
Abstract—Accurate detection of small traffic signs remains
a critical challenge for autonomous driving systems,
particularly under complex road conditions. Existing
approaches suffer from two primary limitations: (1)
Conventional convolutional feature extraction mechanisms
exhibit high noise sensitivity, inadvertently amplifying
background interference when enhancing target details; (2)
Fixed receptive field configurations lack dynamic adaptability,
struggling to handle the substantial scale variations of traffic
targets in real-world scenarios. To address these challenges,
this paper proposes YOLOv8n-FRC, featuring three key
innovations: Firstly, a Frequency-aware Receptive Field
Calibration Block Attention Module (FRCBAMConv) is
developed to achieve noise suppression and dynamic feature
calibration through frequency-domain filtering. Secondly, a
Deformable Multi-Scale Feature Pyramid Module (D-SPPF) is
constructed to enhance geometric adaptability for distorted
targets. Finally, a Channel-Space Cooperative Optimization
strategy integrating SKAttention mechanisms and Shape-IoU
loss function is proposed to significantly improve localization
accuracy for occluded and irregular-shaped objects.
Experimental results demonstrate that the enhanced model
achieves 82.6% mAP@0.5 on the TT100K test set,
representing a 17.2 percentage-point improvement over the
baseline YOLOv8n. In challenging scenarios involving
occlusion and low illumination, recall rates improve by
23.5%-31.8%. The proposed method significantly
outperforms mainstream detection models including Faster
R-CNN and RetinaNet in both detection accuracy and
environmental adaptability, providing an effective technical
solution for real-time small object detection applications.

Index Terms—FRCBAMConv, D-SPPF, SKAttention,
Shape-IoU, traffic sign detection

I. INTRODUCTION

ith the rapid advancement of intelligent
transportation and autonomous driving technology,

accurate recognition and detection of traffic signs have
become a key component in road safety and intelligent
vehicle control. Traffic signs convey key information
including speed limits and directions, which are essential
for advanced driver assistance systems (ADAS) and
autonomous driving systems (ADS). Existing algorithms
still face challenges in achieving high accuracy and

real-time performance in small target detection.
Early traffic sign detection systems relied on traditional

image processing and machine learning techniques.
Although effective in controlled scenarios, these
approaches exhibited limited performance in complex
real-world conditions due to their dependence on
handcrafted features. The advent of CNN-based
(Convolutional Neural Network-based) deep learning [1]
has revolutionized this field by facilitating automated
learning of robust hierarchical features, substantially
enhancing both detection accuracy and adaptability in
challenging conditions. Contemporary research
concentrates on developing lightweight yet accurate
detection algorithms that are suitable for
resource-constrained embedded systems, aiming to
optimize the trade-off computational efficiency and
detection precision to advance intelligent driving
technologies.
A comparative analysis reveals that two-stage detectors

(e.g. Faster R-CNN [2]) encounter substantial challenges in
small traffic sign detection. More specifically, Faster
R-CNN's architecture has three critical limitations: (1)
inherently slow inference speed caused by its two-stage
pipeline, which hinders real-time deployment; (2)
inadequate features for small targets combined with
disproportionately large candidate regions; and (3) limited
scale adaptability and increased susceptibility to
background noise in complex traffic environments.
Within the realm of deep learning-based object detection,

the YOLO series has emerged as a prominent solution due
to its efficient single-stage architecture. Although these
models demonstrate superior performance in general object
detection tasks, they exhibit particular deficiencies in small
traffic sign detection. Early iterations of YOLO were
plagued by insufficient feature extraction capabilities and
ineffective multi-scale feature fusion mechanisms for small
targets. Later iterations like YOLOv9 [3] and YOLOv10 [4]
preserved the series' single-stage efficiency but introduced
trade-offs: introduced trade-offs: Whereas YOLOv9
attained improved accuracy at the expense of greater
computational complexity, YOLOv10's lightweight
architecture enhanced efficiency at the cost of elevated
false detection rates for distorted traffic signs in complex
environments.
Among these variants, YOLOv8 [5-7], especially its

lightweight YOLOv8n variant, strikes a balance through
comprehensive optimizations in network architecture, loss
function design, and training strategies. The YOLOv8n
architecture employs streamlined feature extraction to
enhance localization accuracy for small targets in complex
traffic environments. However, its simplified architecture
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still exhibits limitations for traffic sign detection, including
an inadequate small-object feature extraction capability and
the absence of specialized mechanisms to handle the unique
geometric characteristics of traffic signs.
To overcome these limitations, we propose

YOLOv8n_FRC, an improved model specifically designed
for small traffic sign detection. Key innovations include:
1. FRCBAMConv: Replaces standard convolutions to
suppress noise via frequency-domain filtering; 2. P2
Detection Head: Leverages high-resolution shallow features
for small target localization; 3. SKAttention: Dynamically
calibrates multi-scale features; 4. Shape-IoU Loss:
Optimizes bounding box regression for irregular shapes.
These modules collectively improve detection accuracy
while preserving real-time performance (58 FPS on
embedded devices), achieving significant advancements
over state-of-the-art methods in traffic sign detection.

II. YOLOv8n

YOLOv8n (You Only Look Once version 8 Nano),
currently the most computationally efficient variant in the
YOLO series, is specifically engineered for real-time object
detection in resource-constrained embedded systems. While
maintaining the characteristic single-stage detection
paradigm of YOLO architectures [8-9], YOLOv8n
incorporates three principal compression innovations: (1) A
backbone utilizing systematic depthwise separable
convolutions that achieve 40% parameter reduction
compared to standard YOLOv8 while maintaining
equivalent receptive field coverage; (2) An optimized C2f
module (Compressed Cross-Stage Partial Fusion) that
strategically prunes redundant connections while retaining
92% of the baseline feature extraction accuracy at 60%
reduced computational cost (FLOPs); and (3) A lightweight
hybrid architecture integrating nano-scale Feature Pyramid
Network (FPN) and Path Aggregation Network (PAN)
structures, which enhances multi-scale feature fusion while
achieving a 35% reduction in memory usage. Critically,
these optimizations preserve the model's inherent
advantages of parallelizable computation and end-to-end
trainability, rendering YOLOv8n particularly suitable for
edge computing and mobile applications where power
efficiency and inference speed are paramount.
For small object detection, YOLOv8n implements three

core innovations: (1) A dynamic receptive field mechanism
employing adaptive kernel sizes (3 × 3 to 7 × 7) that
automatically adjusts to varying object scales; (2) An
efficient channel attention (ECA) module that amplifies
small-object features while introducing merely 0.03%
additional computational overhead; (3) A modified
Complete IoU (CIoU) loss function incorporating aspect
ratio constraints specifically optimized for traffic sign
geometries.
The YOLOv8n architecture is engineered to optimize

both accuracy and speed for small object detection through
four principal components: (1) Input preprocessing: Images
are resized to a fixed resolution (typically 640×640) with
pixel value normalization; (2) Backbone: An optimized
Cross-Stage Partial (CSP) structure [10] featuring a Stem
Block for initial feature extraction and multiple CSP Blocks

that achieve a balance between computational efficiency
(40% parameter reduction) and feature preservation (92%
retention rate); (3) Neck: A dual-path architecture
integrating Feature Pyramid Network (FPN) [11] and Path
Aggregation Network (PAN) [12] for multi-scale feature
fusion, where FPN constructs feature hierarchies via
upsampling while PAN performs bottom-up aggregation to
fuse low-level spatial details with high-level semantics; (4)
Detection head: Predicts bounding boxes (parameterized as
center coordinates, width, and height), confidence scores,
and class probabilities through convolutional layers.
Specifically: Bounding box regression outputs four
parameters (xc,yc,w,h); Confidence scores estimate the
probability of target presence; Class prediction identifies
the traffic sign categories.

Fig. 1. YOLOv8n model architecture diagram

III. IMPROVED YOLOv8n

The original YOLOv8n model simultaneously amplifies
both high-frequency target details and background noise in
complex scenes through conventional convolution
operations, resulting in reduced feature discriminability.
Moreover, its fixed receptive field mechanism fails to adapt
to significant target scale variations, which collectively
limit both accuracy and real-time performance in small
target detection. The enhanced FRCBAMConv module
addresses these limitations by combining frequency-domain
filtering with attention mechanisms to suppress background
interference, thereby improving feature quality and
generating higher-resolution feature maps for the P2
detection head. Specifically: (1) The P2 head utilizes these
refined features to better capture small target details; (2)
The SKAttention mechanism dynamically recalibrates both
channel-wise and spatial features from FRCBAMConv
through adaptive weight adjustment, enhancing focus on
critical information; (3) The Shape-IoU function optimizes
bounding box regression through geometric constraint
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matching, forming a closed-loop system with the
high-quality features from FRCBAMConv and
SKAttention. These components synergistically operate
through three primary interactions: FRCBAMConv-P2
integration enhances small target detection capability,
SKAttention-FRCBAMConv collaboration strengthens
feature representation, and Shape-IoU coordination with the
complete framework improves localization accuracy. This
comprehensive enhancement significantly improves
detection accuracy and robustness in complex scenarios,
particularly for small and irregular targets like traffic signs.

A. FRCBAMConv Modules

The FRCBAMConv module integrates multi-scale
receptive field spatial features with a dual-attention
convolution mechanism. In convolutional neural networks,
the receptive field (RF) [13] defines the input region
influencing each output unit, determining the network's
capacity to capture spatial context at specific hierarchical
levels. To enhance multi-scale perception, FRCBAMConv
employs convolution kernels of varying sizes (e.g. 3×3, 5
× 5, 7 × 7) to simultaneously extract local details and
global structures, thereby improving the network's
modeling of spatial relationships.
It enhanced module addresses YOLOv8n's insufficient

feature extraction capability for small traffic targets in
complex backgrounds through three synergistic
components: (1) Channel Attention Mechanism (CAM):
Dynamically recalibrates channel-wise feature weights to
amplify discriminative patterns; (2) Spatial Attention
Mechanism (SAM): Focuses on target regions while
suppressing irrelevant background noise; (3)
Dual-Attention Synergy: Combines CAM and SAM to
improve feature discrimination for small targets, reducing
missed detection rates by 15.2% and false alarms by 12.7%
[14]. Compared with the original Conv module,

FRCBAMConv significantly improves the model's
sensitivity and detection accuracy for small targets through
adaptive feature refinement while maintaining a lightweight
architecture, making it particularly suitable
for detecting small targets such as long-distance vehicles
and pedestrians in traffic scenes.
As illustrated in Figure 2, the FRCBAMConv module

constitutes an efficient yet powerful feature extraction
architecture that significantly enhances small target
detection performance in complex environments through
systematic integration of grouped convolution with a
dual-branch spatial attention mechanism. The module
operates through three sequential phases: (1) Hierarchical
feature extraction using multiple 3×3 convolution groups,
(2) Computational optimization through strategic grouped
convolution that preserves essential feature information,
and (3) Spatial attention mapping via bidirectional average
pooling across height and width dimensions to generate
precise spatial weight distributions. This architecture
enables dynamic focus on critical regions while suppressing
background interference through adaptive feature
reweighting and intelligent downsampling, thereby
enhancing both spatial perception and semantic
discrimination for small targets without compromising
computational efficiency. To overcome the inherent
limitations of conventional convolution in handling small
targets under complex backgrounds or occlusion conditions
—particularly feature degradation and information loss
caused by fixed sampling grids—we propose an enhanced
C2f module that synergistically combines FRCBAMConv
with dynamic snake convolution (DSC). As demonstrated
in Figure 3, our modified architecture replaces the standard
bottleneck convolution layer with DSC and substitutes the
original Conv module with FRCBAMConv.

Fig. 2. Architecture of the FRCBAMConv module.
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The DSC mechanism employs deformable convolution
kernels to simulate biological snake-like locomotion
patterns, enabling adaptive adjustment of sampling points
to target contours. This design effectively addresses the
inherent limitations of conventional convolutions in
detecting small traffic targets with complex morphologies,
such as curved lanes and partially occluded pedestrians.
The module establishes complementary collaboration with
FRCBAMConv's dual attention mechanism through two
coordinated pathways: (1) DSC specializes in extracting
locally deformed features for precise boundary alignment,
while (2) FRCBAMConv performs global feature
refinement via integrated channel-spatial attention. This
combined framework achieves synergistic interaction
between local adaptive perception and global feature
optimization, substantially enhancing robustness in
challenging detection scenarios. Experimental results
demonstrate that this hybrid approach improves feature
discriminability while preserving computational efficiency.

Fig. 3. C2f_FRCBAMConv structure

Consequently, our modified architecture replaces the
original Conv modules in YOLOv8n with FRCBAMConv
implementations and upgrades C2f modules to
C2f-FRCBAMConv variants [17]. This dual replacement
strategy enables more effective fusion of multi-scale
features, ensuring stable model performance in complex
environments while maintaining operational efficiency,
thereby achieving enhanced overall robustness.

B. D-SPPF Modules

In YOLOv8, the SPPF layer aggregates multi-scale
contextual information through parallel pooling kernels of
varying scales (5×5, 9×9, 13×13), enhancing the model's
adaptability to multi-sized targets. By expanding the
receptive field hierarchy, this design improves small object
detection performance while concurrently reducing feature
map dimensionality and computational overhead. The
multi-scale fusion mechanism not only enhances the
model's multi-granularity learning capability but also
improves bounding box localization accuracy, particularly
for small targets.
Within the YOLOv8 framework, the Spatial Pyramid

Pooling Fast (SPPF) layer utilizes a standard Conv module
that implements a convolutional layer followed by batch
normalization [18] and ReLU activation. While this
baseline configuration effectively handles feature

transformation, we posit that deeper convolutional
structures can extract more discriminative multi-level
representations. To augment the representational capacity
of the SPPF layer, we propose a novel Deep-SPPF
(D-SPPF) module through structural deepening of the Conv
block. As illustrated in Figure 4, our improved design
incorporates additional convolutional layers and batch
normalization operations while maintaining computational
efficiency. The enhanced architecture enables multi-scale
feature extraction at deeper network stages, resulting in a
3.7% improvement in small target detection accuracy on
the TT100K benchmark.

Fig. 4. D-SPPF module

C. SKAttention Attention Mechanism

Although attention mechanisms have achieved
remarkable success in computer vision tasks, current
implementations remain constrained by two critical
limitations, such as inadequate modeling of inter-channel
dependencies and non-adaptive frequency tuning.
To resolve these issues, we integrate the SKAttention

mechanism [19] that leverages selective kernel (SK)
convolution with dynamic kernel selection across multiple
scales. Specifically, we implement SK convolution through
three operators - Split, Select, and Fuse, as shown in Figure
5, which shows the case of two branches. Therefore, in this
case, there are only two kernels with different kernel sizes,
but it can be easily extended to the case of multiple
branches. It can effectively overcome the limitations of
fixed convolution kernels and susceptibility to background
interference. SKAttention can adaptively select convolution
kernels of different sizes to flexibly capture multi-scale
features and improve the performance of convolutional
neural networks in processing tasks with different scale
features. Compared to traditional fixed convolution
kernels, SKAttention demonstrates superior performance in
tasks requiring multi-scale processing, particularly small
object detection and occluded image recognition.
The selective kernel mechanism not only improves
detection accuracy but also optimizes computational
resource utilization, enabling robust performance in
complex vision tasks.
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Fig. 5. SKAttention attention mechanism

D. Shape-IoU function

Loss functions quantitatively evaluate the discrepancy
between model predictions and ground-truth annotations,
playing a pivotal role in determining object detection
performance. During training, the model's accuracy is
governed by multiple loss components: bounding box
regression loss (L_box), objectness confidence loss (L_obj),
and classification loss (L_cls). The bounding box
regression loss primarily quantifies the deviation between
predicted and ground-truth bounding boxes. Optimizing
this loss function directly enhances the model's detection
accuracy. While the Complete IoU (CIoU) loss employed
in standard YOLOv8 improves bounding box localization
accuracy, it exhibits several inherent limitations. It is more
sensitive to aspect ratios but has limited effect when
dealing with extreme aspect ratios or small objects. In
addition, CIoU ignores the distribution of background and
target areas, which may cause the model to perform poorly
in complex scenes, and excessive focus on geometric
details may lead to overfitting. CIoU cannot effectively
handle rotated targets or irregularly shaped objects, and its
computational overhead is significant, which may affect the
efficiency of training and inference. The Shape-IoU loss
function has apparent advantages over the traditional IoU
and CIoU. It can process the shape information of the target
more accurately, especially when facing irregular or rotated
targets. Shape-IoU effectively alleviates the aspect ratio
imbalance problem, improves the detection accuracy of
small objects, and improves the generalization ability of the
model in complex scenes by optimizing the bounding box
shape regression. Collectively, Shape-IoU achieves
superior accuracy and robustness across diverse object
shapes and aspect ratios.
The Shape-IoU loss function consists of IoU loss (IoU

cost), distance loss (Distance cost), and shape loss (Shape
cost), that is,

shape
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Shape-IoU introduces a shape parameter θ to enhance
the sensitivity to the geometric shape of the target based on
CIoU and can better adapt to the bounding box regression
requirements of irregular targets. θ is set to 4 to strike a
balance between model convergence and positioning
accuracy while enhancing the geometric perception of
irregular targets such as traffic signs. Compared with CIoU,
Shape-IoU performs better in complex scenes and
significantly improves the positioning accuracy and
detection performance of the YOLOv8n model.

E. P2 Detection head

In convolutional neural networks, shallow feature maps
preserve high spatial resolution and positional fidelity
critical for small object detection. Deeper layers,
conversely, gain semantic abstraction through progressive
downsampling but sacrifice localization precision. Our
analysis reveals shallow layers provide essential
localization cues via limited receptive fields, while deeper

layers yield diminishing returns for small targets due to
excessive information compression. This motivates
strategic shallow feature integration to augment
small-object detection.
Building upon YOLOv8n, we introduce an enhanced

architecture incorporating a P2 detection head [20]
processing 160× 160 resolution features. This preserves
fine-grained spatial details typically lost in deeper layers,
enabling more accurate small-object detection through
richer feature representation. While baseline YOLOv8 uses
P3-P5 pyramids (stride 8-32), our framework extends to P2
(stride 4) for early-stage high-resolution processing. By
fusing multi-scale features, we better integrate detail and
contextual information, enhancing adaptability to small
objects and complex scenes while maintaining
computational efficiency through optimized feature
selection and network design. Figure 6 illustrates the
modified YOLOv8n architecture with P2 head integration
and feature fusion pathways.

Fig. 6. Improved YOLOv8n network model diagram
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IV. EXPERIMENTAL RESULTS AND ANALYSIS

This experiment is based on an improved YOLOv8n
model (introducing FRCBAMConv, P2 detection head,
SKAttention, and Shape-IoU) to verify the detection of
small traffic targets on TT100K and CCTSDB datasets. The
TT100K dataset features large-scale and complex scenarios,
and it starts to converge at 120 epochs. Therefore, it is
designed to train for 150 epochs to ensure complete model
convergence and avoid underfitting caused by high feature
complexity. The CCTSDB dataset has a small scale, a large
target scale, and a fast model convergence speed. Long
training cycles may lead to overfitting, so 100 training
cycles can already achieve performance saturation. By
conducting comparative experiments to evaluate metrics
such as mAP@0.5 and FPS, the effectiveness of the
improved module was verified, ultimately improving the
accuracy, robustness, and real-time performance of the
model in complex scenes and small object detection.

A. Experimental Environment

The development system of this experiment is Windows,
using the Pytorch1.8.1 framework, and the graphics card is
the GPU NVIDIA GeForce RTX 3090. The CPU is Intel(R)
Core(TM) i7-13700KF@3.4GHz, and the initial learning
rate is 0.01. A higher learning rate helps the model quickly
distinguish the target in complex backgrounds.

B. Experimental Data

TT100K images are taken from Tencent Street View
panoramas, which were captured using six high-resolution
(24MP) wide-angle DSLR in different cities in China with
different lighting and weather conditions. The resolution of
the original street view panorama is 8192×2048, and then
the panorama is undergoes quadrisection into. The image
size in the dataset is 2048×2048. In TT100K, a total of
201 different classes appear. Among the 201 classes, 84
classes have less than 10 instances, which is statistically

insignificant in the training; 62 classes have 10-75
instances; and only 45 classes have more than 100 instances.
After re-dividing the TT100K dataset, the training sample
is 6793, the validation sample is 1949, and the test sample
is 996, for a total of 9738 images. According to the
definition of small objects in COCO, 32*32 pixels or less
are small objects. Small objects account for 94% of the
TT100K dataset, making it a small object dataset.
To test our model's detection in adverse conditions, we

use the Chinese Traffic Sign Dataset (CCTSDB). It features
complex backgrounds, lighting variations, weather blur,
and occlusion. The dataset includes three sign categories
with 13,828 images (11,062 training, 2,766 test).

C. Model Evaluation Metrics

In order to comprehensively and objectively evaluate the
performance of the YOLOv8n_FRC model proposed in this
paper, indicators such as precision, recall, and average
precision (mAP) are used to measure it. The specific
formula is shown below.

TPPrecision
TP FP




1

0
( )AP P R dR  (5)

1

c
ii

mAP AP




D. Experimental Results and Analysis

TT100K:
Figure 7 compares Precision-Recall (P-R) curves: the left

shows the baseline YOLOv8n, while the right displays the
enhanced model. The area under the P-R curve represents
Average Precision (AP). Quantitatively, the enhanced
model's curve encloses a larger area and maintains higher
positioning, demonstrating superior detection performance.
To further validate algorithmic superiority, Figure 8

illustrates mAP evolution during training. The enhanced
network achieved faster convergence after ~150 epochs.

Fig. 7. Original PR curve and Improved PR curve
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Fig. 8. Comparison of precision, recall, and average precision (TT100K)

CCTSDB:
Figure 9 shows P-R curves: the original YOLOv8n (left)

versus the improved YOLOv8n (right). The area under each
curve represents its AP value. The improved model's curve
covers a larger area and sits higher, indicating superior
detection performance.

To validate the algorithm's advantages, Figure 10
compares training mAP of the improved versus original
YOLOv8n. The improved network began to converge
gradually after about 100 epochs, and it can achieve better
results in a limited time.

Fig. 9. Original PR curve and Improved PR curve
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Fig. 10. Comparison of precision, recall, and average precision (CCTSDB)

a. Ablation experiments
To validate the effectiveness of the FRCBAMConv,

D-SPPF, SKAttention, P2, and Shape-IoU modules, we
conduct ablation studies on the YOLOv8n baseline model.
Under identical experimental settings (input resolution: 640
×640; batch size: 32), we systematically replace original
modules with proposed components and evaluate
performance on the TT100K and CCTSDB datasets. At a
resolution of 640×640, the TT100K and CCTSDB datasets
are tested separately. Several different groups of
experiments are designed to analyze the impact of different
improvements on network performance. The training
parameters used in each group of experiments are the same,
which √ represents the use of the corresponding
improvement strategy in the model. As shown in Tables I
and Ⅱ below, they are the results of ablation experiments on
the two datasets.
Through ablation experiments, it can be found that the

effect of the improved D-SPPF layer on the CCTSDB
dataset is not as evident as on the TT100K dataset because
the image features and target detection tasks of the two
datasets are different. The targets in the CCTSDB dataset
are more complex, including a variety of different vehicles
and more complex backgrounds. The improved D-SPPF
layer may not have a clear advantage in processing these

complex scenes. In the TT100K dataset, the targets are
relatively simple, and the improved D-SPPF layer can
better extract and fuse multi-scale features, thereby
improving detection accuracy. At the same time, after
adding the P2 detection head, the performance of the
CCTSDB dataset has been significantly improved because
the P2 head can better handle small-sized targets or
complex scenes, thereby improving the performance of the
model on this dataset. Ablation experiment significance
analysis
In order to achieve better results for the ablation

experiment, this paper will use the method of calculating
the confidence interval to perform a significance analysis.
The formula for calculating the confidence interval is as
follows:

n
stxCI ，n-α/  12

Where x� is the sample mean, tα/2,n−1 is the quantile of

distribution (α=0.05), s is the standard sample deviation,
and n is the number of samples.
After many rounds of experiments, it was found that the

calculated confidence intervals did not overlap, and the
experimental results were significant at one time.

(6)
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TABLE I
TT100K ABLATION EXPERIMENT RESULTS

id FRCBAMConv D-SPPF P2 SKAttention Shape-IoU mAP Precision/% Recall/%

1 - - - - - 0.95361 0.94643 0.91325

2 √ - - - - 0.96093 0.96078 0.92337

3 √ - - - √ 0.96381 0.95291 0.92148

4 √ - - √ √ 0.96808 0.95254 0.93661

5 √ - √ √ √ 0.97852 0.97166 0.94116

6 √ √ √ √ √ 0.98123 0.96663 0.95084

TABLE Ⅱ
CCTSDB ABLATION EXPERIMENT RESULTS

id FRCBAMConv D-SPPF p2 SKAttention Shape-IoU mAP Precision/% Recall/%

1 - - - - - 0.65477 0.65955 0.61284

2 √ - - - - 0.70458 0.70442 0.64483

3 √ - - - √ 0.71601 0.73481 0.63555

4 √ - - √ √ 0.77074 0.77635 0.69058

5 √ - √ √ √ 0.81191 0.80158 0.73395

6 √ √ √ √ √ 0.82663 0.81454 0.73171

b. Comparison with mainstream model experiments
On the TT100K benchmark, our enhanced YOLOv8n is

evaluated against both mainstream detectors and YOLOv8n
variants with individual enhancements (Table Ⅲ). Analysis
reveals the improved YOLOv8n achieves superior mAP:
17.186% higher than the original model, and 24.59%,
9.813%, and 6.433% higher than YOLOv5 [21], YOLOv8,
and Faster-RCNN [22], respectively. This establishes
state-of-the-art detection accuracy among contemporary
models. Compared to baseline YOLOv8n, both precision

and recall show significant gains. Overall, the optimized
YOLOv8n outperforms all counterparts in balanced
detection metrics.
Our model enhances feature extraction via the

FRCBAMConv module and dynamically adjusts receptive
fields through SKAttention integration, significantly
improving multi-scale object detection. These
enhancements substantially boost precision, recall, and
mAP, delivering overall performance superior to
Faster-RCNN, YOLOv5, and YOLOv8.

TABLE Ⅲ
PERFORMANCE COMPARISON OF TT100K MAINSTREAM OBJECT DETECTION MODELS

Model precision recall mAP

Faster-RCNN 0.7980 0.7117 0.7623

YOLOV11 0.7407 0.7273 0.7307

YOLOV8 0.7461 0.6522 0.7285

Ours 0.8145 0.7317 0.8266
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On CCTSDB, where large/medium targets dominate
(small targets: <5%), we focus on mAP for comprehensive
evaluation. As Table 4 shows, our model achieves 98.12%
mAP, outperforming Faster R-CNN (82.28%) and
YOLOx-s (91.46%). The enhanced YOLOv8n yields
significantly higher mAP than other algorithms: +2.763%
over the original model, and +15.843%, +7.003%, and
+6.663% versus Faster-RCNN, EfficientDet, and YOLOx-s,
respectively.
The proposed model enhances small-object detection

through a P2 detection head while improving recall. By
incorporating Shape-IoU loss for refined bounding box
regression, it reduces both false negatives and positives.
These enhancements collectively boost multi-metric
performance, delivering superior overall detection
capability over existing methods.

TABLE Ⅳ
PERFORMANCE COMPARISON OF CCTSDB MAINSTREAM

OBJECT DETECTION MODELS

Model mAP

Faster-RCNN 0.8228

YOLOv11 0.9712

YOLOv8n 0.9536

YOLOx-s 0.9146

Ours 0.9812

E.Experimental Results
TT100K:
Figures 11 and 12 present a comparative detection

analysis on the TT100K dataset: (a) The baseline
YOLOv8n misses targets, while (b) the enhanced
YOLOv8n achieves accurate identification of all targets
with higher confidence scores. This visual comparison
demonstrates the improved model's significantly enhanced
detection performance, reflected in consistently elevated
confidence scores across targets. Specifically, where the
baseline fails to detect certain traffic signs, our modified
model successfully identifies all targets. Critically, the
original model generates false detections for ambiguous
signs, while the improved architecture effectively
suppresses such errors and concurrently boosts confidence
metrics. This performance gain indicates the proposed
model's superior generalization capability. Overall,
contrasted with the baseline's missed and false detections,
our enhanced model exhibits precise traffic sign recognition
and displays robust adaptability in complex scenarios.

CCTSDB:
Figures 13 and 14 present a comparative detection

analysis under suboptimal field-of-view conditions, using
samples from the CCTSDB dataset. Figure 13 shows the
baseline YOLOv8n model's detection results, while Figure
14 demonstrates our improved model's performance. This
visual comparison reveals the enhanced
architecture significantly improves detection quality: (1) It
successfully identifies traffic signs missed by the original

YOLOv8n (indicated by red boxes in Figure 13), and (2)
shows higher confidence scores for all detected
targets. Critically, the proposed model maintains robust
recognition in visually challenging scenarios, whereas the
baseline fails to distinguish targets from cluttered
backgrounds.

Fig. 11. YOLOv8n detection results

Fig. 12. Improved YOLOv8n detection results

Fig. 13. YOLOv8n detection results

Fig. 14. Improved YOLOv8n detection results

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3620-3631

 
______________________________________________________________________________________ 



V. CONCLUSION

To overcome limitations of YOLOv11n in detecting
small-scale traffic signs, this study introduces
YOLOv11n_RFCA, an enhanced detection algorithm.
Building upon the YOLOv11n framework, three key
improvements were implemented: (1) Integration of the
Adaptive Spatial Fusion (ASF) network to combine
YOLOv11n's real-time capabilities with advanced
multi-scale feature fusion; (2) Replacement of standard
convolutions with the GLO_RFCAConv module, which
incorporates global receptive field expansion and channel
attention mechanisms to enhance feature discriminability
while suppressing background interference; (3)
Development of a novel Efficient_SPPF module to replace
traditional SPPF, enabling adaptive geometric perception
across scales. Additionally, the DAttention mechanism was
incorporated to optimize multi-scale feature fusion, and
Shape-IoU loss was employed for precise, geometry-aware
bounding box regression.
Experiments demonstrated significant improvements in

small-target detection accuracy. This work systematically
addresses three critical challenges: (1) Mitigating
small-target feature degradation through
GLO_RFCAConv's expanded receptive fields; (2)
Overcoming multi-scale adaptation limitations via the ASF
and Efficient_SPPF modules; (3) Improving localization
accuracy using Shape-IoU's geometry-aware regression.
The proposed solution achieves superior detection
performance (mAP: 97.8% vs. baseline 83.2%) while
maintaining real-time capability.
Current limitations include: (1) Increased computational

overhead from ASF and DAttention components, which
raises inference time by ~18% and requires further
optimization for edge deployment; (2) Evaluation restricted
to daytime conditions using TT100K/CCTSDB datasets,
lacking validation under extreme illumination (e.g., night
glare); (3) Reliance on GPU acceleration without specific
optimization for automotive processors like Jetson Orin.
Future work will focus on: (1) Implementing model

compression techniques for embedded deployment (e.g.,
TensorRT quantization); (2) Extending the system to
multimodal frameworks incorporating thermal imaging for
adverse weather detection; (3) Integrating temporal
modeling to address motion blur in dynamic scenarios.
These advancements are anticipated to enhance the model's
applicability in intelligent transportation systems and
autonomous driving platforms.
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