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Differential Evolution Algorithm Enhancement:
A Novel Entropy Guided Parameter Adaptation
Mechanism

Juncheng Guo, and Yonghong Zhang

Abstract—This study presents an enhanced Differential
Evolution (DE) framework, referred to as EPDE, which
introduces a novel entropy-driven parameter adaptation
strategy. The entropy guided mechanism in EPDE is designed to
tackle key limitations of basic DE algorithms, including their
sensitivity to parameter configurations and vulnerability to
local optima. The entropy guided parameter adaptation adjusts
the mutation factor and crossover rate according to the
population entropy, maintaining population diversity and
accelerating convergence. The mutation with double strategy
selection provides an extra exploration direction. Benchmark
functions and a practical application of parameter extraction
for photovoltaic (PV) systems are used to test the performance
of the original DE and several improved algorithms. Empirical
findings demonstrate the superior performance of EPDE over
DE and the other variants in terms of convergence speed and
solution quality, with lower mean, standard deviation values,
and better best scores. This indicates that EPDE is a more
effective algorithm for solving optimization problems.

Index Terms—Differential Fvolution, Entropy, Opposite
based individual, Optimization

[. INTRODUCTION

S a population based stochastic optimization technique,

Differential Evolution (DE) has proven highly effective
in solving global optimization problems [1]. Its applications
span diverse domains, including neural network training [2],
object tracking [3], and industrial control systems [4].
However, like other evolutionary algorithms, DE also faces
challenges. One of the main issues is its sensitivity to
parameter settings. The fixed parameter values in traditional
DE may not be suitable for different optimization problems,
leading to slow convergence and the possibility of getting
trapped 1n local optima [5]. To overcome these limitations,
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substantial efforts have been devoted to DE's adaptability
and convergence properties through methodological
innovations, such as [6,7]. Among these DE variants, some
studies focus on modifying the mutation strategies [8], while
others aim at adapting the control parameters [9].

In this paper, we propose an enhanced DE algorithm
EPDE that adapts the parameters based on the population
entropy and introduces an opposite-based individual strategy.

II. LITERATURE REVIEW

A. Traditional Differential Evolution Algorithm

The DE algorithm was first introduced by Storn and Price
[1], which initializes a population of candidate solutions
randomly within a given search space. The algorithmic
framework of DE primarily encompasses three core phases:
perturbation through mutation, recombination via crossover,
and competitive selection. In the mutation step, a mutant
vector 1s generated through adding the weighted difference
between two randomly selected vectors to a third vector. The
crossover operation combines the mutant vector and the
target vector to create a trial vector. Finally, the selection
operation determines whether the tnal vector replaces the
target vector based on their fitness values.

EB. Parameter Adaptation in DE

Brest and his colleagues introduced the JDE algorithm, in
which the mutation factor F' and the crossover rate CR are

adaptively modified throughout the optimization procedure
[9]. They employed a self adaptation approach, generating
new values of F' and CR randomly for every individual

within each generation. In an effort to tackle unconstrained
optimization challenges more effectively, Zhao et al. [10]
continuously adjusted F' and CR by leveraging the Cauchy

distribution and the normal distribution. Aiming to simplify
the selection of control parameters and improve an existing
mutation strategy, Meng et al. adopted an adaptive leamning
mechanism known as PLAM to fine-tune the control
parameters [11].

C. Mutation Siralegy Improvements

Price et al. put forward multiple mutation strategies within
the DE framework, including DE/rand/l, DE/best/1, and
DE/rand-to-best/1 [8]. Each of these strategies exhibits
distinct features in terms of their exploration and exploitation
capabilities. For instance, DE/rand/] demonstrates a robust
exploration capacity, whereas DE/best/1 pays emphasis on
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exploitation.

Zhang and Sanderson introduced the JaDE algorithm,
which incorporates a memory-based mechanism for the
adaptive selection of mutation strategies [12]. In attempt to
enhance performance, Qin et al. devised a self-adaptive
variant of DE, named SaDE [13]. Their approach involved
constructing a candidate pool of mutation strategies to
achieve this improvement.

Wang et al, on the other hand, took the DE/rand/2
strategy as a basis and designed a refined mutation scheme,
which was accomplished by implementing an elite archive
strategy [14].

D. Hybridization with Other Algorithms

Sethanan and Pitakaso proposed a hybrid variant of DE by
integrating three distinct local search techniques: the shifting
algorithm, the exchange algorithm, and the k-variable move
algorithm. They then applied this hybrid DE algorithm to
tackle the generalized assignment problem [15].

Cai et al. merged a one-step & -means clustering approach
with the DE algorithm, giving rise to a novel DE variant
named CDE [16].

Furthermore, Wang et al. developed a self-adaptive DE
algorithm named DEPSO, which 1s grounded in the Particle
Swarm Optimization (PSO) algorithm. In DEPSO, a
modified mutation strategy of DE and an enhanced mutation
strategy of PSO are combined. This combination aims to
boost the overall performance of the DE algorithm [17].

E. The Muain Contributions

The paper presents an enhanced DE algorithm with two
main innovations.

First, an entropy-guided parameter adaptation mechanism
adjusts the mutation factor F and crossover rate CR based

on population entropy, maintaining diversity and accelerating
convergence.

Second, a novel mutation with double-strategy selection,
including generating individuals in a DE/best/1-like way and
opposite-based individuals, provides an extra exploration
direction to avoid local optima. The experiments show that
the improved algorithm outperforms the traditional DE in
convergence speed and solution quality, having lower mean
and standard deviation values and better best scores.

III. BasicDE

A, Initialization
The DE algorithm starts by initializing a population of N
candidate solutions in a n-dimensional search space. Each
solution X; = (%, %z, , T ) is randomly generated within
the lower bound L= (I,I,"*+,,) and the upper bound
U =(u1,2,"",Un):
Ty — b+ (uy — I} < rand, (1
where rand is a random number in the range [0,1],
i=1,2, N andk=1,2,--,n.

B. Mutation

The mutation operation creates a mutant vector »;. The

most common mutation strategy is DE/rand/1:
v=X,+Fx(X,— X,), (2)

where g, b, and ¢ are randomly selected indices different

from %, and F' 1s the mutation factor, which controls the step

size of the mutation.

C. Crossover
The crossover operation combines the mutant vector
and the target vector X; to generate a trial vector %;. The
binomial crossover is often used:
vy if rand =CR or § = frna
Uy — .
z; otherwise

3

where CR is the crossover rate, §,..q 15 a randomly selected

index in the range [1,n].and j=1,2, ---,n.

D. Selection
The selection operation compares the fitness values of the
trial vector u; and the target vector X;. I the fitness of w,; 1s
better than that of X, then X is replaced by #; in the next
generation.

IV. IMPROVED DE ALGORITHM

A. Entropy-guided Parameter Adaptation

We calculate the population entropy in each generation.
The population entropy serves as a quantitative measure of
solution diversity within the evolutionary algorithm. A lower
entropy value indicates a more homogeneous population,
while a higher entropy value means a more diverse. The
details to compute the entropy of the population is given
below.

First, we calculate the entropy of each dimension of the
population. For a given dimension k:

¢ Discretize the data of the current dimension into nb bins

{(a predefined value).
s Calculate the probabilities of each bin:

h
P= Fa (4)
where h is the frequency distribution of the data in the
current dimension and N is the population size.

s Calculate the entropy of the current dimension:

Hy= E—PXIOE::(P)- (5)

70

Then, we calculate the average entropy of the population:

>,
_ k=

n

HV (6)

Based on the entropy value, we adjust the mutation factor F
and the crossover rate CR,:

Case 1: [f HV <20.2 (low entropy), we increase the
adjustment amount of F' and CR:
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Set F=F + €, where ¢ 1s a random value with zero
mean and standard deviation 20 (o is a preset adjustment
parameter for F).

Set CR — CR + €,, where €, is a random value with zero
mean and standard deviation 2¢gg (Ggg 1 a preset
adjustment parameter for CR).

Case 2: [f HV > 0.8 (high entropy), we decrease the
adjustment amount of F' and CR :

Set F' = F + €3, where ¢ 1s a random value with zero
mean and standard deviation 0. 505 .

Set CR = CR + e4. where €4 1s a random value with zero
mean and standard deviation 0.5a¢x .

Case 3:1f 0.2 = HV = 0.8 (medium entropy), we

perform standard adjustment:
Set F=F 4 €, where € 1s a random value with zero

mean and standard deviation gz .

Set CR = CR + ¢g. where ¢ 15 a random value with zero
mean and standard deviation o¢g.

We also limit F and CR to be in the reasconable ranges:
Fe[0.1,1] and CR<[0,1].

B. Mutation with Double-strategy Selection

The traditional DE/best/1 uses the best solution of the
population for mutation, which accelerates convergence but
raises the risk of premature convergence to local optima. To
overcome this drawback, in this section, we design a
mutation with double-strategy selection.

Strategy 1: For each individual in the population, a mutant
vector is designed using DE/best/] mutation strategy:

Ui:bCStX‘FFX(Xb*Xc). (7)
where X, and X, are two different solutions.

Strategy 2. For each individual in the population, we
generate an opposite-based individual as follows:

v; = L + (U —bestX), (8)
where bestX is the current best solution.

Based on strategies 1 and 2, we randomly select #»; from
them. And then, If f(v;)< bestScore (where bestScore is

the current best fitness value), we update the best solution.
The pseudo-code of the Algonithm EPDE is given as
follows:
Step 1: Initialize population X of size N in the search

space. Set initial values MazGeneration , F, CR | oy,
Oor .

Step 2: Evaluate the fitness of each individual in X and
find the best solution bestX with fitness bestScore .

Step 3: For t =1:MazGeneration

Step 4: Calculate the entropy HV of the population X
by (H-(6). Adjust F' and CR based on Hy as described

above.

Step 5: Fori=1:N

Step 6: Compute u,; according to (3), (7) and (8), and
update X, with u,.

Step 7: End for

Step 8: Update bestX .

Step 9: End for

Step 10: Output the final result.
The {low chart 1s given in Figure 1.

Initilization

M

If t < MaxGeneration

Calculate the entropy HV by (4)-
(6), and adjust F, CR

Compute y; , and update X,

i=i+1

Update DestX

t=t+1

Output the final result

Figure 1:The {low chart of EPDE
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V. EXPERIMENTAL RESULTS Optimal Value 0
A.  Experimental Setup Function fo= E izt
We use 14 benchmark functions to test the performance of it
the original DE algorithm and the proposed algorithm EPDE. _Range [-100.100]
The benchmark functions include Sphere function, _7n 30
Rosenbrock function, Rastrigin function, etc. (Suganthan et  Optimal Value 0
al., 2005). The parameters for the experiments are set as _ n 1)
follows: the population size N =50, the maximum number ~ Function fr= Zl ||
of generations MazGeneration — 3000. Both F and CR Range [-100,100]
are set to 0.5. The standard deviations for adjusting F and 30
CR are oz —0.1 and ooz —0.1 . When calculating the _Optimal Value 0
. . . o n i1
population entropy, the number of bins for data discretization . _ 1087142
in each dimension is set to nb =10. The runtime is set to 30 Function fs ,Z:;( )
independent runs for each algorithm. The performance of Range [-100,100]
EPDE is compared with some DE variants, including DE [1], 5 30
TaDE [12], SHADE [18], WED [19] and BESD [20]. Optimal Value 0
B. Performance Metrics N Function fo Z ( lz+0.5))
We use the mean, standard deviation, best score, and =1
global minimum values as performance metrics. The mean Range [-100,100]
value represents the average performance of the algorithm, —; 30
the standard deviation measures the stability of the algorithm, Optimal Value 0
the best score represents the best solution found in all runs, -
and the global minimum value is the theoretical optimal value  Function fio = 2 izd+ random [0, 1)
of the benchmark function. =1
C.  Experimental Results and Analysis Range ['10261 00]
1) Benchmark functions test: 12 benchmark functions are g VAl 0
selected to test the performance of EPDE. The details of these pHma’ Vaue -
benchmark functions are presented in TABLE L - _ 2z _
TADLDI Function Ju ; (z? —10cos(27z,) + 10)
BENCHMARK TEST FUNCTIONS
n Range [-100,100]
Function fi= Z z? n 30
=1 Optimal Value 0
Range [-100,100] n
n 30 fiz= —20exp(—0.2 Z:t:f/n)
Optimal Value 0 Function i=1
T n 1 n
Function fo= >zl + [ 1= *e!cp(;ECOS(21rw.-))+20+e
i=1 =1 =1
Range [-10,10] Range [-100,100]
n 30 7 30
Optimal Value 0 Optimal Value 0
Function fs= E(E%‘)g sin( E%?)Z*Oﬁ
Ml Function fiz=0.5+ =1
Range [-100,100] B L
" 0 (1+0.00IZ;$,-)
Optimal Value 0 Range -100.100]
Function fo—=max{|z;|,1 <i<n} n 36
Range [-100,100] Optimal Value 0
n 30 2,
Optimal Value 0 Function fuu— z; (2 — 10cos(2my,) + 10)
=
Function fs— E iz}
i-1
Range [-100,100]
n 30
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1 SD 4.20E-11
Yi— Ti, |2:] < 5 Min 6.296-298
5 SHADE | Mean 3.016-27
2l L SD 9 54527
2 2 Min 3230403
Range [-50,50] WDE Mean 5.11E+03
n 30 sD 1.08E+03
Optimal Value 0 Min 2.30E-17
BESD | Mean 3 75E-01
The comparison results of these algorithms are given in SD 1. 16E+00
TABLE 11, including Min, Mean and Std as the performance Min 0
NIetHEs. EPDE | Mean 520E-111
SD 1.67E-110
TABLETI Function fa
COMPA.RISON RESULTS OF DIFFERENT ALGORITHMS ON TEST FUNCTIONS Ml]’l 634E-04
ey h DE Mean 1 .0SE-03
Min 2.44E-42 SD 3.26E-04
DE Mean 6.78 B-42 Nin T
SD 5.795-42 JaDE Mean 1 74E-03
L 0 D 261E-12
JaDE Mean 8.82E-135 Min 2 88E-165
SID 2'795'134 SIHADE | Mean 141E.16
o SD 4.46E-16
SHADE Mean 7.76E-125 Min > 76601
ISID 3225;10214 WDE Mean 3.36E+01
11 .
SD 2.99E+00
i Né%n ?;igigi Min 319500
N 345065 BESD Mean 4.098-02
BESD | Mean 1.94E-05 IS’[D L 165-01
SD 6.14E-05 i
= = EPDE Mean 3.63E-170
EPDE Mean 0 sD 0
SD 0 Function Is
Function fa Min 1.11E-43
Min 2.24E-26 DE Mean 3.54E-43
DE [ Mean 5.56B-26 = 6.74E-43
SD 1.76E-26 Min 0
Min 0 JaDE Mean 3.19E-135
JaDE | Mean 1.73E-66 SD 1.01E-134
D 5 496-66 Min 1.62E-127
e — SHADE | Mean 512E-127
SHADE | Mean 1.36E-64 SD 3.21E-128
SD 4 32F-64 Min 5.31E+00
N 3175100 WDE Mean 9. 72E-+00
WDE Mean 4 04E+00 SD 2.38E+00
Min 6 30036 BESD Mean 3.31E-01
BESD | Mean 3 99E-04 S{i 1-0453-05
SD 1.26E-03
= 5 EPDE Mean 1.71E-185
EPDE | Mean 0 : SD 0
D 0 Function Ts
Function fs Min 9.20E-68
Min 1205104 Bl Née[;m gzgg:gg
DE Mean 1.73E+04 Nin . 5
SID iggg@; JaDE Mean 2.07B-037
11 : -
SD 0
BB em 1356-11
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Min 0 SD 0
SHADE | Mean 2 OTR 03] Min 0
sSD 0 WDE Mean 0
Min 4.43E-04 SD 0
WDE Mean 8.87E-04 Min 0
SD 3.45E-04 BESD Mean 0
Min 1.49E-111 SD 0
BESD Mean 2.17E-14 Min 0
SD 6.86E-14 EPDE Mean 0
Min 0 SD 0
EPDE Mean 0 Function .flU
SD 0 Min 6.376-03
Function fz DE Mean 8.09E-03
Min 1.09E-114 SD 1.07E-03
DE Mean 2.65E-112 Min 1.55E-02
SD 5.20E-112 JaDE Mean 2.57E-02
Min 2 40E-39 SD 1.39E-02
JaDE Mean 5.32E-33 Min 7.32E-04
SD 1.68E-32 SHADE | Mean 1.04E-03
Min 0 SD 3.88E-04
SHADE | Mean 2.95E-261 Min 2.94E-01
SD 0 WDE Mean 4.11E-01
Min 3.73E-11 SD 6.05E-02
WDE Mean 1.69E-10 Min 5.47E-04
SD 1.06E-10 BESD Mean 8 42E-04
Min 7.15E-173 SD 5.93E-04
BESD Mean 9 88E-29 Min 1.05E-04
SD 3.12E-28 EPDE Mean 2 81E-04
Min 0 SD 1.56E-04
EPDE Mean 0 Function .fll
SD 0 Min 3 72E+01
Function fs DE Mean 4.93E+01
Min 1.81E-39 SD 6.44FE-+00
DE Mean 5.69E-39 Min 1.99E+00
SD 3.60E-39 JaDE Mean 2 58F+01
Min 0 SD 2.89E+01
JaDE Mean 2.08E-131 Min 0
SD 6.59E-131 SHADE | Mean 0
Min 0 SD 0
SHADE | Mean 5.48E-121 Min 4.45E+01
SD 1.73E-120 WDE Mean S .04E+01
Min 3 34E+04 SD 3.55E+00
WDE Mean 5 98F+04 Min 8.28E-02
SD 1.38E+04 BESD Mean 9 54F-+00
Min 1.58E-60 SD 1.28E+01
BESD Mean 7.30E-02 Min 0
SD 2.31E-01 EPDE Mean 0
Min 0 SD 0
EPDE Mean 0 Function fiz
SD 0 Min 2 66E-15
Function Jo DE Mean 5.15E-15
Min 0 SD 1.72E-15
DE Mean 0 Min 2 66E-15
SD 0 JaDE Mean 2.66E-15
Min 0 SD 0
JaDE Mean 0 Min 2.66E-15
SD 0 SHADE | Mean 2 66E-15
Min 0 SD 0
2 Mean 0 WDE Min 5.09E+00
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Mean 5.85E+00
SD 4.24E-01
Min 6.22E-15
BESD Mean 3.32E-04
SD 1.05E-03
Min -8.88E-16
EPDE Mean -1.78E-16
sSD 1.50E-15
Function fus
Min 3.72E-02
DE Mean 3.72E-02
SD 7.07E-07
Min 3.72E-02
JaDE Mean 3.72E-02
sSD 1.15E-11
Min 7.82E-02
SHADE Mean 7.82E-02
SD 1.63E-15
Min 4 94E-01
WDE Mean 4.95E-01
SD 1.30E-03
Min 7.82E-02
BESD Mean 9 45E-02
SD 2.82E-02
Min 9 70E-03
EPDE Mean 9 70E-03
sSD 1.05E-15
Function fia
Min 3.76E+01
DE Mean 3.99E+01
SD 2.09E+00
Min 3.17E+01
JaDE Mean 3.60E+01
sSD 3.78E+00
Min 0
SHADE Mean 0
SD 0
Min 3.25E+01
WDE Mean 3.89E+01
SD 6.27E+00
Min 1.38E+01
BESD Mean 2.16E+01
SD 8.82E+00
Min 0
EPDE Mean 0
sSD 0

For most of the 14 benchmark functions, the EPDE
algorithm achieved the best (lowest) minimum values. For
example, in functions f; — fs. fun and fi,, EPDE reached 0

as the Min value, while traditional DE and some other
algonithms like WDE had much larger Min values. These
results indicate that EPDE has a strong ability to find the
optimal or near optimal solutions in these functions.

JaDE and SHADE demonstrated competitive performance
in achieving minimum values, but not as comprehensively as
EPDE. For instance, in fz, SHADE had a very low Min value

of 6.29E-29, but in other functions, its performance was not
as outstanding as EPDE did.

The EPDE algorithm generally had lower Mean values
compared to the traditional DE algorithm across the 14 test
functions. In the function fa, the mean fitness value of EPDE

was significantly lower than that of the traditional DE
algorithm. This implies that, on average, EPDE can find
better solutions than the traditional DE.

Among all the algorithms, WDE consistently exhibited
higher mean values, suggesting that it may not be as effective
as other algorithms in finding good quality solutions on
average. For example, in fy, the Mean value of WDE was

3.36E+01, much higher than those of EPDE, JaDE, and
SHADE.

A lower Std indicates that the algorithm's performance 1s
less variable, and it can consistently find solutions close to
the mean value. EPDE usually had lower Std values, which
means it was more stable in different runs. In f;, the Std

value of EPDE was 0, while that of traditional DE was
5.79E-42. Some algorithms like BESD had relatively high
Std values in some functions, indicating that its performance
varied greatly in different runs. For example, in f;, the Std

value of BESD was 1.26E-03, which was higher than that of
EPDE, showing that BESD's solutions were less consistent.

Overall, among the six algorithms tested on 14 functions,
EPDE demonstrated excellent performance. It outperformed
the traditional DE algorithm in terms of convergence speed
and solution quality, as shown by its lower Min, Mean, and
Std values in most cases. JaDE and SHADE also showed
good performance in some aspects, but EPDE was more
consistent across different functions. WDE and BESD
generally had worse performance, with higher Mean and Std
values in many functions.

In conclusion, EPDE 1s a more effective algorithm for
solving the optimization problems represented by these
benchmark functions, with strong abilities in finding optimal
solutions, obtaining good quality solutions on average, and
maintaining stability in different runs.

The average rankings of six algorithms (DE, JaDE,
SHADE, WDE, BESD, EPDE) across fourteen test function
are shown in Figure 2.

1.0
s} '
DE aDE SHADE

EPDE

Figure 2 The average rank of different algorithms

From Figure 2, we can see that, EPDE has the lowest
average ranking of 1.0, meaning it performs the best among
these algorithms on average. SHADE follows closely with an
average ranking of 2.3, also demonstrating excellent
performance. JaDE has an average ranking of 2.8, indicating
relatively good performance as well.
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DE has an average ranking of 3.8, showing moderate
performance. BESD has an average ranking of 4.1, with
performance that is not as strong as the previous ones. WDE
has the highest average ranking of 5.6, suggesting it performs
the worst among these six algorithms on average.

In summary, EPDE is the top performing algorithm, while
WDE lags behind. SHADE, JaDE, DE, and BESD have
performance levels that decrease in the order mentioned
based on their average rankings across the test functions.

2) The practical application: In this subsection, a more
substantial and practical real-world engineering application is
utilized to show the superiority of EPDE in comparison to
other highly regarded rivals. Photovoltaic (PV) systems play
a crucial role in the realm of new energy, given their capacity
to directly transform solar energy into electrical power.
Consequently, devising a precise and efficient model for PV
systems through the extraction of their parameters from
measured current-voltage data represents a vital undertaking.
The principal parameters of PV systems are extracted using
EPDE, along with six other methods. There exist three
conventional PV models: the single diode model (SDM), the
double diode model (DDM), and the PV module model
(PVMM). The corresponding circuit configurations for these
three models are depicted in Figure 3.

+

[k _}—o

_IL_>
l"”h l I l In
Vi
?E {‘| Rsh

L
(a) Single diode model (SDM) -
+

[ R |—e

AR Dl 1]
® . °

L
(b) Double diode model (DDM) -
+

| e

_>
1L /N,
IP’T ]sh
VL /Nx'
N Np
@ Rsh
' ' ’ ®

(c) PV module model (PVMM) -

Figure 3 Equivalent circuit diagrams for photovoltaic cells

As depicted in Figure 3(a), the extraction of SDM hinges
on five essential parameters: the photocurrent source (I, ).
shunt resistance (R, ), series resistance (R, ), ideal factor of
diodes (n ), and reverse saturation current ( I,z ). The

mathematical relationships these parameters adhere to can be
summarized below.

The output current I, is defined as:

IL:Iph_Id;_Id: (9)
Here, the diode current is computed using:
_ e B4 Vi) gy
Li=Lalep(C 7)1l

and the shunt current I, is calculated as;
— IL =, R, + VL
=R

Combining these equations, the expression for Iy in the
context of SDM is:

Lo

(IL'R3+VL)'Q
e )71 a0
Unlike the SDM, the DDM accounts for recombination
losses occurring within semiconductor depletion regions. Its
corresponding circuit diagram is presented in Figure 3(b).
The formula for computing I, in DDM is:

IL:IM*IA*IH*Iﬂ

IL'R,+VL

IR, +V:)
R *Iadl[exp(( . t L) ?
ah

T n -k )—1]

In(11), I4 corresponds to the diffusion current and I,4q

9y

= -

represents the saturation current. The ideality factors of the
diodes are denoted by n; and ny. Notably, DDM aims to

extract seven key parameters: ( Loy, Logrs Ry Rans 1, Loazo T2 ) -

Unlike SDM and DDM, the PVMM configuration uses
multiple identical PV cells arranged in parallel or series (see
Figure 3{c)), which incorporates the expression for the
photocurrent I
N,R,/N, +Vi)

T-n-k-N,
~ I.R,N,/N,+V;
N,Rs:/N, '

where N, and N, denote the number of parallel and serial

I »
I=IN,— L.N,expl( L2 7y 1)

(12)

connected cells, respectively. This model aims to extract five
important parameters:( Iy, L, By Raa B ) -

TABLE III presents the detailed parameter ranges for the
three PV models. The objective is to minimize the disparity
between experimental and measured data. Consequently, the
root mean square error (RMSE) 1s frequently employed as the

fitness function, with its mathematical formulation provided
in (13):

N
1
RMSE(X) = \/ N 2L (I Vy). (13)
i=1
TABLE IIT
BOUNDS OF DIFFERENT PARAMETERS IN THREE PV MODELS
STO— SDM DDM PVMM
LB UB LB UB LB UB

Iu(A) 0 1 0 2 0 2
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Lat, Ly | 0 1 0 1 0 50 R,(Q) 3.6E-02 3.6E-02 3.6E-02
iy, g, N 1 2 1 2 1 50 B.{Q) 5.3E+01 5.3E+01 5.4E+01
R.(Q) 0 100 0 100 0 | 2000 n 1.4E+00 1.4E+00 1.4E+00
R,(£) 0 0.5 0 0.5 0 2 RMSE 9.9E-04 9.9E-04 9.8E-04

Let N be the number of measured data, and X be the

solution vector incorporating the unknown core parameters.
The objective function of each model is then stated as
follows:

From TABLEIV and TABLE V, we can see that, for SDM,
the best outcomes attained by DE, JaDE, SHADE, WDE,
BESD, and EPDE are 1.0E-03, 9.8E-04, 9.8E-04, 99E-04,
99E-04, and 9.8E-04, respectively. As a result, EPDE

Model SDM: outperforms DE, WDE, and BESD.
F( X, Iy, Vi) = Iy — Iaexp( (- B +Vi) g )—1] TABLE VI
T i k THE BEST OUTCOMES ATTAINED BY $IX METHODS OVER 20 INDEPENDENT
I.-R,1+V, RUNS 0N DDM
B Ra . — LI Variabl Methods
_ ariables DE TaDE SHADE
X = AL Lo By B } I.(4) 7.6E-01 7.6E-01 7.6E-01
Model DEM: > (ud) 3.4E 02 3.6E 02 3.6E 02
7. _ (I.-R,+Vi)-q, La( 4E- .GE- 6E-
fl(X,IL)VL)_Iph Isdl[e)cp( T'nl'k ) 1] R,(Q) 8 4E+01 5.3E+01 6.0E+01
B Y %) 1] % 1, | Ba® 25807 27E-07 25607
Xm (Lo L B R iz . " " 156100 14500 185100
- phydladl s flpy aiunlv sdﬂ}n'2
23E-07 18E-07 37607
Model VMM =) 1.5E+00 1 8E+00 1.7E-+00
_ _ (I.N,BR,/N,+Vi)-¢ M i S T
X0, Va) = NI — Ny Laexpl 50 7)) s 1.4E-03 0.8E-04 1.0E-03
LR,N,/N,+V,
-1] - — 1 TABLE VII

N,R. /N,
X= {IphaIadsRuRsh’n}
In this experiment, a commercial RTC France silicon solar

cell with a diameter of 57 mm (exposed to an irradiance of
less than 1000 W /m? at a temperature of 33 ° C) was

utilized. This particular benchmark data set has been
extensively adopted for assessing the efficacy of algorithms
designed for parameter extraction purposes [21].

As presented in Tables IV to IX, the optimal outcomes
achieved by six distinct algorithms are shown. These results
are derived from 30 independent executions of the algorithms
on SDM, DDM, and PVMM.

TABLEIV
THE BEST OUTCOMES ATTAINED BY SIX METHODS OVER 20 INDEPENDENT
RUNS ON SDM

THE BEST OUTCOMES ATTAINED BY SIX METHODS OVER 20 INDEPENDENT

RUNS ON DDM

Variables Methods
WDE BESD EPDE

La(A) 7.6E-01 7.6E-01 7.6E-01
La(pA) | 35E-02 3.6E-02 3.6E-02
R,(Q2) 6.5E+01 5.6E+01 5.5E+01
Ru(Q) 2.3E-07 1.9E-07 2.3E-07
™ 1.8E+00 1.7E+00 1.4E+00
Ia(pA) | 3.5E-07 2.3E-07 6.5E-07
Ty 1.4E+00 1.4E+00 1.9E+00
RMSE 1.1E-03 1.1E-03 9.8E-04

. Methods From TABLE VI and TABLE VII, we can see that, for
Variables DE JaDE SHADE DDM, the best outcomes attained by DE, JaDE, SHADE,
Iph(A) 7 6E-01 7 66-01 7 6E-01 WDE, BESD and EPDE are 1.4E-03, 98E-03, 1.0E-03,

1.1E-03, 1.1E-03, and 9.8E-04, respectively. As a result,
Li(pA) | 32E07 3.85-07 3.2E-07 EPDE outperforms DE, SHADE, WDE, and BESD.
R,(ﬂ) 3.6E-02 3.5-02 3.6E-02
TABLE VIII
R, () 5.3E+01 5.8E+0] 5.3E+01 THE BEST OUTCOMES ATTAINED BY SIX METHODS OVER 20 INDEPENDENT
n 1.4E+00 1 4E+00 1 4E+00 B o PV
) Methods
RMSE 1.0E-3 9.8E-04 9.8E-04 Variables Oh TaDE STIADE
TABLEV Lu(A) 2.1E-01 21E-01 21E-01
THE BEST OUTCOMES ATTAINED BY SIX METHODS OVER 20 INDEPENDENT Li(pA) 2 3E-06 70E-07 7 0E-07
RUNS ON SDM
Mothods R.,(Q) 1.7E100 2.0E+00 2.0E 100
Variables
WDE BESD EPDE R,;,(Q) 2.0E+03 1.6E+03 1.6E+03
In(4) 7.6E-01 7.6E-01 7.6E-01 n 1 8F+01 1.6E+01 16F+01
La(pd) | 32E07 3.3E-07 3.3E-07 RMSE 5 3E-03 2.4E-03 2.4E-03
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TABLEIX
THE BEST OUTCOMES ATTAINED BY $IX METHODS OVER 20 INDEPENDENT
RUNS ON PVMM

Variables Methods
WDE BESD EPDE

I.(A) 2.1E-01 7.6E-01 7.6E-01
La(pA) 1.9E-06 2.4E-06 7.0E-07
R,() 1.8E+00 1.7E+00 2 0E+00
R () 1.6E+03 1.6E+03 1.7E+03
1 1.6E+01 1.7E+01 1.6E+01
RMSE 5.1E-03 6.0E-03 2.4E-03

TFrom TABLE VII and TABLE IX, we can see that, for
PVMM, the best outcomes attained by DE, JaDE, SHADE,
WDE, BESD and EPDE are 5.3E-03, 24E-03, 2.4E-03,
5.1E-03, 6.0E-03, and 2.4E-03, respectively. As a result,
EPDE outperforms DE, WDE, and BESD.

VI. Concrusion

In this paper, we propose an improved DE algorithm
featuring an entropy guided parameter adaptation mechanism
and a double-strategy selection mutation scheme. Based on
population entropy, the proposed mechanism preserves
population diversity and accelerates convergence by
adjusting F and CR. The dual-strategy mutation operator

introduces orthogonal exploration directions, dynamically
balancing global search diversification and local search
intensification to mitigate premature convergence. The
experimental results on benchmark functions and the
practical application show the effectiveness of the proposed
algorithm.
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