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Abstract—Real-time prediction of geomagnetic storms has
become increasingly important with the rapid development of
science, technology, and space exploration. While data-driven
models provide accuracy and flexibility, they often struggle
with noise, missing values, and modeling long-term
dependencies. These limitations hinder their ability to
accurately predict extreme events. Physical models provided
strong theoretical frameworks to explain geomagnetic storm
mechanisms. However, their reliance on complex parameters
and precise observational data limited their adaptability to
dynamic conditions. To address these issues, this study
proposes a DTW-Attention model based on the Self-Attention
mechanism and the Dynamic Time Warping (DTW) method
for geomagnetic storm prediction. The model uses an
embedding layer to project time series data into a high-
dimensional space. A multi-layer encoder captures both short-
term and long-term dependencies. Positional encoding
enhances the model's temporal sensitivity. During optimization,
the DTW-Attention model improves time-series alignment.
Experimental results show that the proposed model
significantly improves prediction accuracy compared to the
classic deep learning methods. The DTW-Attention model
combines the temporal alignment of DTW with the global
modelling capabilities of the Self-Attention mechanism,
significantly reducing short-term and long-term errors. The
model further exhibits improved stability and robustness
across both medium-term and long-term forecasting horizons.
Multi-line time series plots further confirm the model's
effectiveness in capturing short-term trends and long-term
volatility.

Index Terms—Self-Attention Mechanism, Geomagnetic
Storm, Dynamic Time Warping, Disturbance Storm Time

1. INTRODUCTION

Geomagnetic storms are intense space weather
phenomena triggered by solar activity. Solar wind and
Coronal Mass Ejections (CME) interact with earth's
magnetic field, generating storms. Fluctuations in Earth’s
magnetic  field can severely disrupt spacecraft,
communication infrastructure, and power grids [I1-2].
Accurately predicting the timing, intensity, and spatial
extent of geomagnetic storms is essential for implementing
proactive measures to mitigate their impact. Despite recent
advances, precise geomagnetic storm prediction remains
challenging, particularly for applications in satellite,
aviation, and communication systems.

Physical and data-driven models form the basis of current
prediction methods. Physical models primarily rely on
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observational data such as solar wind speed, temperature,
density, and solar activity. By incorporating these data into
magnetosphere models, researchers aim to predict
geomagnetic storms more accurately. Physical models
explain storm formation based on strong theoretical
principles but face several limitations. For example, these
models involve numerous complex parameters, and accurate
computation relies on high-quality, real-time observational
data [3]. In contrast, data-driven models, such as machine
learning and deep learning, are trained on big historical
datasets to recognize potential geomagnetic storm patterns
[4-5]. While data-driven models enhance prediction
accuracy and adaptability, they face challenges like noise,
missing values, and insufficient high-quality data.
Additionally, these models struggle with rare or previously
unseen storm events and generally lack the explanatory
power of physical models [6]. While deep learning can
effectively solve complex problems, its applications for real-
time predictions are still constrained by the necessity for
intensive training, extensive hyperparameter tuning, and
high computational costs [7-9].

Geomagnetic storm prediction is inherently a time-series
problem, as its occurrence and progression depend heavily
on historical observations. The advancement of machine
learning, particularly deep learning models, has significantly
improved geomagnetic storm prediction time-series models,
such as Recurrent Neural Networks (RNN) and Long Short-
Term Memory (LSTM) networks, have demonstrated
superior performance in geomagnetic storm prediction. For
instance, Priatna et al. [10] applied RNN and LSTM models
in 2020 to analyze prediction duration and compare various
forecasting periods, demonstrating that shorter periods result
in higher accuracy. The study highlighted the advantages of
RNN and LSTM models in short-term weather prediction
but also identified challenges such as overfitting and low
training efficiency when processing complex geomagnetic
storm data. Cristoforetti et al. [11] utilized solar wind and
interplanetary magnetic field data as inputs for a Deep
Neural Network (DNN) to forecast the Disturbance Storm
Time (Dst) index during geomagnetic storms. This indicates
that DNN may adapt to various space weather conditions,
ranging from quiet periods to severe geomagnetic storms.
The DNN model has several notable limitations, including
low interpret-ability, strong dependence on data quantity and
quality, and increased computational and training demands
as network depth increases. In 2023, Uyanik et al. [12]
utilized image processing techniques to extract spatial-
temporal correlations. They constructed the Time
Evolutionary Correlation (TEC) images using a time
frequency representation and input them into a
Convolutional Neural Network (CNN). The study reported

Volume 52, Issue 10, October 2025, Pages 3670-3683



TAENG International Journal of Computer Science

that the approach achieved an accuracy of 89.31% in
predicting geomagnetic storms. A key advantage of CNN is
its ability to integrate temporal and spatial information.
However, they also present significant limitations, such as
high computational costs, strong data dependency, and
ability of limited explanation.

In recent years, time-series prediction has increasingly
adopted the Self-Attention mechanism, which effectively
captures long-range dependencies in sequences [13]. The
Self-Attention mechanism offers the advantage of
dynamically assigning weights to different sequence
segments while incorporating global information, free from
the constraints of traditional models' local window sizes.
This capability allows the Self-Attention to efficiently
capture dependencies in time-series data, such as
geomagnetic storms. The Self-Attention mechanism
dynamically adjusts attention to different time steps based
on past solar activity and geomagnetic field variations,
enhancing the accuracy of geomagnetic storm predictions
[14]. Compared to the traditional RNN or LSTM based
models, the Self-Attention mechanism more effectively
processes data with long time spans while significantly
enhancing real-time performance and computational
efficiency due to its strong parallel computing capabilities.
The development of geomagnetic storms is influenced by
solar activity occurring over multiple time scales.
Traditional models often fail to capture inter-hourly and
inter-day dependencies because of limited receptive fields
and vanishing gradient problems. In contrast, the Self-
Attention mechanism connects arbitrary time steps through a
global attention matrix, allowing more accurate modeling of
both the onset and recovery phases of geomagnetic storms.

Despite the application of deep learning models such as
LSTM and CNN in geomagnetic storm prediction, two
major challenges persist: error accumulation in long-term
forecasting, and the susceptibility of DTW to noise and its
limited flexibility in temporal alignment. This study presents
a geomagnetic storm prediction DTW-Attention model. The
new model combines the temporal alignment of DTW with
the global modelling capabilities of the Self-Attention
mechanism. The model effectively captures long-range
dependencies in time-series data, integrates global
information, and enhances both prediction accuracy and
real-time performance. Experimental results demonstrate
that the proposed model outperforms classic deep learning
methods across multiple key metrics. Furthermore, this
study refines the model's training strategy to align with the
characteristics of geomagnetic storm data, improving
robustness and generalization. These advancements
contribute to the theoretical foundation and technical
development of real-time space weather warning systems.

II. RELATED WORK

Deep learning extensively relies on the Self-Attention
mechanism, a fundamental concept essential for data
processing and analysis. The Self-Attention mechanism
captures dependencies between input elements by
dynamically assigning attention weights, enabling the model
to focus on salient information. This mechanism enables the
model to focus on the most relevant information for the
prediction task. This mechanism is crucial because it enables

the model to concentrate on the information that is the most
beneficial for the specific task, thus enhancing its
performance and accuracy [15]. One of the significant
advantages of the Self-Attention mechanism is that it
significantly increases computational efficiency. This
efficiency is achieved through parallel processing of input
data, which means that data is processed simultaneously,
making the computational process faster. Moreover, it
excels in efficiently capturing long range relationships that
exist in sequential data. In the Self-Attention mechanism,
each individual input element is meticulously mapped to a
query, a key, and a value. Subsequently, the model assigns
weights to these values. The determination of the correlation
between the query and the key is a critical phase in this
process, as it enables the model to assign importance to the
different data points based on their relevance to the task.
This weighting mechanism ensures that the model
effectively prioritizes relevant data points, ultimately
improving the overall performance of the model enabled by
this mechanism.

Linear

..................

.
Add & Norm

Feed
Forward
A

.
.

Add & Norm

Add & Norm

Feed Multi-Head
Forward Attention

A A

ccecccccccccccccccccccccccccnccana,

L

Add & Norm

Add & Norm

Masked
Multi-Head
Attention

]

T e

Multi-Head
Attention

L1

.............

Position N . Position
Encoding 4 ] + a Encoding
Input Output
Embedding Embedding
Inputs Outputs

Fig.1. Transformer model architecture diagram

Transformer model architecture [16], illustrated in Fig. 1,
which incorporates several key technical features, including
positional encoding, the Self-Attention mechanism, encoder
and decoder structure, and multi-head attention. The
integration of these features enables the Transformer model
to capture contextual information and long-range
dependencies better when processing sequence data, thereby
improving the model's performance.
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Transformer model is a deep learning architecture based
on the Self-Attention mechanism, designed to handle large
amounts of input data simultaneously and model
connections over time. Its primary function is to quickly
capture global information in sequential data using multiple
Self-Attention layers and positional encoding, avoiding the
gradient vanishing issue encountered in the traditional RNN
with long sequences. In our research, we introduced a
lightweight Transformer architecture based on a time
attention mechanism. Weighted summation of input
sequences using learnable time weights to highlight
historical moments that have the greatest impact on the
prediction target.

A. Input Mapping
First, we map the input data, which consists of words in a

sequence, into three distinct linear transformations: query,

key, and value. Suppose the input is a sequence of vectors
xr} ; each X; is a high-dimensional vector. The

weight matrix is obtained by learning maps X to query, key,
and value, respectively. We receive an input sequence

X e RT™4ma . The query (Q), the key (K), and the value (V)
are derived through linear transformations using matrices
0=xw? k=xwX,and v=xw", where w2, wX, and
W’ are the weight matrices acquired from training.
Dimensions are model Xdkey and dpoge X dyane . Fig. 2

displays the input mapping.
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Fig.2. Input mapping

B. Data Processing

1) Calculate scores: The query vectors and the key vectors
are computed by taking the dot product of the similarity, i.e.,
the correlation between each query vector and all other
inputs. Scores(Q,K) is calculated as shown in Equation (1).

i (1)
The matrices QO and K represent queries and keys,
respectively, whereas d; represents the key's dimension.

\J4key s the scaling factor used to normalize the dot

product, preventing excessively large values.

Scores(Q,K) =

x]_] k!

Y=k o X,=k ¢ X, 12
= ql

X, m %, X3 K

X4 k*

Fig.3. Processing of dot product

The correlation between every two input vectors is
calculated using the obtained Q and K, that is, the value of
attentions X. X is calculated in various ways, usually by dot
product. The dot product is shown in Fig. 3.

2) Calculate weights: To determine the relative
importance of one element over others, it calculates the
similarity of each query to every key. The dot product, as
shown in Equation (2), is the standard way to compute
similarity. The result of this dot product is normalized by a
Softmax function to ensure that all weights sum to 1.

oK’

Weights=Softmax
dkey

(@)

3) Sum weights: The final output vector is created by
weighting and adding the values (V) once the weights have
been obtained. This procedure is demonstrated by Equation
3).

Output = Weights xV (3)

Each output vector contains weighting information for all
input elements, with weights determined by the similarity
between the query and the key. The model generates a new
set of representations by adjusting each input element based
on weighting information from preceding items. The
network forwards this output sequence to the next layer for
further processing. These principles form the core of the
proposed model. Section III provides detailed information
on its implementation.

III. PROPOSED METHOD

A. Model Composition

We define a DTW-Attention model for tackling the
prediction task of time-series data on geomagnetic storms.
The traditional DTW alignment method [17] assesses the
temporal shift between two time-series. The new method
calculates the similarity between two time-series and
computes the matching cost based on the minimum distance
path. The Self-Attention computes the embedded
representation of two time-series through the Transformer
layer and measures the similarity of the two-series through
the Euclidean distance. The model first turns the input time-
series into a high-dimensional space using an embedding
layer. It then encodes the data using a Self-Attention process
to create a new representation. The similarity matrix of the
embedding vectors is subsequently calculated, and time-
series alignment is performed by reducing the cost. We
employed the Transformer encoder architecture and
incorporated positional encoding to enhance the model's
sensitivity to time-series data. The model comprises a series
of stacked Self-Attention layers that constitute the encoder.
The proposed architecture consists of the following core
components:

1) Embedding Layer: We convert the input time-series
data into a fixed dimensional vector representation. The
embedding layer maps the input geomagnetic storm time-
series to a high-dimensional space. The embedding layer
projects the input into a high-dimensional space via linear
transformation in Equation (4).

E=xwE, w¥ e R>ma “4)
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A grid search is used for validation, and dmegqel = 64 is
selected to balance model capacity and overfitting,
preventing an increase in validation errors. The high-
dimensional embedding isolates noise from valid signals and
captures nonlinear time-series features, including sudden
phase shifts and recovery trends in geomagnetic storms. In
each time step, this layer maps the input features to a built-
in vector space. Through this mapping, the model can
capture more feature information and improve its
representation.

2) Positional  encoding: To  preserve sequential
information in time-series data, we implement positional
encoding for each time step. Strengthening the localization
constraint of the Self-Attention mechanism helps the model
better understand the sequential arrangement of elements
within time-series.

The position encoding employs a learnable parameter
P e R>Tmoae rather than a fixed sinusoidal function. This
design dynamically updates position weights during training,
enhancing adaptability to the non-stationary characteristics
of magnetic storm data.

3) Transformer encoder: The transformer encoder is the
model's core component. It comprises multiple layers of
Self-Attention and feed-forward networks that determine
how each sequence time step is connected to the others.
Each Self-Attention layer concurrently assesses the
similarity of all sequence positions. The Transformer
encoder comprises four stacked Self-Attention layers, each
with four attention heads. The multi-head mechanism
enables the model to simultancously capture features at
different time scales, including short-term perturbations and
long-term trends. The feed-forward network has a dimension
of 256, and the activation function is used to enhance
nonlinear modeling. The vanishing gradient problem is
alleviated using residual connections and layer
normalization. It subsequently assigns weights and
aggregates the information to model global dependencies.
Following multiple coding layers, Equation (5) represents

the sequence as Z,,; .
Z,,; = Encoder(X) (%)
4) Output layer: The model maps the high dimensional
representation of the encoder output to a scalar prediction
through a fully connected layer. The output of this layer is
the model's prediction, representing the intensity of a
geomagnetic storm at a future time. The output layer
transforms the encoder output into scalar predictions via a
fully connected layer, as shown in Equation (6).

5y =2 W0+, WP Rl (6)
Where p° is the bias term for the output layer; W is the
weight matrix of the output layer with dimension dpq,; 1.

¥, represents the predicted value of the model for the i-th
time step.

The embedding layer and positional coding enable the
model to transform the input data into a high-dimensional
embedding space. The Self-Attention layer of the
transformer then processes the data, effectively leveraging
the long-range dependencies in the time-series to address the
complex temporal issues associated with geomagnetic storm

data. The model finally outputs the predicted values.

B. Evaluation Metrics

We use the theoretical framework from Section II to
create a new DTW-Attention metrics for testing
geomagnetic storm models. The goal is to make predictions
more accurate in time-series data analysis. The goal of the
DTW-Attention metrics is to find the path of

correspondence T ={t,ty,..ty } and
P = {pppz,~~-,17p} . The model assesses their similarity by
their  Self-Attention The
embedding representations £y and Ep are derived from

between

calculating representations.

Self-Attention modeling, as illustrated in Equations (7) and
(8).
E; = Attention(T) @)
E, = Attention(P) (8)

Where Er and Ep are embedded representations of the
time-series 7 and P, respectively.

The above equation encompasses
calculations:

1) Compute similarity matrix: The similarity matrix S is
obtained by calculating the Euclidean distance between the
embedding vectors of the time-series 7 and P, as outlined in
Equation (9). Unlike conventional DTW, which directly
computes the distance between original sequences, DTW-
Attention constructs a similarity matrix in the embedding
space. The Transformer encoder generates the embedding

the following

representations Er and Ep , which suppress noise and

capture semantic features to align the onset of the magnetic
storm.

S, = H E0 - EP(j)Hz )

Hz represents the Euclidean distance. In the time-series 7'

and P, the time step indices are represented by i and ;.

2) Compute least cost path: The least cost path is
determined by identifying the shortest route in the similarity
matrix, and this path is derived using dynamic programming
methods. Assume the path is designated as

7 ={(irs 1)+ (ias Ja ) oo (i i )}

The DTW cost represents the cumulative distance of these
path points, as illustrated in Equation (10).
DIWT.Pr D, S, (10)
(z,’ Jj)ex
Where Si,, represents the similarity associated with the
path points. The minimum-cost path is computed using
dynamic programming, subject to the constraints of
monotonic and continuity. DTW-Attention improves upon
conventional methods by dynamically adjusting path
weights and enabling multi-scale alignment. Attention
weights regulate the local sensitivity of aligned paths,
facilitating a more flexible alignment during the magnetic
storm recovery phase. Additionally, the multi-head
mechanism constructs multiple similarity matrices, and the
final path is derived by averaging these results, enhancing
robustness. By calculating DTW cost and the path between
the predicted and actual values of the model, we can
measure its predictive performance.
Assuming that the predicted sequence is P and the true
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sequence is P , DTW-Attention metrics is presented in
Equation (11).

S;
S :Zpi"’,w e{1,2,..T},j e{l,2,... P}

i=1 Tk

an

In Equation 11, 7 and P represent the lengths of the
reference time series T and the target time series P, i.e., the

number of time steps, respectively. S;; is the Euclidean

distance between step i of the reference sequence and step j

A

of the target sequence. S;; represents the normalized
similarity weight that indicates the relative importance of

step i in relation to step j in the path alignment. The
similarity matrix, S, along with the normalized matrix, § ,
ensures that the sum of each row equals 1. The computation
of the normalization matrix § converts the similarity matrix

into a probability distribution to avoid bias due to sequence
length differences.

The DTW cost is shown in Equation (12) and is used to
measure the alignment error of the predicted sequence P
with the true sequence P .

DTW (T.P)=) Sii (12)

(i,j)en

IV. EXPERIMENTS

A. Dataset and Preprocessing

The study utilizes geomagnetic storm datasets from the
OMNI database [18]. This database has been systematically
collecting data on various aspects of the space environment
near earth since 1963, including the solar wind and
geomagnetic field. Specifically, the features examined in
this study were measured between 00:00 on 14 January 2001
and 23:00 on 31 December 2016, resulting in a total of
139,944 entries in the full extracted dataset. The test set
includes data from the OMNI database for July and
December of each year, featuring geomagnetic storm cycle
characteristics and time frames. In contrast, the training set
consists of data from other months. The data is then divided
chronologically, and a custom function randomly selects a
certain percentage of training samples to create the
validation set. The dataset is split into training, validation,
and test sets for model training, testing, and evaluation. The
proposed model is programmed using Python and the
TensorFlow 2.18.0 machine learning library, and is trained
and tested on a 64-bit Windows 10 operating system.

The performance of geomagnetic storm predicted models
critically depends on the quality of data preprocessing [19].
Preprocessing includes loading and cleaning data,
generating features, converting timestamps, handling
outliers, and imputing missing values. We apply a
comprehensive set of preprocessing steps to ensure data
quality, establishing a reliable foundation for subsequent
model training.

The preprocessing is performed to customize it to the
requirements of the deep learning model. Specific steps
include:

1) Noise reduction and standardization: To maintain clean
data and reduce noise in the model input, we first remove
missing values. Thereafter, standardization converts features
into a distribution with mean 0 and variance 1. This ensures

consistent feature scale, prevents features with large

magnitude differences from influencing model training, and

accelerates convergence while enhancing predicted accuracy.

Equation (13) illustrates the normalization transformation

for each feature ;.

X~ U
O

X =
i

(13)

Where # represents the mean of the feature and ©

denotes the standard deviation. X, and X represent the

original and normalized eigenvalues, respectively.

2) Feature extraction and target variable: Feature
extraction and target variable identification are performed
on the data, with the target variables being time lagged to
facilitate prediction. Equation (14) illustrates the lag
equation for the target variable, where X = {x,,x,,....x,}
represents the feature dataset and ¥ ={»,,»,.....»,} denotes
the target variable. We use Y’ for time-series forecasting.

Y(:{yz’yz""yn} (14)

The OMNI dataset contains many features, but not all
significantly influence predicted outcomes. Therefore,
during data preprocessing, we select and extract relevant
features to minimize overfitting, streamline computational
complexity, and enhance model performance. Feature
engineering involves deriving input features and target
variables from raw data to address time-series problems.
Some feature data, such as historical data from various time
points, is used as input features in this paper.

Some of these features are the average field magnitude
|B|, the proton density, the IMF z-component Bz, the plasma
flow speed, and the geomagnetic Dst index. We extract
these features from the OMNI database. The Dst index[20-
21] typically indicates the strength of a geomagnetic storm;
a lower Dst index signifies a stronger storm. Therefore, we
focus on predicting the future Dst index. This process
reduces data dimension, alleviates the computational burden
during training, and decreases the risk of overfitting caused
by high-dimensional data. Additionally, new features are
generated from the original data, specifically the increments
of the target variable Dst. Incremental features help the
model capture trend variations in time-series data.

The dataset's year, day, hour, and other relevant details
are converted into a precise timestamp format for time-
series analysis and future queries. The input data were
structured as 3D tensors with X time steps. For each sample,
we use historical data from the previous time back points to
forecast the target variable for the subsequent time forward

points. Designate the input data as X={x,x,,...x, } , with T’

being the total number of samples. Each sample X,

represents a time intervals

X(:{x

sequence of preceding

The corresponding

i—time_back > Xi-time_back+12 > Xi1 }

data y, for the next time_forward step is provided in the

output ¥, = {yn Yierseees yi+tlme7/brwm'dfl} .

3) Storm date extraction and matching: External storm
date data was loaded and aligned with the time-series data to
identify storm events in the test set. The processed training
set, validation set, and test set are stored as HDF5 format
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files. By preprocessing the data, as previously mentioned,
the dataset only retains the features relevant to geomagnetic
storm prediction, reducing computation and increasing
model training efficiency. This also aids the model in
capturing the trending changes in the time-series data.

B. Model Trainning

To train the model efficiently, we structured the data to
facilitate effective learning of long-term dependencies in
time-series signals. The dataset enables forecasting at
multiple time horizons, including 1-hour, 3-hour, and 6-hour
targets, which enables performance evaluation across
multiple temporal scales. During model training, both the
input (backward) and output (forward) time windows were
set to 6 steps, allowing the model to capture sufficient
temporal context from past observations and generate multi-
step forecasts.

We trained the model for 100 epochs using the complete
training dataset. Each training batch contains 32 samples for
parameter updates and gradient computation. The
expressiveness and complexity of the model are determined
by the number of hidden units in the feed-forward layers,
which was set to 256. The embedding dimension was set to
64 to provide a balanced representation capacity without
overfitting. The AdamW optimizer was used for training,
with an initial learning rate of 0.0003. A weight decay of le-
4 was applied to prevent overfitting and enhance
generalization. To promote stable convergence in the later
stages of training, we employed a cosine annealing learning
rate scheduler that gradually reduces the learning rate
throughout the training process. The model’s architecture
includes multiple Transformer encoder layers, each
consisting of a multi-head self-attention mechanism and a
position-wise feed-forward network. We configured the
model with 3 encoder layers and set the number of attention

heads to 4, ensuring that each head has the same dimensions.

Dropout regularization with a rate of 0.1 was applied within
the Transformer encoders to further prevent overfitting. The
configuration of key parameters is summarized in Table 1.

TABLE I
MODEL PARAMETER SETTING

No. Parameter Value Description
| Input time steps 6 Historical sFeps used for
prediction
2 Output time steps 6 Forecasting horizon
Feed-forward Internal layer size in
3 - . 256
dimension Transformer encoder
4 Embedding 64 Feature representation size
dimension per time step
5 Number of attention 4 Parallel attention subspaces
heads
6 Encoder layers 3 Number of encoder layers
7 Initial learning rate 0.0003 With cosine annealing
scheduler
8 Batch size 32 Training samples per batch
9 Epochs 100 Total training iterations
10 Dropout rate 01 Applied inside Transformer

encoder

C. Comparison and Analysis of Experimental Results

i. Error Analysis

We conducted a series of tests to evaluate the
performance of the proposed model and compare it with
other models. Three evaluation metrics, namely Mean
Absolute Error (MAE), Root Mean Squared Error (RMSE),
and Mean Squared Error (MSE), were used to
comprehensively evaluate the predicted performance of each
model. Specifically, MAE assesses the average deviation;
MSE emphasizes larger errors due to the squaring operation;
and RMSE, as the square root of MSE, provides an
interpretative measure in the same unit as the predicted
variable, making it particularly suitable for assessing overall
predicted accuracy and the presence of significant errors. All
models were trained and tested on the same dataset.

MAE is the difference between the predicted value and
the actual value. The formula is presented in Equation (15).

(15)

1 < .
MAE—Eg\yi—yi

In this context, »; represents the actual value, J;

indicates the predicted value, and 7 denotes the sample
size.

RMSE represents the square root of the squared error
between the predicted value and the actual value, placing
greater emphasis on the impact of larger errors. The
calculation formula is shown in Equation (16). The smaller
the RMSE value, the closer the model's predicted results are
to the actual values, and the higher the model's predicted

accuracy.
RMSE= |- (3,5, (16)
i=1

MSE uses the square of the difference between the
predicted and actual values to determine how effectively a
model can predict. The squared error penalizes larger
predicted errors, giving them greater weight in the overall
error, so MSE is more sensitive to outliers. The smaller the
MSE value, the closer the model's predictions are to the
actual value. The formula is presented in Equation (17).

12 -
MSE =--2.(y,-3.)’ (17)

To verify the accuracy of the model predictions, we
compare the newly constructed DTW-Attention model with
the classic deep learning geomagnetic storm predicted
model. The models as mentioned above are detailed as
follows:

1) CNN: The CNN model has strong feature extraction
capabilities and is particularly suitable for processing time
series data with local dependencies. In this study, we used a
three-layer  one-dimensional  convolutional  structure
combined with residual connections, batch normalization,
and dropout mechanisms to effectively enhance the
robustness of the model and reduce the risk of overfitting.

2) LSTM: This study introduces LSTM network, a type of
RNN, as a comparison model. LSTM can effectively capture
long-term dependencies in time series through its gating
mechanism, making it particularly suitable for geomagnetic
disturbance data with time lag and dynamic non-linear
characteristics.
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3) Transformer: Transformer is originally used for natural
language processing tasks, and Self-Attention mechanism
has obvious advantages in modelling long-distance
dependencies and capturing global features. The purpose of
introducing the model is to evaluate whether it has
advantages over traditional RNN when processing
multivariate spatial geomagnetic data, especially in terms of
long predicted steps, such as t+6, where it can demonstrate
stronger generalization and stability.

4) Self-Attention: The model automatically identifies
historical moments in the input sequence that contribute

160 +
140 1
120 1

100 +

MSE

80

DRSO .

=

NANANNANNNNE

most to future predictions by introducing learnable temporal
attention weights, and integrates the information using
weights. The core advantage of the Attention model lies in
its focus extraction mechanism. It performs weighted
summation on the input sequence through a set of learnable
weights. This model can effectively highlight the most
critical parts of historical observations.

Next, we compare and analyze CNN, LSTM, Transformer,
Self-Attention, and the DTW-Attention model we
constructed based on three performance metrics: MSE,
RMSE, and MAE.
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DTW-+Attention

BR0G0

(b) Comparison of RMSE for different models at different time steps
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Fig.4. Comparison of errors among different models

As shown in Fig. 4(a), in the short-term prediction at t+1,
all models except CNN achieved low MSE values. In
particular, the DTW-Attention model had the lowest MSE,
indicating its higher accuracy in capturing early changes in
geomagnetic storm signals. This can be attributed to the
DTW module's capability to align critical time points and
the attention mechanism's capacity to emphasize salient
features. In contrast, the CNN model had the highest MSE,
indicating that it has significant limitations in processing
strongly time-dependent data and is unable to accurately
capture the early trends of geomagnetic storms. The
predicted results at the t+3 time steps indicate that the
LSTM and Transformer models perform stably, with their
MSE significantly better than that of the CNN and slightly
better than that of the Attention model. However, the
DTW-Attention model still maintains the lowest error,
indicating that it still has strong fitting ability for the
development trend of medium-term geomagnetic storms.
As the predicted time step deepens, the overall MSE values
of each model increase, and the difficulty of long-term
predicted significantly increases. At this point, the CNN
error increases significantly, and it is almost impossible to
provide effective prediction results. DTW-Attention still
maintains the lowest MSE at t+6, indicating that it has a
clear advantage in handling long-term, deformed time
series dependencies. The model uses DTW to align the
structure of key change points, effectively reducing
cumulative errors in long-term predictions. Combined with
the attention mechanism, it further enhances the model's
ability to perceive key time features. From the data in Fig.
4(b) and 4(c), it can be analyzed that Transformer and Self-
Attention models rely on attention mechanisms to
dynamically allocate the importance of temporal
information, and are more advantageous than traditional
LSTM in capturing sudden changes in geomagnetic storm
signals. Although CNN has a simple structure, it lacks a
time modelling mechanism and therefore does not have an
advantage in this task. The DTW-Attention model
combines the time alignment of DTW with the global

modelling capabilities of the Self-Attention mechanism,
significantly reducing short-term and long-term errors. It is
particularly suitable for processing signals such as
geomagnetic storms, which exhibit both temporal
deformation and sudden changes.

ii. Performance Evaluation

To evaluate the tracking capability of this model during
geomagnetic storms, we utilized multi-line time series plots
to illustrate the Dst values of both the observed (Truth) and
predicted (Pred) data. Fig. 5's horizontal axis indicates time,
while the vertical axis shows the Dst index. The observed
Dst values, labeled as "Truth," are depicted as a solid dark
green line with circular markers, clearly illustrating the
actual progression of the geomagnetic storm. In contrast,
the predicted Dst values, labeled as "Pred," are represented
by a blue dashed line with triangular markers.

Fig. 5 shows the predicted results of the Dst index versus
the observed value for the forecast time spans of t+1h hour,
t+3h hour, and t+5h hour from 17 to 19 April 2001,
respectively. Figure 5(a) displays the short-term predictions
at t+1h hour. These have a high degree of fitting in terms of
how well the estimates match the observed values,
especially the Dst index's smooth change from 5:00 on the
17th to 23:00 on the 17th. Although there was some
divergence and a sharp fall in Dst index between 23:00 on
the 17th and 6:00 on the 18th, the general trend was still
discernible. In the Fig. 5(b) t+3h hour forecast display, the
forecast deviation from the observed value increases
compared to the t+1h hour, especially in the phase where
Dst index falls sharply; the model's ability to capture the
trend is weakened. It indicates the observational uncertainty
of the medium-term forecast increases. The issue of
forecast delay is illustrated by the rapid changes in Dst
index and the significant model forecast bias depicted in
Fig. 5(c) t+5h hour forecasts, primarily occurring from 5
a.m. to 11 a.m. on the 18th. We may disregard the last six
sub-figures, as they solely provide error comparisons for
specific time steps and date ranges.
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Fig.5. The predicted results of the Dst index versus the actual value for the forecast time steps
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Overall, the figure allows us to visualize the range of
differences between model predictions and actual
geomagnetic storm intensities, as well as the times when
storms are strongest. The data results indicate that the
DTW-Attention model's predictions, exhibits smaller errors
compared to the observed values, particularly when the
predicted lengths are 1-hour and 3-hour. The model's
ability to generalize across various geomagnetic storm
events is evidenced by its superior predicted accuracy,
which is significantly superior to other models. The
visualization results also indicate that as the forecasting
time step increases, the overall error level gradually rises.
However, although the error of the new model also
increases gradually for long-term predictions, it remains
generally smaller than that of the only DTW alignment
method. The result suggests that the DTW-Attention model
can effectively capture long-term  dependencies,
demonstrating Dbetter stability and accuracy in tasks
requiring future predictions. This is because the
Transformer encoder captures both short-term and long-
term dependencies through a multi-attention mechanism;
while the DTW-Attention distance metric aligns the time
series in the embedding space, thus reducing the noise
effect. The model consistently outperforms the DTW
alignment method across all time steps, demonstrating
strong generalization ability during various geomagnetic
storm phases.

D.Trend Fitting and Bias Dynamics Analysis

During the geomagnetic storm events of April 17-19,
2001 (Fig. 5(a)-5(c)), the DTW-Attention model
demonstrates accurate tracking of Dst index evolution in its
t+1h forecasts. Particularly noteworthy was its performance
during two critical phases: the gradual decrease from 05:00
to 23:00 UTC on April 17 and the sudden Dst depression
on April 18. Both predicted and observed values exhibited
highly consistent variation rates, as evidenced by their
parallel slope characteristics. Predicted errors primarily
occurred during the fluctuation period commencing in the
early hours of April 18. Nevertheless, comparative analysis
revealed the model's overall forecasting trajectory
maintained demonstrably superior accuracy relative to
conventional approaches. The t+1h predicted capability
proved especially effective in capturing short-term
variations, with optimal performance observed during
periods of weak geomagnetic disturbances (|Dst| < 30 nT).

At the t+3h and t+5h predicted steps, the model exhibits
a noticeable lag, especially during periods of rapid Dst
variation, such as near 06:00 on April 18. The model's
responsiveness decreases at these points, likely due to
residual accumulation from long-range dependency
modeling. Nevertheless, even at t+5h, the DTW-Attention
model effectively captures the overall trend. This is
particularly evident during the recovery phase on April 19,
when the predicted values rebound at a rate similar to the
actual Dst values. Although medium-term predictions show
some fluctuations, they still reflect the overall pattern and
are suitable for early warning purposes.

In the August 2004 and 2006 events (Fig. 5(d)-5(f) and
5(g)-5(i)), the DTW-Attention model accurately identifies
the inflection points of the Dst index during both the

decline and recovery phases. However, the deviation from
peak values increases with longer predicted horizons. For
instance, in the t+5h forecast of the 2006 event, the
predicted nadir is delayed. This indicates a response lag
during phases of strong perturbations and rapid Dst decline.
These findings suggest that integrating a local fitting sub-
network or a multi-scale mechanism could enhance the
model's capacity to handle high-frequency perturbations in
future studies. In long-term forecasts, the model
demonstrates the moderate ability to track overall trends.
However, the presence of larger errors and delayed
responses highlights the need to enhance the model's long-
term memory and nonlinear modeling capabilities.

Observational uncertainties in geomagnetic events
directly affect predicted confidence. During peak
geomagnetic disturbances, eclevated observational errors
pose dual challenges for model training and forecasting.
Nevertheless, these conditions highlight the model's
robustness in handling highly noisy input data. The
predicted system keeps errors within acceptable thresholds
even under extreme conditions.

E. Theoretical Support and Comparative Analysis

The proposed model integrates the temporal alignment
capabilities of DTW with the global sequence modeling
power of the Self-Attention mechanism. This integration is
theoretically ~ supported by the complementary
characteristics of the two components.

DTW is widely used to measure the similarity between
temporal sequences that may vary in speed or phase.
However, classical DTW operates directly on raw signal
values, which makes it vulnerable to noise, scale variations,
and phase distortion. Moreover, it lacks flexibility in
handling long-range dependencies and often results in sub-
optimal alignments due to the greedy nature of its path
search. In contrast, embedding the sequences into a
semantic space via a Transformer encoder allows the DTW
operation to function on high-level representations. These
representations are more robust to local fluctuations and
capable of capturing the underlying structure of
geomagnetic storm evolution. Therefore, the alignment
performed in the learned feature space alleviates the
limitations of traditional DTW, especially under non-
stationary conditions. On the other hand, while Self-
Attention excels in modeling long-range dependencies, it
lacks temporal alignment awareness. Its attention matrix is
symmetric and global by nature, which may lead to over-
smoothing or dilution of critical transitions in the sequence.
By coupling DTW alignment with attention mechanisms,
the proposed model incorporates inductive bias for
temporal sequencing, enabling more precise matching of
rapid changes and storm peaks. Additionally, the attention
weights act as soft constraints on DTW paths, effectively
smoothing path fluctuations and avoiding local alignment
traps.

From a complexity perspective, although the
introduction of DTW increases the computational cost to
O(n?), the model benefits from the parallelization of
Transformer encoders and the sparsity of learned attention
matrices. Recent long-sequence forecasting models such as
Informer [22], Autoformer [23], and FEDformer [24]
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propose alternative modeling strategies. Informer adopts
ProbSparse Attention to reduce computational cost by
selecting top-k queries, while Autoformer introduces trend-
seasonal decomposition modules, and FEDformer enhances
temporal modeling through frequency-domain filtering.
These models are particularly effective for tasks with stable
periodic structures and stationary signals.

In contrast, the DTW-Attention model focuses on
alignment-aware modeling in the time domain, which is
better suited to non-periodic, abrupt variations often
observed in geomagnetic storm sequences. Rather than
assuming decomposability or frequency regularity, our
model incorporates explicit alignment mechanisms via
DTW and flexible dependency capture through Self-
Attention. This enables more robust learning under
temporal deformation and phase shifts.

While these state-of-the-art (SOTA) models represent
powerful alternatives for long-term sequence forecasting,
their performance in irregular geomagnetic storm
prediction remains to be fully evaluated. Future work will
involve extending our experiments to include these models
for a more comprehensive empirical comparison.

V.CONCLUSION

This paper presents a geomagnetic storm predicted
model based on the DTW-Attention mechanism, which is
compared with the traditional DTW alignment method in
processing geomagnetic storm time-series data. The
experimental results indicate that the DTW-Attention
model outperforms the only DTW alignment method across
several evaluation metrics, particularly showing significant
advantages in capturing long-term dependencies and
complex temporal data. The DTW-Attention model
captures long-range dependencies by assigning time-
varying attention weights. As a result, predicted accuracy
and stability improve, especially for long-term forecasts.
Visual analysis underscores the DTW-Attention model's
effectiveness in capturing both short-term trends and long-
term dynamics in geomagnetic storm sequences. Based on a
comparison between the predicted results and actual
observation data, the model may be able to improve the
accuracy of short-term predictions while maintaining the
strong robustness of long-term predictions.

While the DTW-Attention model has demonstrated
strong performance in geomagnetic storm prediction, there
is still room for improvement. Future studies can attempt
more complex variants of the mechanism, such as multi-
scale Self-Attention mechanisms and LSTM, to enhance
the model's predicted ability over a longer period.
Additionally, combining techniques like convolutional
neural networks or graph neural networks may further
improve the model's feature extraction and spatial-temporal
modeling capabilities. Future research may further explore
online learning mechanisms to enable real-time
geomagnetic storm forecasting for practical applications.
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