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Finite Time Identical Synchronization in Networks
with Arbitrary Topological Structures of n
Coupled Dynamical Systems of the
Hindmarsh-Rose 3D Type
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Abstract—In this work, an adaptive nonlinear control scheme
is developed to achieve finite-time identical synchronization
in complex networks with arbitrary topology, comprising n
interconnected nodes. The dynamics of each node are governed
by the three-dimensional Hindmarsh-Rose model. Theoretical
results are corroborated through numerical simulations imple-
mented in R, illustrating the effectiveness and robustness of the
proposed synchronization approach.

Index Terms—controller, finite time identical synchronization,
Hindmarsh-Rose 3D model, networks with arbitrary structure.

I. INTRODUCTION

HE phenomenon of synchronization, wherein multiple

interacting systems spontaneously coordinate their dy-
namics, has emerged as a fundamental topic in nonlinear
science. From biological rhythms and chemical oscillations
to power grid dynamics and communication networks, syn-
chronization is a pervasive feature of both natural and
artificial systems [1], [3], [4], [5], [6], [7], [8]. At its core,
synchronization entails the adjustment of rhythms or states of
oscillatory systems through coupling or mutual interaction,
often leading to coherent behavior across complex networked
systems. This intrinsic capacity for coherence, even in the
presence of heterogeneous individual dynamics and intricate
interconnections, has inspired extensive theoretical and em-
pirical investigations across disciplines.

Over the past few decades, the study of synchronization
has evolved from simple pairwise oscillator models to large-
scale, complex dynamical networks. This transition has been
motivated by the increasing need to understand and control
systems composed of numerous interconnected components.
Examples include neural networks in the brain, gene reg-
ulatory networks, ecological food webs, social interaction
networks, and engineered infrastructures such as the Internet
and smart grids [21], [22], [23], [24]. These systems typically
exhibit nonlinear interactions, varying connection strengths,
and dynamic topologies, making the study of their collective
behavior both challenging and essential.

Within this broad framework, complex dynamical net-
works have garnered particular attention. Such networks are
composed of nodeseach representing an individual dynamical
systemand edges that define the interaction rules among
them. Understanding how these coupled systems synchronize
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provides valuable insights into global behaviors emerging
from local interactions. Moreover, it paves the way for
developing control strategies in applications ranging from
secure communication and pattern recognition to disease
modeling and brain-machine interfaces.

A significant body of research has focused on asymp-
totic synchronization, where networked systems gradually
converge to a common trajectory as time progresses toward
infinity. While asymptotic results offer theoretical insight into
long-term behavior, they are often insufficient in practical
contexts where convergence within finite time is critical.
For instance, rapid coordination is vital in power systems
to avoid cascading failures, in robotics for real-time task
execution, or in neural systems for cognitive processing.
Consequently, finite-time synchronization-achieving identical
synchronization within a finite interval-has become an active
area of research [10], [11], [1], [14], [15], [17].

Finite-time synchronization brings forth several advan-
tages over its asymptotic counterpart. Chief among them is
the possibility of establishing explicit bounds on convergence
time, which is essential for real-time control and performance
guarantees in engineering systems. Additionally, finite-time
control strategies often exhibit greater robustness to perturba-
tions, modeling uncertainties, and time-varying disturbances.
Despite these advantages, developing systematic methods
for finite-time synchronization remains nontrivial due to
the inherently nonlinear and discontinuous nature of the
underlying control laws.

Compounding this challenge is the fact that most the-
oretical studies to date have focused on networks with
highly idealized structures, such as globally coupled systems,
hierarchical trees, or regular chains [14], [15], [17], [10].
While these models are mathematically tractable, they rarely
capture the complexity of real-world networks, which often
exhibit arbitrary, heterogeneous, or even evolving topologies.
Real neural networks, for instance, are known to display
small-world and scale-free properties, with nonuniform con-
nectivity and diverse nodal dynamics. Hence, extending
finite-time synchronization theory to networks with arbitrary
topology is of both theoretical significance and practical
relevance.

Motivated by these considerations, the present work seeks
to address a critical gap in the literature by investigat-
ing finite-time identical synchronization in networks of
Hindmarsh-Rose (HR) neurons with arbitrary coupling topol-
ogy. The HR model, a three-dimensional system of nonlinear
differential equations, captures a wide range of neuronal
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behaviors, including bursting, spiking, and chaotic dynam-
ics [2]. Due to its biological relevance and mathematical
richness, the HR model is widely used in computational
neuroscience and nonlinear dynamics. In this study, each
node of the network is represented by a Hindmarsh-Rose
oscillator, and interactions among nodes are modeled through
linear coupling governed by an arbitrary Laplacian matrix.

The main objective of this paper is to derive sufficient
conditions under which a network of n linearly coupled
HR neurons achieves identical synchronization in finite time.
That is, despite potential differences in initial conditions
and network structure, all nodes in the network converge
to a common trajectory within a guaranteed time bound. To
this end, we employ tools from finite-time stability theory,
particularly the use of Lyapunov functions with negative defi-
nite fractional powers, which are instrumental in establishing
finite-time convergence results.

Our approach involves the design of a distributed control
law that is both scalable and implementable in decentralized
settings. This control law is constructed based on the dif-
ferences in states between connected nodes and includes a
nonlinear damping term to enforce finite-time convergence.
We further construct a composite Lyapunov function that
accounts for the network topology, nodal dynamics, and
coupling interactions. Through rigorous analysis, we derive
an explicit upper bound on the synchronization time and
provide constructive criteria that ensure global finite-time
synchronization of the network.

To validate the theoretical findings, we conduct numerical
simulations on networks with varying topologies. The simu-
lation results demonstrate that the proposed control scheme
achieves fast and robust synchronization, even under struc-
tural complexity and parameter heterogeneity. The results
highlight the practicality and effectiveness of our approach
in capturing realistic network behaviors.

The contributions of this paper are threefold: We extend
the theory of finite-time synchronization to networks with
arbitrary topology, moving beyond the limitations of previous
studies restricted to symmetric or structured graphs; We
establish a general theoretical framework for finite-time iden-
tical synchronization in coupled Hindmarsh-Rose neural sys-
tems using nonlinear control techniques and Lyapunov-based
analysis; We provide robust numerical evidence supporting
the analytical results, thereby demonstrating the potential
applicability of our methods in modeling and control of
complex biological and engineering networks.

The remainder of the paper is organized as follows.
In Section 2, we formulate the network model, introduce
relevant mathematical preliminaries, and present the main
synchronization results. Section 3 contains numerical ex-
periments that illustrate the performance of the proposed
synchronization scheme under various network conditions.
Finally, Section 4 concludes the paper with a summary of
findings and suggestions for future research directions.

II. FINITE TIME IDENTICAL SYNCHRONIZATION IN THE
NETWORKS WITH ARBITRARY TOPOLOGICAL STRUTURE
OF n COUPLED DYNAMICAL SYSTEMS OF THE
HINDMARSH-ROSE 3D TYPE

In their seminal 1952 work, A. L. Hodgkin and A.
F. Huxley developed a biophysically grounded model that

captured the dynamic behavior of the neuronal membrane
potential through a system of four coupled ordinary differ-
ential equations (ODEs) [4], [2], [7]. This pioneering model
represented a major advancement in theoretical neuroscience,
as it provided a quantitative framework for describing the
ionic mechanisms underlying action potential generation
and propagation in neurons. The mathematical rigor and
physiological accuracy of the Hodgkin-Huxley model earned
the authors the Nobel Prize, and their formulation has
since served as a cornerstone in the modeling of excitable
biological membranes.

In the decades following their publication, significant
effort has been directed toward simplifying the original
Hodgkin-Huxley system while preserving its essential dy-
namical and energetic characteristics. Among the more in-
fluential simplifications is the model introduced by J. L.
Hindmarsh and R. M. Rose in 1984 [9], [7]. This model
reduces the dimensionality of the original system to three
coupled ODEs, making it more tractable for both analytical
and numerical investigation. Despite its reduced complexity,
the Hindmarsh-Rose model retains the ability to replicate key
features of neuronal activity, including bursting, spiking, and
chaotic dynamics [6].

The state variables in the Hindmarsh-Rose model are
denoted by w,v, and w. The variable w represents the
membrane potential, while v and w correspond to recovery
variables associated with the fast and slow currents across
the membrane, respectively. These auxiliary variables are
typically interpreted in terms of ionic conductances and
gating mechanisms, albeit in a phenomenological rather
than biophysical manner. The reduced dimensionality and
simplified structure of the Hindmarsh-Rose model make
it particularly suitable for theoretical analysis and large-
scale network simulations, where computational efficiency
is critical.

The system of equations describing the Hindmarsh-Rose
3D model is given by the following set of ordinary differen-
tial equations [9], [2], [7]:

du

azut:f(u)—i—v—w—&—l,

dv

E:vtzl—btﬁ—v, (1)
dw

E:wt:r(s(u—c)—w)7

where u = u(t),v = v(t),w = w(t); f(u) = —u> + au?;
a,b,c,r,s are constants (a,b,r,s > 0); I presents the
external current; ¢ presents the time. These equations form a
rich dynamical system capable of emulating a wide spectrum
of electrophysiological phenomena observed in real neurons.

In the following analysis, the dynamical system described
by Equation (1) is interpreted as a neural model. A network
comprising n linearly coupled instances of this system is
then constructed, as given by:

wip = f(u) +vi —wi + 1T+ Y cijh(ug,uj),

J=To#i
vy =1 — buf — v, )
wir = r(s(u; — ¢) — w;),
i=1,2,..,m,
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where (u;,v;,w;),i = 1,2,...,n, is defined as in (1); The
coefficients c;; are the elements of the connectivity matrix
Cy, = (Cij)nxn, defined by: ¢;; > 0 if neuron ith and jth
are coupled, ¢;; = 0 if neuron 4th and jth are not coupled,
n
and ¢;; = — >
j#ig=1
matrix also illustrates the network topology. The function
h describes the coupling between the i-th and j-th cells.
As is well known, neurons communicate through synapses,
resulting in two primary types of connections: chemical and
electrical. Mathematically, when neurons are connected via
chemical synapses, the coupling function is nonlinear [10],
[11], [2]. It is expressed by the following formula:

1

cij» where 4,5 = 1,2,...,n,¢ # j. This

h iy Uj) = —Gsyn i_‘/;"TL ;

(U u]) g Y (U, Yy )1+6XP(—)\(UJ—95yn))
1=1,2,...,n,

3)

In this context, let u; for j = 1,2,...,n represent the j-

th node connected to the -th node. The coupling strength
is denoted by gy, Which is a positive number. The re-
versal potential, V,,, must be greater than u,(x,t) for all
i = 1,2,...,n, as well as for any z € Q and t > 0.
This is because the synapses are assumed to be excitatory.
Additionally, 0., is the threshold that must be reached by
each action potential for a neuron. The parameter A is also
a positive number. The larger the value of A, the closer we
approach the Heaviside function.

If neurons connect through electrical synapses, the cou-
pling function is linear [2], [14] and is expressed by the
following formula:

“)

where g¢,,, is positive number presenting the coupling
strength.

In this study, we propose an adaptive nonlinear controller
designed to achieve finite-time identical synchronization of
the network described by equation (2). Prior to the develop-
ment of the controller, several important remarks and lemmas
are reviewed to support the subsequent analysis.

h(Ui,U]‘) = _gsyn(uz - u7)7 Za] = 1a25 sy T,y

Remark 1 (see [17]). The function f satisfies the following
condition:

|f(ui) = fuy)] < afui —ugl, )

where u;,u;,4,5 = 1,2,...,n, present the transmembrane
voltages, and « is a positive number.

Remark 2 (see [17]). The function h defined by (3) and (4)
satisfies the following condition:

|h(ui, ug) = h(uj, w)| < B lui —ugl,
i7j7k7l - 1727"'7n7i # k7.] # l,

where u;, u;, ug, u; present the transmembrane voltages, and
[ is a positive number.

(6)

Lemma 1 ([19]). For every a; € R,;1 =1,2,...,n, if p,q €
R,0<p<1,0<q<2 then we have:

n n n p n
> lail” = <Zail2) and (Zm) <l
i=1 i=1 i=1 i=1

q

2

Lemma 2 ([20]). Assume that a continuous, positive-definite
Sunction V (t) satisfies the following differential inequality:
dv (t)

5 < —eVH(t), forallt >0,V (0) >0,

where (i, € are positive constants and 0 < p < 1, then
VIZr#) < VIH(0) —e(1— p)t, 0<t<tr,
Vi=r(0
V) =0, t>t*:7( ),
e(l—p)

Let the node errors of identical synchronization of the
network (2) be e} = u; — u1, ey = v; —v1,e) = w; — wy,
for all ¢ = 2,...,n. The finite time identical synchronization
problem of the network (2) can be defined as follows:

Definition 1. If there is a time t* > 0 such that:
n

lim

tt*

(lef] + lef| + [ei’]) = 0,
=2

and

n
(led] + le?| + |el’]) = 0, for all ¢ > t*,
=2

?

where t* is called the setting time, then the full network (2)
is synchrous in a finite time.

To get the identical synchronization in a finite time,
we need to define the controllers for the network (2) by
constructing and adding the controllers into neuron ith, i # 1,
as follows:

n
Ut = f(ul) + V1 — W1 —+ I+ chjh(ul,uj)
=2
V1t :1—bu%—v1,
wye = r(s(ug — ¢) —wy),

J=1,#i
Vit zl—bu?—vi—i-rzz,
wiy = r(s(u; — ¢) —w;) + I3,
1=2,..,n,

, . (M
where the controllers IV =TY(¢),i = 2,3,...,n;j = 1,2,3,
will be designed as follows:

Il =y — flur) —vi +wy — I

n

- Z Cijh(ul?uj) - kie? + Gzla

i=Lj#i ®
2 =vy —1+bu? +v +G?,
7 =wy —r(s(ur —c) —wr) + G,
with the updated rules defined as follows:
kie = ri((ef')? + 6), ®)

where k; = k;(t); r; is a arbitrary positive constant, for
i=2..,n and G = GI(t),0; = 0;(1),j = 1,2,3;i =
2,3, ...,n, are defined as follows:
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Gt = —m.sign(e®)|ev|,

G} = —m.sign(e})|e}|",

(10)

G? = —m.rs.sign(e¥)]e? ],

0; = —m.sign(k; — k).|k; — k|,
where sign(.) represents a signum function; m is a given
positive constant; v € R and satisfies 0 <~ < 1; and k is a
positive cosntant to be determined.

Under the action of the controllers designed as above, the
error dynamic equations of the system (2) are described as:

el = (Ut — uir)
n

= flu) +vi—w; + 1+ Z cijh(ug,uj)
=1
7f(’u,1) — V1 —+ wy — I

— Z cijh(ul, Uj) — kel + Gll

J=1,j#i
= f(u;) — f(ur) + (v; —v1) — (w; —w)
+ Z cij(h(ug, uz) — huy,uj)) — kel + G}
J=1j#i
flui) = fur) +ef —e
+ Z cij(h(uiyug) — h(uy, uy)) — kel + G,
Jj=1,j7#i
(11
€ip = Vit — V1t
=1-bu?—v; —1+bu} +v, +G? (12)
= —b(u; +wr)ef — e} +GF,
and
€5f = Wit — Wiy
=r(s(u; —c) —w;) —r(s(uy — ¢) —wy) + G3
=rs(u; —ug) —r(w; —wy) + G3
=rsel —re? +G3,
(13)

fort=2,...,n

Subsequently, employing Lyapunov function methods and
finite-time stability theory, the finite-time identical synchro-
nization problem of the complex network described by (2) is
investigated. The principal result is presented in the following
theorem.

Theorem 1. The full network (2) can achieve identical
synchronization in a finite time under the adaptive controller
(8) and updated rule (9). The setting time is estimated as:

~

_VE(0)

where p = min{2,2rs,2r;},i =2,3,...,n

Proof: We construct the Lyapunov function as follows:

VO =5 3 (€07 + @+ ) + 20—,
(14)

=2

Calculating the time derivative of V'(¢) along the error
systems (11) - (13), we get:

v (t)

n

1
dt:Z|:z ’Lt+e’b zt+ eezt—'_r(k_k)k
i=2 '
=D lef (f(ui) = flur) +€f — €
i=2
+ Y cij(h(uiug) = huy, ug)) = kel + G}
J=1,5#i
—b(u; +ur)efel — (ef)”
+efG? + ki(ef)? — k(ey)? + (ki — k)0

1
+—(rseiel —r(

w2 w3
; wEs
rs ez) +€L z)

3

u;) — f(ur)) + e¥Gj
cief —k(e}')? + )G
— h(u1,uy)) — (e?)”

-

h(u, u;)

1
+ e;-”G?}.
s

5)
By using Remarks 1 and 2, it is easy to obtain:
dv(t) < . 2
5 < > Beig(e)? = (e)
i=2 j=1,j#i
1 w2 u 1 v Y2 1 w 3 u\2
*g(ez‘ )" +eilGi + €G] TG G7 — k(e)

k= 10+ (L4 bl et e ]
<§j[ 2B 1)_max eyl(el)? - (e

1 1
=€)’ + G + €] GT + — e’ GY = k(e])?
S S

(ki = k)0 + (1 + b(|ua| + |ua))lef][e7 ]

By using the Young’s inequality for every 6 > 0, we can
see:

lei| e | (14 b(Jui| + |ual)) .
< (L (fuil + Jua])) (55 (e

M Mo
< 2*5(@?)2 7(4)%
(17)
where M 1is a positive constant, since u;,¢ = 1,2,...,n are

bounded (see [16]).

Volume 52, Issue 10, October 2025, Pages 3646-3659



TAENG International Journal of Computer Science

Combining (16) and (17) yields:

dv (t) <
dt -
Z (a—k—l—ﬁ(n—l) max \ci»|+%)(e”)2
= <m0 2000
M6 o 1. o
(1—7)61 —g(ei) )
+(ki = k)0; + e G} + e} GF + —ef'GY |
(18)

Mé
Chose 6 > 0 such that 1 — - > 0, and take

M
kE>a+B(n-1) 1§jn%%§#i|cij|+%, (19)
then (18) can be estimated as:
<> [ (ki — k)0; + e*GY + eV G? + Se;”G?].
i=2
(20)

Besides that, we can see:

n

1 .
> ((ki — k)b + G + €] G} + me;”Gf) =
=2

z:2

—m.(k; — k)sign(k; — k).|k; — k|7

—m.e¥sign(e)|er|”

—m.e?sign(e¥)|e? |V —m.e’sign(el’
n

e’ ")

<3 (~mllh = BT e e ).

i=2
(21)

Combining (20) - (21) yields:

dv(t) <

.~
cn 35 (1 — R4 e e ).
i=2

(22)

By using Lemma 1, we have:

n FFT
(Z 1k = k¥ 4 Jer " e+ el*“l”“)>
=2
n 2
> (Z (|ki—k2+e?|2+|e32+e;”|2)> .

=2
(23)
That yields:
7 (k= R e e e+
=2
RESY
n 2
> (Z (Vs = Bl + lep? + ey + |e;”|2)>
(=2
’ (24)

Therefore, (22) becomes:

v (t) - 2 2 | w2 2
< — o u v w
< m<§j(kz K2 + et + et + [er?)

1=2

~
2

(lei|* + lei|*

M\H

s (2":

=2
y+1

Liewr s Lk, - k|))

< mpw+1 V’Y‘Fl (t)
(25)
where p = min{2, 2rs, 2r;},i = 2,3, ..., n.
It is derived from Lemma 2 that V(t) =0 for
1—o
V=(0
t> 1= 7,127()
mp~z (1=7)
Therefore,
3 u v w _
Jim > (le] + lef| + le’]) = 0,
i=2
and "
Z(|ei| + |e;| + |ef’]) = 0 for ¢ > t*.
i=2
This completes the proof. ]

IIT. NUMERICAL RESULTS AND DISCUSSION

This section evaluates the performance of the previously
developed controllers. System integration was implemented
using the R programming language. Simulation results were
generated based on the following parameter values:

fu) = —u®+au?,a=3,b=5s=4,r=0.008,

1
c=-5(1+ V5), T =3.25.

A =10, Viyn =2, Oy = —0,25.

Remark 3. This section is dedicated to evaluating the
practical applicability of the theoretical framework developed
earlier, with a specific focus on synchronization dynamics
in complex networks. Unlike previous works [14], [15],
which primarily establish that identical synchronization can
be achieved given sufficiently large coupling strengths, the
present study does not aim to pinpoint the precise coupling
thresholds. Instead, it addresses a critical gap observed in the
literature: theoretical analyses often conclude that synchro-
nization is asymptotic, occurring only as time approaches in-
finity. In contrast, numerical simulations consistently demon-
strate that identical synchronization can be realized within
a finite time interval. This divergence between theory and
simulation remains an unresolved issue. To bridge this gap,
we propose a novel nonlinear control strategy designed to
induce finite-time identical synchronization across networked
systems. The theoretical foundations supporting the efficacy
of this controller have been rigorously established, provid-
ing guarantees for synchronization within a finite temporal
horizon. The current section seeks to validate these theo-
retical predictions through comprehensive numerical simula-
tions, thereby confirming the controllers effectiveness under
practical conditions. This approach not only enhances the
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understanding of synchronization phenomena but also offers
a viable method for implementing finite-time synchronization
in real-world networked systems.

A. Example 1.

This example investigates a chain network comprising
two nonlinearly coupled nodes. The objective is to design
controllers, based on the theoretical framework detailed in
equations (8) through (10), to achieve finite-time identical
synchronization. To validate the effectiveness of the proposed
control strategy, numerical simulations are conducted. The
controlled system modeling the chain network with two
nonlinear coupled nodes for synchronization is described as
follows:

ui = f(ur) +vi —wi + 1,
v =1 —bu% — v,
wyy = r(s(u; —¢) —wy),

ugr = f(ug) +vg —wo + 1 .

—Gsyn - ‘/5 n F17
Jsy (U2 y )1 +exp(—A(u1 - gsyn)) e
vor = 1 — buj — vy + T3,
war = 7(s(uz — ¢) — ws) + T3,
(26)
where
I3 =uye — flur) — vy +wy — I — kael + G
1
syn — Viyn 7
+gsyn (U1 v )1 +exp(=A(u1 — Osyn))”  (27)
I3 =wvy — 1+ bud +v; + G3,
I3 = wi —r(s(ur —¢) —w1) + G3,
with the updated rules defined as follows:
th = 7’2((63)2 + 92)7 (28)

where kg = ka(t); 72 is a arbitrary positive constant; ej =
Ug — U1, €5 = vy — vy, €Y = we —wq; and G = G (), 02
02(t),j = 1,2,3, are defined as follows:

Gy = —m.sign(ey)|ed|”,
G3 = —m.sign(ey)|es|?,
(29)
G3 = —m.rs.sign(e¥)|e¥]?,
02 = —m.sign(ky — k).|ko — k|7,

where sign(.) represents a signum function, m is a given
positive constant, v € R and satisfies 0 < v < 1.
In this example, we take:

m = 0.65; v = 0.65; 7y = 0.002.

In addition, from (19), to ensure that the controller is
effective, we need to choose the value of k large enough.
Here, we take k = 5.

Let |e4|+]|e5|+ ey’ | be the identical synchronization error.
We say that the network (26) identically synchronizes in
a finte time if the identical synchronization error reaches
zero as t approaches a finite value. Here, we take the initial
condition for the system (26) as follows:

(u1(0),v1(0), u2(0),v2(0)) =
(0.5,0.5,0.5, —0.5, —0.5, —0.5).

Fig. 1 illustrates the identical synchronization error of
the network described in (26). Specifically, in Fig. 1(a), we
simulate the network without the controllers described in
(27)-(29), with a coupling strength of g,,, = 0.02 over the
time interval ¢ € [0,300000]. The simulation indicates that
the identical synchronization error does not converge to zero,
implying that identical synchronization does not occur, even
when ¢ is extended to a large value.

Additionally, Fig. 2 presents the time series of all variables
in the system described by (26) without the controllers. In
Fig. 2(a), the variable u; is represented by the solid line,
while the dotted line corresponds to us (and similarly for
v1 and v in Fig. 2(b), and w; and wsy in Fig. 2(c)). From
this, we can observe that the solid lines do not replicate
the behavior of the dotted lines. In other words, the identical
synchronization phenomenon does not occur in this scenario.

In Fig. 1(b), we simulate the network described by equa-
tion (26) using controllers (27)-(29), with a coupling strength
of gsyn = 0.0001 and over the time interval ¢ € [0,4000].
The simulation results show that the synchronization error
between the identical variables reaches zero in a finite
amount of time, despite the small coupling strength and the
limited duration. This indicates that as time approaches a
finite limit, the following approximations hold true:

w(t) = us(t), vit) = vs(t),

Fig. 3 illustrates the time series of all variables in the
system defined by (26) with the controllers (27)-(29). In Fig.
3(a), the variable u; is represented by the solid line, while uo
is shown as a dotted line. Similarly, in Fig. 3(b), vy is solid
and ve is dotted, and in Fig. 3(c), w; is the solid line and
wy is dotted. The corresponding solid lines clearly mirror the
behavior of the dotted lines, demonstrating the occurrence of
identical synchronization. This synchronization takes place
within the finite time frame, specifically for ¢ < 4000.

w1 (t) =~ wa(t).

B. Example 2.

This example examines a network comprising three lin-
early coupled nodes, as depicted in Fig. 4. The objective is
to design a controller, grounded in the established theoretical
framework, to achieve finite-time identical synchronization.
Controllers for this network are developed based on the
theoretical formulations presented in equations (8) through
(10). The effectiveness of these controllers is subsequently
evaluated via numerical simulations. The network topology
and the associated control laws aimed at facilitating identical
synchronization are defined by the following system:

uy = f(ur) +v1 —wy + 1,

v =1 —bu? — vy,

wyy = r(s(ug — ¢) —wy),

Us = fus) +v2 — wo + I — gsyn(uz — ur) + I,
voy = 1 — bud — vy + 1'%,

wor = r(s(ug — ¢) —wy) + T3,

uzt = fuz) +v3 —wz + I — gsyn(uz —u1) + I,
v3p =1 —bu? — vz + '3,

wsy = 7(s(uz — ¢) —ws) + 3.

(30)
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where
F% = U1t — f(ul) —v +w — 1 — k‘g(’,g + G%,
% =vy — 1+ bu? + v + G, ,
I3 = wyy —r(s(uy —¢) —wy) + G3, 31)
F% = U1t — f(ul) — V1 +wp — I - kdeg + G%,
% =vy — 14 bu? + v + G%,
I3 =wy —r(s(ug —¢) —wy) + G3,
with the updated rules defined as follows:
kot = 72((e8)* + 62),
32
{ kot = ro((e)? + ), 42

where ko = ko(t), ks = ks(t); ra,r3 are arbitrary positive

constants; ej' = u;—u1,e; = v;—v1,e) = w;—wi,t = 2,3;

and G‘Z = Gi(t)aez = Hz(t);l - 2737j = 1) 2737 are deﬁned
as follows:

Gy = —m.sign(ey)|ey|,

G2 = —m.sign(e})|es],

G% = —m.rs.sign(e¥)|e¥]|",

Gi = —m.sign(ey)|ed|”,

(33)

G3 = —m.sign(ey)|es]?,

G3 = —m.rs.sign(e?)|e?|”,

02 = —m.sign(ky — k).|ks — k|7,

3 = —m.sign(ks — k).|ks — k|7,

(®)

Identical synchronization errors of the network (26): (a) without controllers (27)-(29); (b) with controllers (27)-(29).

where sign(.) represents a signum function, m is a given
positive constant, v € R and satisfies 0 < v < 1.

3

Fig. 4. A unidirectional graph consists of three nodes. The first node sends
the signal to two other nodes and does not recieve any signal back from
them.

In this example, we take:
m = 0.055; v = 0.055;ry = 0.0002; r3 = 0.002;

In addition, from (19), to ensure that the controller is
effective, we need to choose the value of & large enough.
Here, we take k = 4.

Let |e|+|e5|+|es’ | +|ey|+]es|+|ek'| be the identical syn-
chronization error. We say that the network (30) identically
synchronizes in a finte time if the identical synchronization
error reaches zero as ¢ approaches a finite value. Here, we
take the initial condition for the system (30) as follows:

(u1(0),01(0),w1(0)) = (1,1,1),
(u2(0), v2(0), w2(0)) = (0.5,0.5,0.5),
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Fig. 2. Time series of all variables of the system (26) without controllers (27)-(29) accroding to the coupling strength gsyn = 0.02, and ¢ € [0; 300000].

(u3(0)7v3(0)a wS(O)) = (_17 _1a _1)'

Fig. 5 illustrates the identical synchronization error of the
network described by equation (30). In Fig. 5(a), we simulate
the network without controllers (31)-(33) using a coupling
strength of g5y, = 0.9 and for time ¢ € [0,200000]. The
simulation demonstrates that the identical synchronization
error does not reach zero, indicating that the identical syn-
chronization phenomenon does not occur, even when ¢ is
taken to be very large.

In Fig. 6, we present the time series of all variables of
the system described by (30) without the aforementioned
controllers. In Fig. 6(a), the variable u; is represented by the
solid line, us by the dotted line, and ug by the dashed line.
Similarly, in Fig. 6(b), v1, v9, and vs are shown with solid,
dotted, and dashed lines, respectively, while Fig. 6(c) shows

w1, we, and w3 in the same manner. It is clear that the dotted
and dashed lines do not replicate the behavior of the solid
line, further confirming that the identical synchronization
phenomenon does not occur in this scenario.

In contrast, Fig. 5(b) shows the simulation of the net-
work with controllers (31)-(33), using a coupling strength
of gsyn = 0.5 and for time ¢ € [0,100000]. The results
indicate that the identical synchronization error reaches zero
in a finite time, even with a smaller coupling strength and
shorter time ¢ compared to the previous case. This suggests
that as ¢ approaches a finite value, we have the following
approximations:
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Fig. 3. Time series of all variables of the system (26) with controllers (27)-(29) according to the coupling strength gsy» = 0.0001, and ¢ € [0; 4000].

Fig. 7 illustrates the time series of all variables in the
system described by equations (30) and controlled by (31)-
(33). In Fig. 7(a), the variable u; is represented by a solid
line, while us and us are shown with dotted and dashed
lines, respectively. Similarly, Fig. 7(b) displays v, v, and
v in the same line styles, and Fig. 7(c) shows w1, ws, and
ws. It is evident that the dotted and dashed lines closely
replicate the behavior of the solid line. In other words, an
identical synchronization phenomenon occurs in this case,
and it happens within a finite time period (specifically, for
t < 90000).

C. Example 3.

Consider a network composed of five linearly coupled
nodes, as depicted in Fig. 8. The central aim is to develop
a control strategy that guarantees finite-time identical syn-

chronization across all nodes, building upon the theoretical
constructs established in preceding sections. To achieve this
objective, controllers are designed in accordance with the
analytical framework presented in equations (8) through (10).
These controllers incorporate coupling and control gains
tailored to drive the network dynamics toward a synchronous
manifold within a finite time interval. A critical aspect of
this study involves validating the applicability and robustness
of the proposed control laws under the networks inherent
linear coupling structure. Specifically, we analyze the closed-
loop system dynamics to confirm convergence properties and
synchronization performance. The mathematical model gov-
erning the evolution of the coupled nodes, supplemented by
the designed controllers, is formalized as follows. Through
this formulation, the theoretical synchronization results are
translated into a practical control scheme, facilitating both
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Fig. 5.

numerical simulations and potential experimental implemen-
tations. This analysis not only substantiates the theoretical
claims but also provides insights into controller design
considerations for finite-time synchronization in complex
coupled systems.

uy = flur) +v1 —wy + 1,

v =1-— bu% — v,

wye = r(s(u; — ¢) —wy),

ugy = f(uz) +vo —wa 4+ I — goyn(ua —ug) + F%,

vor = 1 — buZ — vy + T3,

way = 1(s(ug — ¢) —wo) + '3,

uzs = f(ug) +vs — w3 + 1 — goyn(uz — uy)
_gsyn(ud - U2) + 1—%7

vgp = 1 — bud — vz +T'%,

wsy = r(s(uz — ¢) —ws3) + T3,

g = f(ug) +v4 —wy + I — goyn (ug — ug) + T,

v =1 —bu? — vy + 1%,

wyr = r(s(ug — ¢) —wy) + T,

use = fus) +v5 — w5 + I — gsyn(us — ug) + T3,

vse = 1 — bu? — vs + T2,

wyy = r(s(us — ¢) —ws) + T,

(34)

(b)

Identical synchronization errors of the network (30): (a) without controllers (31)-(33); (b) with controllers (31)-(33).

where
F% = U1t — f(ul) —v +w; — I — k‘geg + G%,
% =vy — 1+ bu? + v + G3,
I3 =wy —r(s(u; —¢) —wy) + G3,
].—‘:13 :ultff(ul)fvlerl -1
+gsyn(u1 - u2) - kde‘g + Gév
% =vy—1+bu} +v +G3,
I8 = wy —r(s(ug —¢) —wy) + G3,

F}L = Uyt — f(ul) —v1 t+wy —1 35)
+gsyn(u1 - UB) - k4€§f + Gzlla
% =vy—1+bu}+v +G3,
% = wyy — r(s(ug —¢) —wy) + G3,
I} =y — flur) — v +wy — 1
+Gsyn(u1 — ug) — kse¥ + G,
F% = vy — 1+bu%+v1 +G§,
2 =wy —r(s(u; — ¢) —wy) + G2,
with the updated rules defined as follows:
Eig = mi((e®)? + 6;), i = 2,3,4,5, (36)

where k; = k;(t); r; is an arbitrary positive constant; e}’ =
u; —ur,ef = v; — v, ef = w; —wy,t = 2,3,4,5; and
G} =Gl(t),0; =0;(t),i =2,3,4,5,j = 1,2, 3, are defined
as follows:

G} = —m.sign(e¥)|e¥|?,

Q
I

—m.sign(eY)|e’|”, (37

G? = —m.rs.sign(e?)]e?]",
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Fig. 6. Time series of all variables of the system (30) without controllers (31)-(33) accroding to the coupling strength gsyn = 0.9, and ¢t € [0; 200000].

for all © = 2,3,4,5, and
0; = —m.sign(k; — k).|k; — k|7, 1 = 2,3,4,5, (38)

where sign(.) represents a signum function, m is a given
positive constant, v € R and satisfies 0 < v < 1.
In this example, we take:

m = 0.0055; ~ = 0.0055;
ro = 0.0003; 75 = 0.003;74 = 0.2; 75 = 0.02.

In addition, from (19), to ensure that the controller is
effective, we need to choose the value of k large enough.
Here, w5e take k£ = 4.

Let e+ le?| + e’ | be the identical synchronization
(A 1 1 y

i=2
error. We say that the network (34) identically synchronizes

in a finte time if the identical synchronization error reaches
zero as t approaches a finite value. Here, we take the initial
condition for the system (34) as follows:

(u1(0), v1(0), w1(0)) = (1,1, 1),

(u2(0), v2(0), w2(0)) = (050505)7
(u3(0),v3(0), w3(0)) = (=1, -1, 1),
(u4(0),v4(0), w4 (0)) = (05 0.5, 05),
(u5(0),v5(0), ws(0)) = (=1, =1, -1).

In this example, we set the coupling strength to a relatively
high value to demonstrate that identical synchronization can
occur even without a controller. However, it is important to
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Fig. 7. Time series of all variables of the system (30) with controllers (31)-(33) according to the coupling strength gsyn = 0.5, and ¢ € [0; 100000].

note that the time required to observe this phenomenon is
quite extensive.

Fig. 9 illustrates the identical synchronization error of the
network described in equation (34). Specifically, in Fig. 9(a),
we simulate the network using equations (34) without the
controllers outlined in equations (35)-(38), with a coupling
strength of g¢,,, = 1.2 and for the time interval ¢ €
[0; 1000000]. The simulation results show that the identical
synchronization error reaches zero, indicating that identical
synchronization occurs, albeit over a very long time period.

Conversely, in Fig. 9(b), we simulate the same network
with the controllers specified in equations (35)-(38), again
using the same coupling strength of g,,, = 1.2, but for
the time interval ¢ € [0; 150000]. The results reveal that the
identical synchronization error also reaches zero in this case.

This indicates that identical synchronization occurs within a
finite time frame (¢ < 150000).

Remark 4. The results obtained from the three numerical
examples provide clear evidence of the effectiveness of the
proposed control strategy in enhancing synchronization per-
formance within linearly coupled dynamical networks. In Ex-
amples 1 and 2, synchronization is achieved in finite time by
the controlled network, despite employing a smaller coupling
strength than that used in the corresponding uncontrolled
network. This illustrates that the introduction of the control
input significantly improves convergence properties without
necessitating stronger coupling between nodes. In Example
3, both controlled and uncontrolled networks are considered
under a relatively large coupling strength. Although the
uncontrolled network eventually reaches synchronization,
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Fig. 8.
structure.

A graph consists of five nodes with an arbitrary topological

the time required is substantially longer compared to the
controlled case. The network equipped with the proposed
controller achieves identical synchronization within a consid-
erably shorter time interval, further confirming the finite-time
convergence guaranteed by the control design. These findings
collectively demonstrate that the controller developed in
this work not only accelerates the synchronization process
but also reduces the dependence on coupling strength. As
a result, the control strategy offers a practical and effi-
cient mechanism for achieving finite-time synchronization
in coupled dynamical systems, aligning with the theoretical
framework established earlier in the study.

Identical synchronization errors of the network (34): (a) without controllers (35)-(38); (b) with controllers (35)-(38).

IV. CONCLUSION

This study investigates the problem of achieving iden-
tical synchronization in a network of n linearly coupled
Hindmarsh-Rose 3D type dynamical systems, independent of
the underlying network topology. A robust control strategy is
developed based on finite-time stability theory and Lyapunov
function methods. Sufficient conditions for finite-time syn-
chronization are derived in the form of algebraic inequalities,
providing a rigorous theoretical foundation for the proposed
control scheme. The analysis guarantees that all nodes in
the network converge to a common synchronous trajectory
within a finite time interval. To validate the theoretical
results, numerical simulations are conducted, demonstrat-
ing the controllers effectiveness and practical applicability.
The findings confirm that the proposed method not only
ensures synchronization under weaker coupling conditions
but also significantly reduces convergence time. This work
contributes a systematic and efficient framework for finite-
time synchronization in complex networks of nonlinear dy-
namical systems.
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