
Research on Hyperuricemia Diagnostic Model
Based on Machine Learning and Infrared

Thermography
Jun Wang, Danxuan Zhang, Chengzhi Liu and Xiaoling Zhou

Abstract—Hyperuricemia, a common metabolic disorder
caused by impaired purine metabolism or reduced uric acid
excretion, is a major cause of gout and a significant risk factor
for cardiovascular disease and diabetes. This study proposes an
efficient diagnostic model integrating infrared thermography
(IRT) with machine learning to enable non-invasive, early
detection. Using IRT, body surface temperatures from 17
anatomical regions were recorded in 262 hyperuricemic patients
and 274 healthy controls. Data were normalized, analyzed
for correlations, and reduced in dimensionality via principal
component analysis (PCA). A random forest (RF) algorithm
with optimized hyperparameters was then trained on the PCA
features. The RF model demonstrated strong performance on
both training and validation sets, confirming its robustness and
reliability. This approach offers a novel, non-invasive method
for early hyperuricemia diagnosis.

Index Terms—hyperuricemia, diagnostic model, principal
component analysis, random forest.

I. INTRODUCTION

HYPERURICEMIA is a common metabolic disorder
caused by impaired purine metabolism or reduced

uric acid excretion, with its global incidence rising due
to lifestyle and dietary changes. Beyond being a major
contributor to gout, hyperuricemia is a significant risk factor
for cardiovascular disease and diabetes, which can severely
impair patients’ quality of life and long-term health.

The condition is often insidious and progressive, with early
symptoms that are subtle or absent. As a result, diagnosis
frequently occurs only after the onset of overt symptoms,
missing the optimal treatment window. Early detection is
therefore crucial. Although traditional blood biochemical
tests are accurate, they are invasive, time-consuming, and
costly, limiting their suitability for timely or large-scale
screening and consequently reducing the effectiveness of
early intervention.

To overcome these limitations, researchers have
investigated various strategies to improve diagnostic
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accuracy and efficiency. Beyond refinements in biochemical
testing, emerging approaches include the use of novel
biomarkers [1] and artificial intelligence (AI)-based tools
capable of analyzing large-scale medical data to uncover
patterns in hyperuricemia [2].

Non-invasive diagnostic methods avoid surgical or
penetrating procedures, relying instead on external
techniques to assess physiological states. They are
increasingly valued for their safety, convenience, and
improving diagnostic accuracy. Common non-invasive
modalities include imaging, electrocardiography, endoscopy,
functional magnetic resonance imaging, biomarker detection,
and thermal imaging.

Several non-invasive approaches for hyperuricemia have
been explored. For instance, Liang et al. developed
prediction models using physical examination indicators and
classification and regression trees [3]. Zhang et al. identified
microbial biomarkers and demonstrated that combining
clinical and microbial features yields a reliable diagnostic
tool [1]. Shi et al. proposed a gender-specific model with
distinct predictors for men and women, achieving satisfactory
performance [4]. Shen et al. developed a model to improve
early detection and predict gout progression, effectively
distinguishing gout from asymptomatic hyperuricemia [5]. In
hypertensive patients, Zhang et al. constructed a nomogram
with strong discriminative ability for hyperuricemia, aiding
cardiovascular risk assessment [1]. Lee et al. compared
several machine learning algorithms with logistic regression,
finding that Naive Bayes and RF performed best [6]. Chen et
al. built a non-invasive prediction model for Chinese adults
using modifiable risk factors, with XGBoost outperforming
logistic regression and RF [7]. Gao et al. introduced an
RF-based model to predict the risk of hyperuricemia [8]. In
[9], Zeng et al. developed an artificial neural network based
on dietary factors, demonstrating high predictive accuracy.

As a non-invasive modality, the infrared thermography
(IRT) has wide-ranging applications in medical diagnosis.
It offers rapid, painless, and non-contact imaging, detecting
subtle temperature variations on the skin surface that
may reflect underlying pathology. Machine learning has
demonstrated substantial potential across diverse domains
[10], [11], making it a promising complement to IRT for
diagnostic purposes.

In this study, we analyze infrared temperature data with
machine learning techniques, particularly RF, aiming to
develop a highly accurate and efficient diagnostic model
for hyperuricemia. To the best of our knowledge, this is
the first work to combine IRT, PCA, and RF for the
non-invasive diagnosis of hyperuricemia and to validate its
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clinical feasibility.

II. DATA ACQUISITION

This study enrolled 536 participants, comprising 262
patients with hyperuricemia and 274 healthy controls. IRT
was used to systematically collect body surface temperature
data from predefined anatomical sites. This non-invasive
method enabled the establishment of a comprehensive dataset
for subsequent analysis.

The cohort had a relatively balanced gender distribution
(319 males and 217 females), ensuring diversity and
representativeness. Temperature measurements were
obtained from 17 anatomical regions: both eyes, both
axillae, both lateral thoracic regions, both palms, the dorsal
surfaces of both feet, both renal areas, the Du meridian,
and regions corresponding to traditional Chinese medicine
meridians, including the upper jiao, heart, middle jiao, and
lower jiao.

By analyzing these thermographic data, we aim to identify
thermographic patterns and anomalies that aid in developing
a diagnostic model for hyperuricemia.

III. DATA PREPROCESSING

A. Data normalization

To ensure comparability of body surface temperature
measurements across different anatomical regions and
maintain analytical consistency, a standardized preprocessing
procedure was applied. This process transforms the data
into a dimensionless form, mitigating the influence of
scale differences and thereby enhancing the validity of
inter-regional comparisons. The normalization formula is
given by

Xnorm =
X − µ

σ
,

where X represents the original dataset of body surface
temperatures, µ is the mean of the dataset, and σ denotes
the standard deviation.

B. Correlation analysis

Before performing principal component analysis (PCA
[12], [13]), it is essential to conduct a correlation analysis of
the normalized body surface temperature data to assess the
suitability of PCA.

The normalized data were evaluated using the
Kaiser-Meyer-Olkin measure (KMO [14], [15]) and
Bartlett’s test for sphericity [16], [17], with the results
summarized in Table I. As shown in Table I, the KMO value
of 0.932, which is close to the ideal value of 1, suggests
strong partial correlations among variables, supporting the
suitability of PCA. Additionally, Bartlett’s test yielded a
significance level of 0.000, well below the 0.05 threshold,
further confirming sufficient correlations to justify PCA
application.

C. Data dimension reduction

Next, PCA was applied to the normalized temperature data
to reduce dimensionality, thereby simplifying data structure
and extracting the most informative features.

TABLE I
RESULTS OF THE KMO AND BARTLETT’S TESTS.

KMO test Bartlett’s sphericity test

Approximate χ2 Degrees of freedom Significance

0.932 18550.738 136 0.000

In PCA, each principal component (PC) is associated with
an eigenvalue representing the proportion of total variance
explained. According to the Kaiser criterion ([18], [19]),
principal components (PCs) with eigenvalues greater than 1
are considered significant, as they account for more variance
than a single original variable. The eigenvalues of the first
four PCs are 10.847, 1.702, 1.010, and 1.003 respectively.
All of them exceed the threshold of 1. These components
therefore collectively explain a substantial portion of the
variance and were preserved for further analysis.

To further evaluate the cumulative explanatory power of
the selected four PCs, we plotted their explained variance
ratios, as shown in Fig. 1. We can see that the cumulative
explained variance of the first four PCs exceeds 85%,
indicating that these components effectively capture the
majority of the data’s variance and adequately represent the
underlying structure.

The original normalized temperature data matrix Xnorm (of
size 536×17) was projected onto the PCA eigenvector matrix
V (of size 17× 4) to obtain the principal component scores
matrix T (size 536× 4), computed as

T = Xnorm × V,

where each column of T corresponds to the scores of
a particular principal component for all subjects. These
PC scores, reflecting distinct thermographic patterns, are
presented in Table II and may possess clinical relevance.

These interpretable PC scores served as input features
for training the random forest classification model. By
preserving physiologically meaningful thermal patterns while
effectively reducing dimensionality, the use of PC scores
enhances both computational efficiency and diagnostic
accuracy for hyperuricemia classification.

TABLE II
EIGENVECTOR MATRIX OF THE FIRST FOUR PCS DERIVED FROM PCA

ON BODY SURFACE TEMPERATURE DATA.

PC 1 PC 2 PC 3 PC 4

Du Meridian 0.2947 -0.0047 0.0213 -0.0050
Left Eye 0.2978 -0.0011 -0.0048 -0.0175

Right Eye 0.2987 -0.0020 -0.0051 -0.0130
Left Axillary 0.2945 -0.0012 0.0194 -0.0068

Right Axillary -0.0009 -0.0040 -0.5661 -0.7041
Upper Jiao 0.2959 -0.0061 0.0335 0.0006

Heart 0.2930 -0.0072 0.0321 -0.0109
Middle Jiao 0.2952 -0.0082 0.0430 0.0165
Lower Jiao 0.2970 -0.0116 0.0218 0.0094

Left Rib 0.2974 -0.0062 0.0249 0.0002
Right Rib -0.0025 -0.0083 0.6432 -0.0746
Left Palm 0.2577 0.0175 -0.0851 -0.0014

Right Palm 0.0051 -0.0035 -0.4967 0.7053
Left Dorsal Foot 0.2709 0.0057 -0.0559 0.0027

Right Dorsal Foot 0.2673 0.0099 -0.0515 0.0138
Left Kidney 0.0013 0.7069 0.0037 -0.0008

Right Kidney 0.0065 0.7067 0.0033 -0.0006
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Fig. 1. Plot of the explained variance of the principal components.

IV. RF-BASED DIAGNOSTIC MODEL FOR
HYPERURICEMIA

We developed the diagnostic model using the RF algorithm
([20], [21]) and compared its performance against XGBoost
([7]), LightGBM ([22]), SVM ([23], [24]), and KNN ([25],
[26]). To ensure a rigorous and unbiased performance
evaluation, the dataset was randomly partitioned into a
training set and a validation set, with 70% of the data used
for training and the remaining 30% for validation.

The RF-based diagnostic model for hyperuricemia was
constructed through a systematic process, including bootstrap
sampling, decision tree generation, and majority voting. As
the performance of RF is highly sensitive to the choice of
hyperparameters, a grid search strategy with cross-validation
was employed to identify the optimal configuration.
The hyperparameters of RF include: max_depth (the
maximum depth of each decision tree, controlling model
complexity), max_features (the number of features
randomly selected at each split, enhancing generalization),
min_samples_leaf (the minimum number of samples
required at a leaf node, preventing overfitting to small
subsets), min_samples_split (the minimum number of
samples required to further split an internal node, ensuring
sufficient partitioning), and n_estimators (the number of
trees in the ensemble, improving stability and robustness).

The best-performing hyperparameters were then used to
train the final RF diagnostic model. This optimization process
enabled the model to strike a favorable balance between bias
and variance, thereby reducing the risk of overfitting. The
complete modeling pipeline is summarized in Algorithm 1.

Fig. 2 illustrates the overall flowchart of the machine
learning pipeline for hyperuricemia diagnosis. The pipeline
comprises four main stages: (i) data preprocessing, where
data normalization and PCA-based dimensionality reduction
are performed; (ii) data splitting, where the dataset is
partitioned into training and validation subsets; (iii) model
training, during which classifiers such as RF, SVM, KNN,
XGBoost, and LightGBM are trained and compared; and
(iv) prediction, in which the best-performing model is used

to generate the final diagnosis together with associated
probability scores.

In our experiments, a grid search with 5-fold
cross-validation was performed on the training dataset,
using accuracy and the area under the ROC curve
(AUC) as evaluation metrics. The optimal hyperparameter
configuration was determined as follows:
max_depth=20,
max_features=2,
min_samples_leaf=1,
min_samples_split=12,
n_estimators=500.
To evaluate the performance of our model, we present the

receiver operating characteristic (ROC) curves and the AUC
values for the RF, SVM, KNN, XGBoost, and LightGBM
algorithms in Fig. 3. The ROC curve is a crucial tool
for assessing classification performance, as it illustrates
the trade-off between the true positive rate and the false
positive rate, thereby reflecting the model’s discriminative
capability. The dashed line in the graph indicates the baseline
for random guessing; the closer the curve is to the upper
left corner, the better the model’s performance. The AUC
provides a quantitative measure of overall classification
effectiveness, with values closer to 1 indicating superior
model performance. The AUC values for the RF, SVM,
KNN, XGBoost, and LightGBM algorithms are 0.75, 0.70,
0.66, 0.68, and 0.65, respectively, indicating that although
performance differences are modest, the RF algorithm
achieves the highest discriminative ability among the three
methods.

Furthermore, Fig. 4 compares the precision, recall, and
F1-score, where healthy individuals are labeled as 0 and
hyperuricemic patients as 1. Except for a slightly higher
recall for label 0 by KNN, RF consistently outperforms
SVM, KNN, XGBoost, and LightGBM, showing particularly
strong performance in correctly identifying hyperuricemic
patients. These results demonstrate that RF excels in AUC,
precision, recall, and F1-score, confirming its efficiency and
robustness as a diagnostic tool for hyperuricemia detection.
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Algorithm 1 RF-Based Diagnostic Model for
Hyperuricemia.

1: Hyperparameter optimization (grid search): Perform
the grid search strategy on the training set to identify
the optimal hyperparameters that maximize accuracy and
AUC. The best configuration is recorded and used for
subsequent model construction.

2: Bootstrap sampling: Perform n_estimators rounds
of bootstrap sampling on the training set to create
n_estimators different subsets. Each subset is used
to build an individual decision tree, thereby improving
model diversity and generalization.

3: Feature selection: For each decision tree, randomly
select max_features features (out of the total M
features) for consideration at each node split.

4: Node splitting: Recursively split each node using
the optimal feature and threshold that maximize
data purity until stopping criteria are met (controlled
by max_depth, min_samples_split, and
min_samples_leaf).

5: Tree construction: Build a collection of diverse and
independent decision trees to capture different aspects
of the data.

6: RF model establishment: Combine the decision trees
into an ensemble model using majority voting. The final
classification result for a sample D is given by

R(D) =

{
0, No hyperuricemia;
1, With hyperuricemia.

7: Performance evaluation: Evaluate the model using
standard classification metrics. Let TP, FP, and FN
denote the number of true positives, false positives, and
false negatives, respectively. Then

precision =
TP

TP + FP
,

recall =
TP

TP + FN
,

F1 = 2
precision · recall
precision + recall

.

8: Model validation: Validate the model performance
on the held-out validation set by comparing predicted
outcomes with actual labels.

9: Result analysis and model optimization: If
performance metrics meet the desired threshold,
the model is finalized. Otherwise, adjust parameters
or try different methods, and the training-validation
process is repeated until satisfactory performance is
achieved.

V. CONCLUSIONS

In this paper, we developed a diagnostic model for
hyperuricemia by integrating infrared thermography with
machine learning techniques, particularly the RF algorithm.
The proposed model achieved robust and consistent
performance in both the training and validation phases,
effectively discriminating between hyperuricemic patients
and healthy individuals. Its non-invasive non-invasive, rapid,
and cost-effective characteristics highlight its potential as a

Fig. 2. Flowchart of machine learning-based diagnostic models for
hyperuricemia.

practical tool for early clinical diagnosis, thereby supporting
improved patient management and outcomes.

Future research will aim to validate the model’s
generalizability across larger and more diverse populations,
and to explore advanced feature selection and algorithmic
optimization strategies to further enhance diagnostic
accuracy.
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