
on the probability of different dimensions appearing in the 
output vector. Lee et al. [20] proposed a combined model, 
named YOLO-EfficientNet, which employed YOLOv5x for 
the purpose of detecting heads and utilized EfficientNet for 
the head state classification. The model could achieve high 
accuracy even with limited training data. Xiang et al. [21] 
constructed a safety helmet detection network based on a 
multi-scale Swin Transformer, and obtained a superior 
performance on the Pictor-v3 and SHWD datasets. 

To improve the effectiveness of object detection 
algorithms in complex backgrounds, we propose a hybrid 
architecture algorithm called Mamba-YOLO, designed to 
detect helmet-wearing states. Mamba-YOLO is based on the 
YOLOv8 framework and integrates state space models with 
CNNs. The primary contributions of our research are as 
follows: 

(1) A downsampling method, referred to as CDown, has 
been developed by integrating pooling downsampling and 
convolutional downsampling techniques. This CDown 
method effectively reduces the number of parameters in the 
model while simultaneously enhancing its learning capacity. 

(2) A module named Lightweight-C2f has been developed 
from C2f to enhance the model's perception of object scales 
by reusing feature information and increasing receptive 
fields. 

(3) A hybrid architecture-based head, called Mamba-Head, 
has been proposed by integrating the state space model into 
the detection head of the baseline. The Mamba-Head allows 
the model to possess a global receptive field, thereby 
improving its sensitivity to global contextual information. 

II. METHODS 
YOLOv8 represents a notable advancement in the YOLO 

(You Only Look Once) series of object detection algorithms. 
In comparison to its predecessors, it exhibits enhanced 
accuracy while maintaining real-time performance [22]. As 
shown as Fig. 1, the YOLOv8 model is comprised of three 
principal components: Backbone, Neck, and Head. The 
Backbone is responsible for extracting image features, which 
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Fig. 1.  YOLOv8 model architecture. 
 
will then be subjected to fusion at different scales by the Neck. 
The function of the Head is to predict the categories and 
locations of objects. YOLOv8 is characterized by an efficient 
architectural design that facilitates enhanced speeds and more 
precise detection outcomes, accompanied by noteworthy 
generalization performance [23]. 

To further enhance the accuracy of safety helmet-wearing 
detection in complex backgrounds, YOLOv8 is employed as 
the baseline, and a series of improvement experiments will be 
conducted. 

A. CDown 
In deep learning networks, downsampling is commonly 

employed to improve feature hierarchies by decreasing the 
spatial resolution of feature maps [24]. The process of 
downsampling not only allows the model to concentrate on 
more abstract and high-level visual features but also 
significantly reduces the number of parameters and the 
computational burden in subsequent layers. Consequently, 
this approach enhances both the efficiency and performance 
of the network. 

Downsampling methods used in deep learning networks 
can be classified into two categories: pooling downsampling 
and convolutional downsampling. Pooling downsampling is 
a non-linear dimensionality reduction technique that provides 
the advantage of translation invariance while reducing the 
number of network parameters, thereby decreasing the risk of 
overfitting [25]. However, this method may also lead to the 
loss of some spatial information. In contrast, convolutional 
downsampling reduces the size of feature maps by employing 
convolution operations with a stride greater than one. The 
advantage of convolutional downsampling is that it preserves 
more spatial information through a weight-learning process. 
Furthermore, by adjusting the weights of the convolutional 
kernels, the model can learn to perform feature selection and 
information compression optimally. Nevertheless, 
convolutional downsampling may increase model 
complexity and training difficulty. 

To reduce the complexity and parameter count of the 
model while effectively preserving its learning capabilities, 
we propose a downsampling method called Collaborative 
Downsampling (CDown), as illustrated in Fig. 2. 
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Fig. 2.  Structure of the CDown module. 
 

The CDown downsampling method is employed as an 
alternative to the traditional convolutional downsampling 
method used in the baseline. As illustrated in Fig. 2, the input 
feature map is initially divided into two segments along the 
channel dimension. One segment is downsampled using the 
max pooling method, while the other segment is 
downsampled through a convolution operation to preserve 
the model's ability to learn the target features. Additionally, 
the original input feature map is directly processed with 
maximum pooling. Finally, the results of these three 
processes are concatenated along the channel dimension. In 
contrast to the traditional convolutional downsampling 
approach, the CDown method effectively reduces the model's 
parameter count by performing convolutional calculations on 
only a subset of the channels. Simultaneously, the direct 
application of the max pooling method to the input feature 
map, followed by its concatenation with the results of both 
the max pooling and convolutional downsampling methods, 
not only increases the number of channels but also promotes  
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Fig. 3.  Structure of the Lightweight-Bottleneck. 
 
the efficient reuse of feature information, thereby enhancing 
the model's learning capacity. 

B. Lightweight-C2f 
As illustrated in Fig. 1, the C2f module represents a novel 

bottleneck layer design that is utilized in the baseline to 
enhance the model's efficiency and performance [26]. The 
C2f module improves the model's feature perception by 
concatenating the outputs of various bottleneck modules with 
the original feature map, thereby allowing the network to 
learn richer multi-scale information [27]. Additionally, the 
concatenation of multiple bottleneck modules enables the 
C2f to maintain a lightweight structure while acquiring more 
comprehensive gradient flow information, which facilitates 
faster model convergence. 

To further streamline the model and reduce its parameter 
count and complexity, a Lightweight-C2f module derived 
from the C2f module is proposed as a replacement. The 
bottleneck modules of C2f have been modified based on the 
design philosophy of CSPNet. First, the input feature map is 
split along the channel dimension. Next, only a subset of the 
split feature map undergoes convolutional operations, while 
the remaining portion remains unprocessed. The unprocessed 
and convoluted portions are then concatenated along the 
channel dimension. Finally, a novel Lightweight-Bottleneck 
is created by replacing the first convolutional layer of the C2f 
bottleneck with this new structure, as illustrated in Fig. 3. 

The Lightweight-Bottleneck significantly reduces 
redundant gradient information, thereby improving training 
efficiency and decreasing computational complexity. 
Additionally, by splitting and reusing feature map 
information, it enhances the network's ability to learn features. 
Notably, the convolution branch in the 
Lightweight-Bottleneck employs a kernel size of 5, whereas 
the maximum convolution kernel size of C2f is 3. As 
illustrated in Fig. 4, the larger convolution kernel provides an 
expanded receptive field, enabling neurons to capture 
information over a broader area and facilitating a more 
comprehensive understanding of the global structure and 
contextual information present in images [28]. 

C. YOLO head with vision Mamba 
Mamba is a state-space model designed to effectively 

manage long sequence modeling tasks [29]. By integrating 
global receptive fields and dynamic weighting, Mamba 
overcomes the modeling limitations associated with CNNs 
and enhances the model's capabilities. To improve the 
model's ability to perceive variations in target scale, several 
convolutional layers in the YOLO head are replaced with the 
VSS block from the Mamba model [30]. Consequently, a  
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Fig. 4.  The impact of different convolution kernel sizes on the receptive 
field. 
 
hybrid Mamba-CNN architecture is proposed for the 
detection head, referred to as Mamba-Head, as illustrated in 
Fig. 5. 

A state space model is used to describe and analyze the 
behavior of a dynamic system [31]. It can map the system's 
input x(t)∈RL to the response y(t)∈RL. Mathematically, the 
state space model is typically represented by a set of 
differential equations, as shown as (1). 

'( ) ( ) ( )h t Ah t Bx t= +  
(1) 

( ) ( ) ( )y t Ch t Dx t= +  
where, h(t) represents the system state vector, x(t) represents 
the system input vector, y(t) represents the system output 
vector, A∈CN×N represents the state transition matrix, B∈CN 
and C∈CN represent the input matrix and output matrix 
respectively, D∈C1 represents the direct transfer matrix, and 
N is the number of variables in the state space. 

In the field of deep learning, state space models are 
employed to handle sequential data. By mapping sequential 
data into the state space, state space models can more 
effectively capture long-term dependencies in the data. In 
order to facilitate the processing of discrete sequential data by 
state space models, the input L D

kx R ×∈ is treated as a 
sequence of length L with D-dimensional signals. This leads 
to the discretization of (1), and the results of discretization 
could be illustrated as (2). 

1k k kh Ah Bx−= +  

(2) 
k k ky Ch Dx= +  

ΔAA e=  
Δ ( 1)( )AB e I A B−= −  

C C=  

where, D NB R ×∈ , D NC R ×∈ and DR∆ ∈ . 
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Fig. 5.  Structure of the Mamba-Head. 
 

Actually, the B  in (2) is usually linearly approximated by 
a first-order Taylor expansion, as illustrated in (3). 

Δ 1 1( ) (Δ )(Δ ) Δ ΔAB e I A B A A B B− −= − ≈ =  (3) 

The information processed by CNNs is typically 
represented as 2D feature maps, which do not naturally align 
with the sequential data processing of state space models [32]. 
Therefore, it is necessary to serialize the information 
contained in these 2D feature maps. However, 2D feature 
maps exhibit non-causal characteristics, and directly 
flattening them for sequential scanning can lead to a loss of 
the global receptive field. To address this challenge and 
enable the model to maintain a global receptive field, a 2D 
selective scanning method known as the Cross Scan Module 
(CSM) is employed in the Mamba model [33]. The CSM 
initiates a scan from the four corner pixels of an image and 
then proceeds to move in various directions. Subsequently, 
the results of the cross-scanning are serialized, facilitating 
selective scanning through a state space model. Finally, the 
scanned data is reconstructed into an image, as illustrated in 
Fig. 6. 

III. EXPERIMENT RESULTS 

A. Datasets 
To validate the effectiveness of the presented work, the 

model was trained and evaluated using the open-source 
SHWD dataset. This dataset provides data for the purposes of 
safety helmet-wearing and human head detection. It consists 
of 7,581 images, with 9,044 instances depicting individuals 
wearing safety helmets and 111,514 instances showing heads 
without helmets. The distribution of samples across different 
scales within various subsets is presented in TABLE I and 
TABLE II, respectively. 

TABLE I 
THE DISTRIBUTION OF SAMPLE NUMBERS 

Label Train Val Test 
hat 6419 747 1878 
person 79778 9178 22558 

 
TABLE II 

THE NUMBER OF SAMPLES ACROSS DIFFERENT SCALES WITHIN VARIOUS 
SUBSETS 

Scale Train Val Test 
small(area≤32×32) 59845 7069 17027 
medium(32×32＜area≤96×96) 19014 2141 5462 
large(area＞96×96) 7338 715 1947 

 
To improve the model's generalization ability and 

robustness, the data augmentation strategies used in the 
baseline are also applied in this study. These strategies 
include mosaic augmentation, random horizontal flipping, 
random vertical flipping, and color jittering. Notably, the 

 

 
Fig. 6.  2D selective scanning method. 
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Fig. 7.  Mosaic data augmentation strategy. 
 
mosaic data augmentation technique combines four randomly 
selected images into a single composite image, as illustrated 
in Fig. 7. This method significantly enhances the background 
of the targets and balances the distribution among targets of 
varying scales. 

B. Platform and trainning 
In order to ensure the reproducibility and impartiality of 

the experimental results, a comprehensive list of the 
hardware and software environments used in the experiments 
is presented in TABLE III. 

 
TABLE III 

THE HARDWARE AND SOFTWARE ENVIRONMENTS 
Options Configuration 

OS Ubuntu 18.04 
CPU Intel(R) Xeon(R) Platinum 8352V 
GPU Nvidia RTX 4090 24G 
Framework Pytorch 2.0 
Language Python 3.8 

 
To ensure the effectiveness of model training, this study 

adjusted several key hyperparameters throughout the training 
process. The hyperparameters employed in this research are 
presented in TABLE IV. Notably, the early stopping patience 
is set to 50 epochs, in accordance with the early stopping 
strategy. This means that if the model's accuracy does not 
show improvement within the specified 50 epochs, the 
training will automatically conclude. This approach not only 
prevents the model from overfitting but also effectively 
conserves computational resources. 

 

TABLE IV 
MODEL TRAINING HYPERPARAMETER SETTINGS 

Training options Setting 
Input image size 640*640 
Lr0 0.01 
Lrf 0.01 
Lr scheduler LinearLR 
Momentum 0.937 
Batch size 16 
Optimizer SGD 
Epochs 300 
Early stopping patience 50 

 
In order to evaluate the effectiveness of model training, 

three types of loss values are typically employed: 
classification loss, bounding box regression loss, and 
distribution focal loss [34]. These three types of loss can be 
derived from equations (4) to (6). 

( ( ( ) (1 ) (1 ))
(1 )

VFL( , )
0
0

q q log p q log p
p log p

p q
q
q

γα

− + − −
 − −= 

>
 =

 (4) 

where, q  represents the true class of the samples, p denotes 
the predicted probability, α  is the weight factor for positive 
samples, and γ is the modulating factor. 

2

2

( , )1CIoU

gtb bIoU v
c

ρ α= − + +  (5) 

where, IoU is the intersection over union of the ground truth 
box and the predicted box, ρ is the Euclidean distance, b and 
bgt respectively represent the distances from the centers of the 
ground truth and predicted boxes, and v is a measure of the 
consistency of the aspect ratios. 

1 1 1( ) (( ) ( ) ( ) ( ), )i i i i i iDFL S S y y log S y y log S+ + += − − + −  

(6) 
1

1
1 1

, i
i

i i

i
i

i i

y y y y
S S

y y y y
+

+
+ +

− −
= =

− −
 

where, Si and Si+1 respectively represent the predicted values 
output by the network and the adjacent predicted value; y, yi, 
and yi+1 respectively represent the actual label value, the 
integrated label value, and the adjacent integrated label value. 

The training results are presented in Fig. 8. It is evident 
that the three types of loss values for the model decrease 
rapidly before gradually stabilizing. The iterative process 
ultimately concluded due to the implementation of the early 
stopping strategy. 
 

   
(a) (b) (c) 

Fig. 8.  Comparison of training loss curves between Mamba-YOLO and baseline. (a) classification loss, (b) bounding box regression loss, (c) distribution focal 
loss. 
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C. Main results 
Evaluation metrics 

The evaluation metrics, including precision, recall, and 
mean Average Precision at IoU 0.5 (mAP50), are employed to 
rigorously assess the model's performance. Precision is 
defined as the ratio of the area predicted by the algorithm to 
the actual detection area, while recall represents the 
proportion of correctly predicted categories out of the total 
number of required categories. The mAP50 indicates the 
average precision across all samples, where the overlap 
between the predicted bounding box and the ground truth 
bounding box is at least 50% of the total area of the two boxes. 
A higher mAP50 value signifies greater prediction accuracy. 
These metrics are crucial for comparing the performance of 
different models, as they reflect the reliability of the models 
from various perspectives. The evaluation metrics are 
illustrated in equation (7). 
 

TP FPPrecision
TP
+

=  

(7) 

TP FNRecall
TP
+

=  

Precision RecallF1=2
Precision Recall

×
×

+
 

1
0 ( )AP Precision r dr= ∫  

50
1

c

i
i

mAP AP
=

= ∑  

where, TP represents the number of true positive samples, FP 
represents the number of false positive samples, FN 
represents the number of false negative samples, AP 
represents the average precision, r denotes recall, C is the 
total number of classes, and i indicates a specific class. 
 
Comparison of ablation experiments 

Ablation research evaluates the influence of each 
component on overall performance by progressively 
removing or modifying different parts of the model. This 
approach not only validates the effectiveness of individual 
modules but also provides a solid practical foundation for 
future research. To gain a deeper understanding of the 
specific contributions of the various improvement modules 
proposed in this work to the model's performance, ablation 
experiments were conducted using the SHWD open-source 
dataset. The results are detailed in Table V. 

The implementation of the CDown module in isolation 
results in a reduction of model parameters and computations 

by 4.5 M and 14.2 GFLOPs, respectively, compared to the 
baseline model. Although there is a slight decline in the F1 
score, the mAP50 metric shows a 0.1% improvement. This 
outcome indicates that the CDown module can decrease the 
computational complexity and parameter quantity of the 
model while maintaining the model's feature learning 
capability. Furthermore, the integration of the 
Lightweight-C2f module results in a substantial enhancement 
in both the mAP50 and F1 score comparison to the baseline. 
This enhancement is accompanied by a reduction in model 
parameters by 2.9 M and a decrease in computational 
resources by 14.7 GFLOPs. This observation suggests that 
the feature reuse strategy employed by the C2f module not 
only contributes to the reduction in model complexity, but 
also leads to a notable enhancement in the model's feature 
extraction capability. Furthermore, the integration of the 
Mamba-Head module into the model alone led to substantial 
enhancements in both mAP50 and F1 score, despite a 
marginal increase in parameters and computational cost. This 
suggests that the Mamba-Head module effectively enhances 
the model's capacity to discern target features by preserving 
the global receptive field. 

When any two of these modules are randomly combined 
and applied to the model, the mAP50 of the enhanced model 
demonstrates a notable improvement over the baseline model, 
while simultaneously reducing both the number of 
parameters and computational costs. The simultaneous 
application of all three proposed modules to the model, 
referred to as Mamba-YOLO, yields the highest mAP50 score. 
Additionally, both the computational costs and the number of 
parameters are significantly decreased. In summary, the 
improved method presented in this paper not only enhances 
the feature learning capability of the model but also 
effectively reduces its complexity. 

In order to visually assess the improvement in target 
feature perception capabilities of our work compared to the 
baseline, we conducted a visual comparison of the inference 
results, as illustrated in Fig. 9. The first set of comparison 
images shows that Mamba-YOLO can accurately detect 
heavily occluded targets, whereas the baseline fails to register 
two instances of such targets. As demonstrated by the second 
and third sets of comparison images, the baseline model 
generates several false positives for small targets in complex 
backgrounds. In contrast, the Mamba-YOLO model 
effectively distinguishes between targets and the background, 
successfully completing the detections. 
 

 

TABLE V 
RESULTS OF ABLATION EXPERIMENTS 

Model * P (%) R (%) mAP50 (%) F1 Parameters (M) GFLOPs B C L M 
√    92.6 90.8 94.6 91.7 43.0 165.7 
√ √   92.0 90.6 94.7 91.3 38.5 151.5 
√  √  92.8 90.8 95.2 91.8 40.1 151.0 
√   √ 92.8 91.2 95.1 92.0 45.4 171.4 
√ √ √  92.7 90.9 95.2 91.8 34.8 136.8 
√ √  √ 91.8 91.1 94.7 91.5 40.1 157.2 
√  √ √ 92.8 90.6 94.7 91.7 41.8 156.6 
√ √ √ √ 91.4 92.0 95.4 91.7 36.4 142.0 
*: B stands for the baseline model; C stands for the CDown module; L stands for the Lightweight-C2f module; M stands for the Mamba-Head module. 
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Fig. 9.  Visual comparison of inference results between baseline and Mamba-YOLO. The first line represents the baseline inference results, the second line 
represents the Mamba-YOLO inference results, and the third line represents the manually labeled labels. 
 
Experiment with multiple datasets 

In order to further validate the generalization ability and 
robustness of Mamba-YOLO across various datasets, 
Mamba-YOLO was also trained and evaluated on the 
GDUT-SHWD and Helmet Detection datasets following the 
ablation experiments on the SHWD dataset. By testing on a 
diverse array of datasets, we can conduct a more 
comprehensive assessment of the model's performance and 
ensure its effectiveness in a wide range of practical 
applications. The results of the experiments conducted with 
Mamba-YOLO and the baseline across different datasets are 
presented in Table VI. 

As demonstrated in Table VI, compared to the baseline, 
Mamba-YOLO achieves improvements of 1.5% and 1% in 
mAP50 on the GDUT-SHWD and Helmet Detection datasets, 
respectively. Furthermore, the F1 score increases by 0.9 and 
0.7 on these two datasets, respectively. The experimental 
results across multiple datasets indicate that the proposed 
method performs well on individual datasets and also 

exhibits strong generalization performance and robustness 
across diverse datasets. 

In order to comprehensively assess the model's genuine 
capacity for generalization, cross-domain training, validation, 
and testing were performed utilizing open-source datasets 
from diverse fields. This multi-domain evaluation 
experiment aims to identify the model's susceptibilities to 
variations in real-world environments. Specifically, datasets 
from three unrelated domains were utilized for 
experimentation: agronomy, zoology, and aeronautical 
science. The experimental results are summarized in Table 
VII. 

As demonstrated in Table VII, the performance of the 
Mamba-YOLO model and the baseline model shows 
significant variations across datasets from different domains. 
Mamba-YOLO exhibits a substantial improvement in 
performance when evaluated on the WeedCrop and Aircraft 
Detection datasets, as evidenced by notable increases in 
mAP50. The Mamba-YOLO achieves enhancements of 1.4% 

TABLE VI 
RESULTS OF EXPERIMENT WITH MULTIPLE DATASETS 

Datasets Model P (%) R (%) mAP50(%) F1 

SHWD Baseline 92.6 90.8 94.6 91.7 
Mamba-YOLO 91.4 92.0 95.4 91.7 

GDUT-SHWD Baseline 89.3 81.2 88.1 85.0 
Mamba-YOLO 89.4 82.7 89.6 85.9 

Helmet Detection Baseline 92.2 84.3 89.7 88.1 
Mamba-YOLO 92.9 85.1 90.7 88.8 
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TABLE VII 
RESULTS OF EXPERIMENT WITH MULTIPLE DATASETS 

Datasets Model P (%) R (%) mAP50(%) F1 

WeedCrop Baseline 71.1 75.8 72.9 73.4 
Mamba-YOLO 79.4 68.6 74.3 73.6 

African Wildlife  Baseline 92.8 90.0 96.4 91.4 
Mamba-YOLO 95.9 90.4 96.6 93.1 

Aircraft Detection Baseline 83.4 70.7 77.7 76.5 
Mamba-YOLO 94.5 73.2 82.7 82.5 

TABLE VIII 
PERFORMANCE COMPARISON OF MAMBA-YOLO AND OTHER ALGORITHMS 

Models P (%) R (%) mAP50 (%) F1 Parameter (M) GFLOPs 
Rt-Detr 87.9 85.0 90.5 86.4 32.8 108.0 
yolov9c 92.7 90.5 94.5 91.6 25.3 102.3 
yolov6l 92.0 90.0 93.9 91.0 110.8 391.2 
yolov5 92.0 91.0 94.7 91.5 53.2 135.3 
yolov3 93.1 90.2 94.4 91.6 103.6 283.0 
Mamba-YOLO 91.4 92.0 95.4 91.7 36.4 142.0 
 
and 5.0% in mAP50 for these two datasets, respectively. In 
contrast, no significant difference is observed between the 
two methods on the African Wildlife dataset regarding 
mAP50. With regard to the F1 score, the Mamba-YOLO 
consistently yields higher results than the baseline across all 
three datasets. The enhancement exhibited by the WeedCrop 
dataset is negligible, as evidenced by a mere 0.2 increase. It is 
important to note that the Mamba-YOLO exceeds the 
baseline by 1.7 and 6.0, respectively, on the African Wildlife 
and Aircraft Detection datasets. The collective results of 
these experiments indicate that Mamba-YOLO demonstrates 
superior generalization ability compared to the baseline 
across various open-source datasets from diverse domains. 

 
Compared with different algorithms 

To further evaluate the performance of Mamba-YOLO, 
five additional algorithms were selected for comparative 
experiments: YOLOv3, YOLOv5, YOLOv6, RT-DETR, and 
YOLOv9. The comparative experiments utilized the SHWD 
open-source dataset and were conducted on the same 
hardware for both training and evaluation. All models 
underwent comprehensive training, and the optimal weights 
were chosen for testing. The comparison data are presented in 
Table VIII. Mamba-YOLO achieves the highest score in the 
mAP50 metric, outperforming YOLOv3, YOLOv5, YOLOv6, 
RT-DETR, and YOLOv9 by 1%, 0.7%, 1.5%, 0.9%, and 
4.9%, respectively. Furthermore, Mamba-YOLO also attains 
the highest F1 score, with improvements of 5.3, 0.1, 0.7, 0.2, 
and 0.1 over the aforementioned models, respectively. 
Through comprehensive comparisons with multiple 
state-of-the-art models, Mamba-YOLO demonstrates 
significant advantages in the mAP50 metric, underscoring its 
generalizability and practical value.  

In contrast to traditional downsampling methods, the 
CDown module is more lightweight and effectively reduces 
the computational and parameter costs of the model. 
Furthermore, a Lightweight-C2f module has been introduced 
to decrease the number of parameters and computations 
while increasing the model's receptive field, owing to its 
capacity for feature information reuse. Additionally, state 
space models have been integrated into the CNNs, resulting 
in a hybrid architecture detection head known as 
Mamba-Head. This integration enables the model to possess 
a global receptive field, thereby enhancing its ability to 
perceive multi-scale target information. The main 

conclusions drawn from a series of experiments are as 
follows: 

(1) Ablation experiments on the SHWD dataset were 
conducted to evaluate the performance of the proposed 
CDown, Lightweight-C2f, and Mamba-Head modules. 
Compared to the baseline, these modules demonstrated a 
range of improvements in the mAP50 metric. Additionally, 
the Mamba-YOLO algorithm shows an increase of 0.8% in 
the mAP50 metric relative to the baseline. 

(2) To validate the generalization performance and assess 
the practicality of the model, Mamba-YOLO is compared 
with the baseline across multiple datasets. The experiments 
demonstrate that Mamba-YOLO achieved increases of 1.5% 
and 1% in the mAP50 metric on the GDUT-SHWD and 
Helmet Detection datasets, respectively, compared to the 
baseline. 

(3) To validate the generalization ability and assess the 
practical utility of the proposed method, Mamba-YOLO is 
evaluated against the baseline on multi-domain datasets. 
Experimental results indicate that Mamba-YOLO achieves 
improvements of 1.4%, 0.2%, and 5.0% in mAP50 on the 
WeedCrop, African Wildlife, and Aircraft Detection datasets, 
respectively, compared to the baseline. 

(4) To further validate the effectiveness of our work, we 
conducted a comparative analysis with state-of-the-art 
algorithms. The experiments demonstrated that our approach 
outperformed YOLOv3, YOLOv5, YOLOv6, Rt-Detr, and 
YOLOv9c by 1%, 0.7%, 1.5%, 0.9%, and 4.9%, respectively, 
in the mAP50 metric. 

The experimental results demonstrate that the proposed 
hybrid architecture algorithm, Mamba-YOLO, which 
integrates a state space model with CNNs, can more 
accurately detect the status of safety helmet usage in complex 
backgrounds. In summary, Mamba-YOLO exhibits 
significant potential for application in safety helmet-wearing 
detection. 

IV. CONCLUSION 
In this paper, we propose the Mamba-YOLO model to 

enhance safety helmet-wearing detection accuracy in 
complex construction scenarios by integrating a hybrid 
architecture of convolutional neural networks and state-space 
models. Key innovations include the CDown downsampling 
method for parameter reduction, the Lightweight-C2f module 
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for multi-scale feature perception, and the Mamba-Head with 
cross-scan modules for global context modeling. 
Comprehensive experiments, including ablation studies, 
multi-dataset comparisons, and multi-algorithm evaluations, 
demonstrate that Mamba-YOLO significantly improves 
detection robustness while reducing false positives and 
missed detections. This framework provides an effective 
solution for real-world safety helmet-wearing detection, with 
potential applications extending to broader industrial safety 
systems. Future research will focus on integrating this 
technology with industrial IoT platforms for real-time 
analytics and proactive risk prevention. 

 
Data Availability 

GDUT-SHW: https://github.com/yudaprama/hardhat-wearing-detection; 
HelmetDetect: https://aistudio.baidu.com/datasetdetail/50329; 
SHWD: https://github.com/njvisionpower/Safety-Helmet-Wearing-Dataset; 
Code is available at: https://github.com/Carter007gx/MambaYOLO.git 
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