
 

  

Abstract—Diabetes is a persistent metabolic condition that 

impacts millions of lives globally. To detect diabetes at a base 

level with more accuracy, feature selection approaches are 

important. The feature selection methods elevate the 

performance of diabetes prediction models by identifying the 

most important and informative features from a large number 

of potential features. The present study proposes a new method 

for combining the Boruta algorithm with a genetic algorithm to 

select features for predicting diabetes. The Boruta algorithm, a 

stable feature selection technique, uses random forest classifier 

to evaluate feature importance and filter out irrelevant features. 

In contrast, genetic algorithms refine the selected feature subset 

by using natural selection and genetic crossover mechanisms to 

optimize feature selection. To measure the performance of the 

suggested method, the PIMA Indians Diabetes Dataset is used 

and implemented, which is a recognized standard dataset for 

diabetes prediction. The Boruta algorithm was initially used to 

filter out important features, followed by the genetic algorithm 

to reduce and optimize the feature set. The efficacy of the model 

was assessed using multiple measures, including accuracy, 

precision, recall, and F1 score, on a distinct test set. Experiments 

demonstrate that the proposed hybrid Boruta-GA algorithm 

performed better than traditional feature selection methods in 

achieving high accuracy for diabetes prediction. The selected 

best subset of features included significant features that 

significantly contributed to determining the performance of 

predictions. The proposed model showed an accuracy of 99.13% 

for diabetes prediction. 

 
Index Terms—Diabetes, Algorithms-Boruta and Genetic, 

SMOTE, NB, DT, KNN, PIMA, etc. 

I. INTRODUCTION 

HE rapid socioeconomic growth has improved dietary 

structure and brought a positive impact on health. 

However, these lifestyle changes, which reduced physical 

activities and consumption of processed food, have led to the 

prevalence of chronic health challenges, and diabetes is one 

of the most common among them. Hyperglycemia, which 

includes rising blood glucose levels, arises from inadequate 

insulin secretion by the pancreas or the body's impaired 

utilization of insulin, ultimately resulting in diabetes. This 

condition can lead to serious problems over time, such as 

renal failure, cardiovascular disease, stroke, visual 

impairment, and amputation of limbs. Diabetes is often 

referred to as the "second killer" among modern diseases, 

with only cancer exceeding it in morbidity rates [1]. Diabetes  

was ranked among the top 10 leading causes of death in 2019 
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“Global Leading Cause of Death Survey” [2]. The 

“International Diabetes Federation” estimated that, based on 

projections, the number of adults with diabetes would hit 700 

million by 2045 [3]. The annual expenditure on healthcare 

attributable to diabetes is around $760 billion. Due to the 

significant worldwide impact of this disease, a burgeoning 

necessity exists to design innovative techniques for early 

diagnosis and efficient management. 

In this context, the advancement of machine learning 

(ML), particularly in disease diagnosis and medical image 

analysis, has revolutionized the extraction of valuable 

insights from medical data for chronic disease prediction. ML 

techniques enable the early identification of both diabetic and 

non-diabetic individuals, allowing healthcare professionals to 

prioritize high-risk patients during diagnosis while reducing 

the need for extensive human intervention. This prediction 

technique enables the implementation of early preventative 

treatments, thereby decreasing diabetes frequency, improving 

the standard of living, and promoting overall healthy life 

expectancy. It also relieves the economic and healthcare cost 

load for treating diabetes. These advantages are the strength 

of motivation behind our research in the area.  

In ML, ensemble learning involves combining multiple 

individual classifiers in various ways to enhance 

classification accuracy and robustness [4]. The three primary 

types are Bagging, Boosting, and Stacking. Bagging 

randomly selects subsets from the training set to create sub-

training sets for each base model [5]. It then aggregates 

predictions from all base models to generate the final 

predictions. Boosting is defined as the repeated process of 

training base models, such that each subsequent model 

assigns higher weights to instances previously misclassified 

by previous models, thereby giving more importance to these 

instances. Stacking attempts to correct errors by iteratively 

aggregating the output of all the base models using a 

weighted linear technique [6]. Stacking, on the other hand, 

aggregates several base models and a meta-model. 

Predictions from the base models are used as input to the 

meta-model, which is then trained to produce the final 

classification output. 

Ensemble classifiers are better than single classifiers in 

classification. Developing a classification model that 

achieves high robustness and accuracy while maintaining 

efficient time and space complexity remains a challenging 

goal. However, in practical classification scenarios, the 

performance of a classifier is significantly influenced by 

dataset errors such as outliers, extremes, and noisy data, 

impacting classification outcomes. Single classifiers are 

particularly vulnerable to degraded performance when 

encountering noisy data, leading to a decline in accuracy. In 

contrast, ensemble classifiers assign varying weights based 
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on voting, enabling them to reclassify misidentified data and 

exhibit superior adaptability to noisy data. Consequently, this 

study adopted ensemble classifiers due to their ability to 

address these challenges. The classification of diabetic 

patients differs from other datasets due to diabetes being a 

prevalent chronic disease. Medical datasets, too, differ from 

others in that disease diagnosis is a complicated, multi-

faceted process involving economic, physical, and 

psychological factors, particularly in chronic diseases. 

Misdiagnosing a disease could have fatal repercussions for 

the patient. Hence, in disease diagnosis, particularly for 

conditions like diabetes, selecting a classifier holds greater 

importance, prioritizing accuracy as a crucial aspect. 

A. Feature Selection 

Feature selection is a significant aspect of data analysis 

and ML.  It aims to extract the most pertinent and instructive 

features from an extensive dataset. It enhances ML model 

performance by diminishing dimensionality, alleviating 

overfitting risks, accelerating training, and leveraging 

optimization techniques. 

Feature selection methods can be divided into three major 

types: Filter, Wrapper, and Embedded approaches. The Filter 

methods assess the importance of individual features using 

statistical metrics, such as variance thresholding, correlation 

analysis, and the Chi-squared test [7]. The Wrapper method 

evaluates different feature subsets by training and testing ML 

models to determine the combination that yields the best 

performance [8]. It includes “recursive feature elimination 

(RFE), forward selection, and backward elimination”. 

Embedded methods incorporate feature selection firmly into 

the model training process, including techniques such as 

“sequential feature selection, domain knowledge, tree-based 

models, dimensionality reduction, and L1 regularization 

(Lasso)” [9]. In addition to these traditional approaches, 

metaheuristic algorithms are widely used for feature 

selection, as they efficiently explore the search space to 

identify optimal or near-optimal feature subsets [10]. 

Examples of such techniques include “simulated annealing, 

genetic algorithms, and particle swarm optimization”, which 

evaluate different feature combinations based on an objective 

function or fitness criterion. 

Furthermore, hybrid approaches integrate multiple feature 

selection techniques to leverage their strengths while 

mitigating their limitations. For instance, a filter method may 

be used initially to select relevant features, followed by a 

wrapper method for fine-tuning the final subset. This synergy 

enhances selection efficiency and improves model 

performance. 

B. Objective  

To diagnose diabetes at an early stage through the 

examination of different contributing factors is the focus of 

this study. To determine the most relevant features, it has 

utilized a combination of the Boruta algorithm and a genetic 

algorithm for feature selection. This hybrid strategy has been 

demonstrated to improve the accuracy of diabetes prediction 

models. To correct any class imbalance in the selected data, 

the “Synthetic Minority Over-sampling Technique 

(SMOTE)” is implemented, which is well-suited to enhance 

model performance on imbalanced data. The optimized 

feature set is utilized to train a range of ML classifiers. 

The present study is outlined in the following order: 

Section II outlines a summary of the prior works on diabetes 

prediction. Section III gives a presentation of the proposed 

model and methodology, including the Boruta algorithm, 

genetic algorithm, SMOTE, and the classification methods 

employed. Section IV offers a comprehensive description of 

the experiment, encompassing a description of the dataset and 

its features. It outlines the stepwise procedures followed and 

provides the parameters established for the experimental 

setup. The results obtained through experimentation are 

presented in the next section and compared with other 

models. Consequently, Section VI presents the outcomes and 

future concerns of this study. 

 

II. PREVIOUS WORK 

Diabetes is a serious and chronic disease that affects the 

human body in many different ways. Several research works 

have been done to identify and predict diabetes with ML 

techniques to extract features.  

Zaiheng Zhang et al. (2024) introduced the AHDHS-

Stacking ensemble learning system for the diagnosis and 

classification of diabetes mellitus. It employs the stacking 

method and Harmony Search (HS) algorithm, which 

combines two essential steps: feature selection and base-

learner ensemble optimization. The trial used the “Pima 

Indians Diabetes (PID) and the Chinese and Western 

Medicine Diabetes (CWMD)” datasets. The study achieved 

outstanding performance measures on the PID dataset, 

including 93.25% F-measure, 84.79% MCC (Matthews 

Correlation Coefficient), 93.09% accuracy, 93.22 % 

precision, and 91.60 % recall [11]. 

Hongfang Zhou et al. (2023) concentrated on Boruta 

feature selection to retrieve significant features from datasets. 

The researchers utilized an ensemble learning strategy for 

classification and the K-Means++ technique for unsupervised 

clustering. The study yielded an astounding 98% model 

accuracy rate using the PID dataset [12]. Patil et al. [13] 

introduced “NSGA-II-Stacking”, a stacking-based 

evolutionary ensemble learning framework for type-2 

diabetes mellitus prediction. Developed in MATLAB and 

applied to the PID dataset (with missing values imputed using 

median imputation), their approach employed KNN as the 

meta classifier and a multi-objective optimization algorithm 

as the base learner, with an F-measure of 88.5%, a ROC 

value of 85.9, sensitivity of 96.1%, specificity of 79.9%, and 

overall accuracy of 83.8%.  Su et al.. used the PID dataset, 

XGBoost, LightGBM, Neural Network, and LR algorithms 

and found the result as federated learning models. The study 

illustrates that it could be utilized better while selecting data 

of the patients from other organisations, which in turn may 

produce a more accurate and consistent risk prediction for 

Diabetes Mellitus [14].  In addition, Pooja Yadav et al. [15] 

developed a grid search-based improved grey wolf method. 

Boruta for feature selection and the SMOTE method for 

dataset balancing in the study. It evaluated the prediction 

model's performance with a focus on the Stacking Classifier, 

and the results showed that the Proposed Model had the 

highest F1-score of 98.84% on the PID dataset. However, 

Ayşe Doğru et al. (2023) [16] presented a novel super 

ensemble learning model to promote diabetes mellitus early 

diagnosis. This model combines predictions from different 
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ML methods by cross-validation. It consists of four base 

learners (LR, DT, RF, and gradient boosting) plus a meta-

learner, which shows better accuracy in identifying diabetes 

mellitus. Out of five methods, chi-square was found to be the 

best feature selection strategy; Grid Search was then used to 

adjust the hyperparameters. Outstanding accuracy rates of 

99.6% for the Sylhet Diabetes dataset, 92% for the PID 

dataset, and 98% for the “diabetes 130-US hospitals” dataset 

were attained by the super learner. Hairani and Dadang 

Priyanto (2023) have developed the SMOTE-ENN 

methodology and used the PID dataset to predict diabetes and 

improve the performance of RF and Support Vector Machine 

(SVM) classification algorithms. By using class balancing 

and removing noisy data close to class boundaries to reduce 

dataset imbalance, the RF algorithm with SMOTE-ENN 

surpassed SVM with an accuracy of 95.8% [17]. Moreover, 

Dipesh Kumar et al. proposed a fog-based diabetes prediction 

model utilizing patient data sensed from remote sensors [18]. 

A hybrid technique known as ANFIS-PSO-WOA was 

utilized at the cloud layer for the detection of diabetes, and 

real-time data processing at the device level was facilitated 

through fog computing. Testing with UCI repository data 

showed that the proposed method resulted in a very 

satisfactory prediction accuracy of 92%. 

In 2023, Chetan Nimba Aher and Ajay Kumar Jena 

proposed the “Improved Invasive Weed Bird Swarm 

Optimisation Algorithm (IWBSOA)” for predicting diabetes. 

Their approach combines the “Bird Swarm Algorithm 

(BSA)” with an enhanced “Invasive Weed Optimisation 

(IWO)” using both Recurrent Neural Network (RNN) and 

SVM classifiers. The hybrid deep learning model achieved 

remarkable performance metrics—96.19% accuracy, 97.11% 

sensitivity, 94.39% specificity, and an MSE of 0.1887 

[19].Employing a dataset from the Gene Expression Omnibus 

database, Rajagopal et al. created a new hybrid model that 

combines an “artificial neural network (ANN) “and a 

“genetic algorithm” for the prediction of diabetes. This 

method efficiently analyzes the effect of every variable by 

prioritizing the most significant features, reaching an 80% 

prediction rate on the PID dataset [20]. Shamreen Ahamed 

and Sumeet Arya (2022) conducted a series of experiments 

using seven different ML techniques on the PID diabetes 

dataset. Out of these, the LGBM algorithm performed the 

best with a 95.2% accuracy [21]. Selim Buyrukoglu and 

Ayhan Akbas integrated correlation heatmaps with sequential 

forward selection (SFS) in 2022 to find the best subsets of 

features. They later used SVM, RF, and ANN classifiers 

using the selected features, with ANN-based hybrid feature 

selection achieving a whopping 99.1% accuracy on the Sylhet 

Diabetes dataset [22]. Also in 2022, Altyeb Altaher Taha and 

Sharaf Jameel Malebary [23] introduced a novel ensemble 

learning method for type-2 diabetes prediction. Their 

approach, which integrated fuzzy clustering with logistic 

regression (LR) in a hybrid meta-classifier, attained 

accuracies of 99.00% for the PID dataset and 95.20% for the 

SDD dataset. Reza Ghabousian et al. [24] suggested a new 

method that combined fuzzy inference systems and particle 

swarm optimisation metaheuristics. By integrating the 

particle swarm algorithm in binary form using fuzzy systems, 

their method achieved an impressive classification accuracy 

of 95.47%. Gizen Mutlu and Çigdem Inan Acıcreated a 

parallel-hybrid model based on SVM, “Sequential Minimal 

Optimisation (SMO), and Stochastic Gradient Descent 

(SGD)” to predict diabetes with an overall accuracy rate of 

87% [25]. Michael Onyema Edeh et al. compared several 

algorithms on various datasets. They observed that the RF 

algorithm had the best accuracy (97.6%) on the Frankfurt 

Hospital database in Germany, whereas the SVM algorithm 

attained 83.1% accuracy on the PID dataset [26]. Xiaohua Li, 

Jusheng Zhang, and Fatemeh Safara (2021) suggested an 

integrated strategy that combined feature selection, 

classification, and preprocessing employing K-means 

clustering with many feature selection algorithms to attain 

91.65% accuracy on the PID dataset [27]. In another 2021 

study, Satish Kumar Kalagotla, Suryakanth V. Gangashetty, 

and Kanuri Giridhar implemented a three-phase strategy. 

They started with correlation-based feature selection, 

followed by AdaBoost for classification, and then designed a 

bespoke stacking approach using MLP, SVM, and LR 

specifically for the chosen features. This method predicted 

diabetes with an impressive 97.4% accuracy [28]. N. 

Kanimozhi and G. Singaravel suggested a stacking-based 

integrated “kernel extreme learning machine (KELM)” model 

to identify high-risk individuals for type II diabetes. Using 

“Artificial Fish Swarm Optimization-Hybrid Particle Swarm 

Optimization” (HAFPSO) to minimize kernel complexity and 

maximize accuracy, their model attained a value of 98.5% 

[29]. M G Dinesh and D. Prabha [30] used kernel principal 

component analysis for feature reduction along with a genetic 

algorithm for feature selection. Likewise, C. Mallika and S. 

Selvamuthukumaran [31] proposed an effective diabetes 

diagnosis technique that combined SVM classification with 

optimization using the “Crow Search Algorithm (CSA) and 

Binary Grey Wolf Optimizer (BGWO)”, evaluating their 

method on the PID dataset. Shirina Samreen developed an 

early diabetes diagnosis technique based on a machine 

learning pipeline. The researcher used an ANOVA filter, 

“Crow Search Optimisation, and Singular Value 

Decomposition” as feature selection methods, followed by 

stacking ensemble of different classifiers (AdaBoost, 

GradientBoost, LR, K-NN, DT, SVM, RF, and Naive Bayes), 

which yielded high accuracy of 98.4% with the minimal 

feature set [32]. Saloni et al. proposed an ensemble soft 

voting classifier for binary classification by integrating RF, 

LR, and NB. Their experimental comparison—also with 

other ensemble methods and standalone classifiers like 

AdaBoost, SVM, and CatBoost—resulted in an accuracy of 

79.04%, a precision of 73.48%, a recall of 71.45%, and an F1 

score of 80.6 on the PID dataset [33]. Rajendra et al. 

compared linear regression and ensemble learning 

approaches on the PID dataset and reported that LR 

performed exceptionally well in building predictive models. 

Their work highlighted the significant contributions of data 

pretreatment, feature selection, and integration methods in 

improving model accuracy [34]. In a similar investigation, A. 

Singh, A. Dhillon, and N. Kumar integrated different ML 

methodologies (“XGBoost, RF, SVM, neural networks, and 

DT”) with the eDiaPredic ensemble model to predict 

diabetes. Tested on various measures—such as sensitivity, 

accuracy, precision, and the Gini Index—their method was 

found to have a 95% accuracy level on the PID dataset [35]. 

Islam et al. presented two novel feature selection techniques 
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using wavelet decomposition and the fractional derivative for 

diabetes prediction. They preprocessed “oral glucose 

tolerance test (OGTT)” data by imputing missing values with 

the arithmetic mean and then used classifiers like “SVM, NB, 

RF, AdaBoost, and Bagging”. From the San Antonio Heart 

Study data, their system reported 95.94% accuracy[36]. 

Rajendar et al. [37] used different ML methods, such as “DT, 

LR, RF, and SVM,” for the PID dataset to predict diabetes, 

with the highest accuracy being obtained by SVM for 

predicting diabetes risk. Likewise, Tripathi and Kumar [38] 

compared four ML models “(LDA, KNN, SVM, and RF”) on 

the UCI-sourced PID dataset for the prediction of early-stage 

diabetes, and the best performance was reported by RF with 

an accuracy of 87.66%. 

In general, these studies suggest that although much has 

been achieved, still more research needs to be conducted to 

enhance the accuracy of diabetes prediction. Building a 

strong classifier—or collection of classifiers—that reduces 

error rates is still important for being able to distinguish 

reliably between patients with and without diabetes. 

III. PROPOSED METHOD 

This study suggests a diabetes predictive model 

incorporating feature selection procedures based on Boruta 

and Genetic algorithms, with performance improvement by 

ensemble learning procedures based on stacking (see Fig. 1). 

Missing values in the dataset are initially handled by 

replacing them with the mean. Subsequently, the feature 

selection procedure, based on both Boruta and Genetic 

algorithms, removes the features that are extraneous and 

determines the most important ones for the diagnosis of 

diabetes. The model uses a stacking ensemble in which 

“Naive Bayes (NB) and Decision Tree (DT) are the base 

models, and K-Nearest Neighbors (KNN)” is used as the 

meta-model. In this procedure, the original data is 

preprocessed first and then passed through the feature 

selection algorithms to identify the most appropriate features, 

which are subsequently normalized. These normalized 

features are then passed into the stacking classifiers for final 

classification, with the meta-model combining the predictions 

of the base models to decide if a patient has diabetes. Below 

is an overview of the proposed method’s algorithm: 

Step 1: Load the PID dataset and replace missing values with 

the mean. 

Step 2. Rank the dataset features based on the support 

function as a selector for the Boruta algorithm. 

Step 3: After that, from the selected features, determine a 

suitable subset via a Genetic algorithm using a fitness 

function. 

Step 4: In the proposed method, after feature selection,  

features were normalized, and the SMOTE technique was 

applied to eliminate any types of imbalances. 

Step 5: In classification stacking ensemble learning, at the 0 

level, DT and NB were employed, and KNN at level 1 or as a 

meta classifier was employed.  

Step 6: Performance evaluation was executed utilizing 

multiple metrics, including accuracy, precision, recall, ROC 

curve, Kappa value, RSE, RRSE, MAE, RMSE, MCC, and 

MSTSS to evaluate both predictive quality and error rates. 

A. Background 

 ML, a swiftly evolving technological domain, has become 

one of the most effective approaches for tackling intricate and 

multifarious issues. The implementation of ML techniques in 

healthcare is accelerating due to the automatic pattern 

identification procedures associated with this field. This 

research utilized various ML techniques for the proposed 

diabetes prediction model. This section of the study briefly 

introduces how each technique works. 

 

 
 

Fig. 1. Methodology for the Proposed Model 

 

a.   Boruta Algorithm 

Boruta algorithm is a feature selection technique that is 

used for discovering relevant features in noisy or complex 

structured data sets. It operates in a manner that compares the 

feature importance of each feature to that of shadow features, 

which are generated randomly. Therefore, it can identify the 

features that are statistically significant for predicting the 

target variable. The working steps are as follows: 

1. The model first calculates the feature importance 

scores with a Random Forest (RF) classifier as a baseline 

for comparison. 

2. Then, it creates more random “shadow” features by 

permuting the original features, which act as a baseline for 

assessing the importance of the real features. 

3. Each original feature is evaluated by comparing its 

importance to that of its shadow features. If it scores 

higher than its shadow counterparts based on a set 

significance threshold, it is deemed important and kept. 
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4. The process is then repeated iteratively with the 

algorithm continually evaluating feature importance and 

removing those that are not statistically significant until 

only the most significant features are left. 

5. Lastly, the algorithm returns the subset of features 

that are deemed statistically significant for predicting the 

target variable. 

By selecting the most significant features first, Boruta 

offers an automated and reliable feature selection technique 

that maximizes both interpretability and ML model 

performance. It determines the most important features of the 

dataset for the target variable by combining support and 

ranking metrics. This study used only the support function. 

 

b.  Genetic Algorithm 

Genetic Algorithm (GA) is a metaheuristic approach for 

searching, based on Darwinian evolution principles, i.e., 

natural selection [39]. The algorithm picks the fitness 

individuals for reproduction in the next generation, 

essentially mimicking the process of natural selection. The 

following outlines how GA operates: 

1. First, a random population is generated. 

2. The algorithm produces a sequence of new populations. 

The subsequent population uses the past population to 

produce. To create the new population, the following 

actions should be taken: 

a. The algorithm calculates the fitness score. 

b. The algorithm identifies individuals based on their 

fitness score to be called parents. 

c. The least fit members of the present population are 

chosen as elites and transferred to the succeeding 

population. 

d. Offspring are generated by the algorithm from their 

parents. Two methods are used to produce offspring: 

applying random modifications to a single parent 

(known as a mutation) or combining the vector 

components of two parents (known as crossover). To 

form the succeeding generation, the algorithm replaces 

the current individuals with their offspring. 

3. The algorithm terminates when either the time limit or 

the fitness limit, such as the specified number of 

generations, is reached. 

 

c.  SMOTE 

It addresses the issue of class imbalance in ML datasets. 

The imbalanced data sets can create biased models with poor 

performance over minority classes. Samples between 

instances already exist to generate synthetic samples for the 

minority class to counteract this issue [40]. Specifically, the 

present method determines the closest neighbors of instances 

randomly chosen from the minority class. Then, it generates 

synthetic samples by creating new instances along the line 

segments joining the selected instance with its nearest 

neighbors [41]. In this way, this method for ML contributes 

to balancing the distribution across classes by effectively 

increasing the representation of the minority class in the 

dataset. Through the use of more diverse examples, this 

approach enables classifiers to learn better and achieve higher 

accuracy for both majority and minority classes [42]. 

Consequently, SMOTE is effective in addressing class 

imbalance while retaining model performance. It is crucial to 

carefully examine the results and be aware of any potential 

downsides, such as the introduction of noise into the dataset. 

 

d.  DT  

DT is a simple, intuitive algorithm implemented for 

“classification as well as regression” problems. The 

algorithm recursively divides the dataset into subsets based 

on the features to best distinguish among the data that fall 

into disparate groups or those that predict values of a 

different kind [43]. In each decision tree node, a feature is 

represented by each node, and the branches present the 

potential decision or outcome against that feature. This 

division process repeats until a certain depth or termination 

criterion is met. Due to its linear structure, decision trees are 

simple to comprehend and visualizable, successfully 

incorporating both numerical and categorical input. 

 

e.   RF 

RF is an ensemble learning algorithm that creates many 

decision trees using randomly selected subsets of the training 

data and attributes. For classification, the prediction is 

achieved using a majority vote across the individual trees. 

The total tree production yields the final prediction.  RF has 

become renowned for its resilience to overfitting, robustness, 

and capacity to manage huge datasets. 

 

f. NB 

NB is a probabilistic classification technique based on the 

Bayes theorem and the feature autonomy assumption.  It 

assumes that a feature's presence in a class is irrelevant to 

other features; it computes the possibility of a data point 

corresponding to a specific class based on its features. NB 

can be exceptionally efficient in many real-world 

circumstances, despite its “naïve” assumption of feature 

independence [44]. It is especially helpful for text 

classification and spam filtering. 

 

g. KNN 

KNN is a particularly simple and easy-to-understand 

technique that is used for regression as well as classification. 

It determines a test data point's closest neighbours from the 

training dataset that is based on a selected distance metric 

(such as Euclidean distance) in the feature space [45]. This 

process operates on the proximity principle. In the KNN 

algorithm, the test point is evaluated based on the mean or 

majority vote of the labels from the k nearest neighbors, 

where k is a user-defined value. The accuracy of a KNN 

model depends on the selection of a proper distance function 

and the optimal selection of k. 

 

h. Ensemble learning  

In the stacking ensemble learning technique, a single meta-

classifier merges multiple classification models. It uses many 

base models and aggregates their results to train a meta-

model that produces the final result through continuous 

training. The base and meta-models for stacking in this study 

are NB, DT, and KNN, in that order. The steps for the 

stacking method are shown in Algorithm 1 below. 

Input: Selected features SF={(xi,yi)}n
i=1 , Base Model 

BM1,BM2,BM3…,BMn  Meta Model  MM 

Output: Parameter evaluation of the classifiers after 
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stacking 

Steps: 

1. Split the selected features SF into training and testing 

data  

          SFtrain={(xi,yi)} j i  =1,  SFtest={(xi,yi)}k
i =1   

Where x is the feature class attribute and y is the output 

class attribute 

2. Use SFtrain data to train Base Model BM1, BM2, 

BM3…BMn 

3. Now, construct a new train dataset to train the meta-

model. 

4. SFtest is sequentially fed into the trained base model, and 

a new test dataset is generated. 

5. Output the classification results of the stacking model 

using a new test dataset by feeding it into a trained 

meta-model.   

IV.       EXPERIMENT 

This section of the paper provides information regarding 

the material and methods followed by the study. 

A.    Datasets    

This study used the PIMA dataset related to Diabetes. The 

dataset of type 2 diabetes comprises 768 records and nine 

important variables [46].  

B.   Pre-processing 

The dataset underwent a comprehensive preprocessing 

phase to ensure data integrity and suitability for analysis. One 

crucial step involved handling missing values, which were 

replaced with their respective mean values using the 

following (1) [47]. The goal of this procedure was to 

minimise the effect of missing data on further evaluations 

without sacrificing the dataset’s structural integrity. The 

dataset’s statistical features were preserved by imputing 

missing values using the computed means, enabling a more 

thorough and reliable analysis. This preprocessing stage 

ensured the correctness and dependability of the outcomes 

from the following analytical techniques by enabling the 

modeling and analysis processes to be carried out on a fuller 

and more representative dataset. 

           𝐷𝑎𝑡𝑎𝑠𝑒𝑡 =𝑚𝑒𝑎𝑛  𝑖𝑓𝑣𝑎𝑙𝑢𝑒=𝑛𝑢𝑙𝑙      (1) 

                                                            else data                                       

                       

C.   Procedure to select features  

In this study, four features: “Plasma glucose concentration 

at 2 hours in an oral glucose tolerance test, Body mass index 

(weight in kg/(height in m)^2), Diabetes pedigree function, 

and Age (years)” were chosen using the Boruta and Genetic 

algorithm ( see algorithm 2), for the “PIMA Indian diabetes” 

dataset. The selected features associated with the data were 

saved and then analyzed further. 

Algorithm 2: For Feature Selection 

Input: PIMA Indian Diabetes Dataset D with missing 

values and irrelevant features 

Output: Selected Features (SF) 
             For (i=1 to n) 

              If (Feature values==missing values/ zero)  

                        Replace with mean using Eq. (1) 

                Else 

                          Feature value = Value 

                

Apply the Boruta algorithm for feature selection  

                             Using Support Eq.(2) 

              After that, from Selected Features (Si) using Boruta, apply 

the Genetic Algorithm to find a proper subset of features using: 

                 For each selected feature, Si to P do // P=Population 

                    Evaluate the Fitness function   

       While iteration number < n // n= max number of generations 

                        Select= SelectBst(i);  

                        If Select then // using tournament selection  

                             If Cross-over, then // two-point crossover 

                                 Choose two parents, ia and ib  

                                  Produce offspring ic= cross-over  

                          Else  

                                 Choose one individual 

                                  Produce offspring by Mutate(ic)  

                     Terminate  

                             Evaluate the fitness value of ic;  

                             Replace with the least fitness value feature 

After this procedure selected feature subset will be there, which has 

a high fitness function. 

D.   Feature Normalization 

The study employed the Min Max scaling and SMOTE 

techniques to normalize the data and eliminate any imbalance 

in this experiment. The data was split into a 70:30 ratio, and 

validation was performed using 10 cross-folds. 

Algorithm 3: For Proposed Method 

Input: Selected Features 

Output: Parameter Evaluation 

Start: 

1. Feature Scaling using Min Max 

2. To remove any kind of imbalance using SMOTE 

3. Refined features are fed into the stacking model (using 

Algorithm 1) 

4. Parameter Evaluation using Accuracy, Recall, Precision, 

Kappa value, MCC (see the experimental result for 

equations used ) 

5. Error rate calculation using MSE, RMSE, RAE, etc. 

E.  Experimental Setup  

Through the preprocessing, the study determines the most 

relevant features from the dataset via feature selection 

techniques. After normalizing the processed data, the chosen 

features were used as input for further processing. The above 

experiment was conducted using a Jupyter notebook on a 

system equipped with an “AMD Ryzen 5 5500U with Radeon 

Graphics and 16 GB RAM under x64 bit Windows 11 

operating system”. 

F.  Experimental Results 

The proposed model was evaluated using test data from the 

PID dataset. The dataset’s performance has been assessed 

using various evaluation metrics, including F-measure, recall, 

precision, and classification accuracy. Applying the Boruta 

and Genetic algorithms integrated feature selection strategy 

with the stacking classifiers DT, NB, and KNN resulted in an 

accuracy rate of 99.13% for a 70:30 split. The suggested 

model can help medical professionals make better selections 

by utilising features that have been extracted. The different 

properties of the PID dataset are used to execute various 

algorithms. The parameter values used for each method are 

mentioned in Table I below. 
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TABLE  I 

PARAMETER VALUES 

Boruta Algorithm 

RF n_estimators=100, 

random_state=42 

Genetic Algorithm 

Population size 100 

max_generations 50 

Crossover Rate 0.8 

Mutation Rate 0.3 

Type of Selection Tournament 

Selection 

Fitness function Accuracy 

Cross over Two Point 

Model Parameter 

DT max_depth=16, 

criterion='entropy', 

random_state=42 

KNN n_neighbors=5, 

algorithm='auto' 

NB GaussianNB 

V. RESULTS 

This section of the study provides results regarding 

different computations done on the selected datasets. 

A.  Evaluation Parameters  

This study evaluates the efficacy of the applied model 

through multiple metrics, including “Matthews Correlation 

Coefficient (MCC), F1-score, accuracy, recall, and precision. 

The classifier’s classification results are displayed in a matrix 

called the confusion matrix. True-negative (TN), false-

positive (FP), false-negative (FN), and true-positive (TP)” are 

all included in this classification. Evaluation metrics 

developed by TP, FP, FN, and TN facilitate the process of 

evaluating the performance of the implemented model. When 

examining the quality of a binary classification model, the 

MCC metric is utilised. The scale has values ranging from -1 

to 1, where 1 represents an accurate prediction, 0 represents a 

result that is no better than chance, and -1 represents total 

disagreement. 

 

a. Model Evaluation (70:30) 

Table II comparisons revealed that the introduced model 

exhibited 0.1–13.1% increased accuracy, 0.4–12.9% elevated 

recall, 0.9–24.7% enhanced F1-score, 0.9–52.4% higher 

Kappa coefficient, 2.4–29.2% improved precision, and 2.2–

64.3% greater MCC coefficient compared to the alternative 

methods. Consequently, the implemented model performs 

better and beats the current prediction models in every 

evaluation metric. To determine the first value, deduct the 

introduced model’s value from the highest value in the row. 

In addition, to determine the second value, compute the mean 

value of all the models, excluding the proposed model. 

Moreover, subtract the mean value from the proposed model 

value, and divide the final subtraction result by the proposed 

model value. 

 

b. 10 Cross-Validation 

Based on the mean values presented in Table III for 

comparison, the suggested model exhibited 0.2–22.8% 

increased accuracy, 0.3–15.4% elevated recall, 0.7–26.5% 

enhanced F1 score, 1.8–61.7% higher Kappa coefficient, 0.6–

14.5% improved precision, and 2.2–63.5% greater MCC 

coefficient evaluated against other models. Therefore, the 

proposed model is better and outperforms other prediction 

models on all the evaluation metrics. 

B.  Comparison in the raw dataset 

This segment utilizes the unprocessed PID dataset, which 

contains noisy outliers and missing values. The data is 

utilized to validate the model suggested in this research and is 

evaluated against some baseline ML models. The 

forthcoming tables provide a clear description of the 

experimental results. 

 

a.  Model Evaluation 

In Table IV, the performance of the introduced model is 

evaluated against other traditional models using the original 

PID dataset split into a 70-30 ratio. By surpassing the other 

models by 3.6-20% in accuracy, 7.2-16.7% in precision, 3.7-

17.6% in MCC, and 2.7-15.7% in kappa value, the introduced 

model exhibits remarkable performance across several 

evaluation metrics.  

 

b. 10 Cross-Validation  

In Table V, the proposed model demonstrates a higher 

accuracy ranging from 0.6-3.1%, precision improvement of 

1.8-10.0%, F1- score increase of 0.1-3.2%, significant MCC 

enhancement ranging from 12.9- 29.5%, and elevated kappa 

values ranging from 0.8-6.9% and compared to the baseline 

models.                  

 

c. Standard deviation test  

Table VI compares the performance of several ML models 

with the proposed model using various metrics, such as 

MCC, Kappa value, F1-score, accuracy, recall, and precision. 

To show the variety of performance throughout several 

iterations or cross-validation folds, each model is evaluated 

using its mean performance as well as the standard deviation. 

The proposed model performs well across several metrics. It 

is essential to consider both mean performance and 

variability when evaluating the robustness and reliability of 

the ML model. 

C.  Performance Evaluation using Different Datasets  

To assess the current performance of this model and 

validate its applicability and dependability, the study 

conducted additional testing on a new dataset of diabetic 

patients, which was received from the Hospital Frankfurt 

diabetes dataset [48]. The chosen features are ‘Age’, 

‘Glucose’, ‘Skin Thickness’, ‘Insulin’, ‘BMI’, ‘Diabetes 

Pedigree Function’, and ‘Diabetes’. 

 

a. Model Evaluation (70:30) 

The new model surpasses other ML models in terms of 

various evaluation parameters. Specifically, it exhibits a 

significant improvement of 1.3- 14.7% in accuracy, 0.6-

14.9% in recall, 1.8-23.6% in precision, 1.3-19.3% in F-1 

score, 0.6-30.4% in MCC, and 0.8-30.9% in kappa value 

compared to the alternative models (see Table VII). 

 

b. 10 Cross-Validation 

The new model an accuracy improvement ranging from 

2.1-16.1%, recall enhancement ranging from 3.3-17.2%, 

precision increase ranging from 0.7% -17.1%, F-1 score 
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elevation ranging from 1.8-17.0%, MCC improvement 

ranging from 4.3-34.3%, and kappa value enhancement 

ranging from 4.4-34.6% as shown in the Table (VIII).  

D. Comparison in the raw dataset 

The raw Frankfurt diabetes dataset, which contains missing 

values and noisy outliers, was used in this section. This 

dataset will be utilised in the investigation to assess the 

proposed model and contrast it with other traditional ML 

models. The experimental results are broken down in depth in 

the tables below. 

 

a. Model Evaluation (70:30) 

In Table IX, the performance of the DT classifier is 

comparable to that of the new model in this study. However, 

the introduced model proves to be more effective than the 

other models overall. Specifically, the new model 

demonstrates higher accuracy, ranging from 14.8- 13.4%, 

recall ranging from 29.1-28.3%, precision, ranging from 

13.9-13.8%, F-1 score ranging from 22.9-21.8%, MCC 

ranging from 35.9-31.9%, and kappa value ranging from 

33.8-32.6%. 

 

b. 10 Cross-Validation 

In Table X, the introduced model demonstrates a wide 

range of performance metrics. Specifically, it shows an 

improvement in accuracy ranging from 1.6- 37.5%, an 

increase in recall ranging from 6- 35.6%, a precision 

improvement ranging from 18.8-19.4%, an enhancement in 

F-1 score ranging from 3- 28.8%, a significant increase in 

MCC ranging from 7- 43.0%, and an elevation in kappa 

ranging from 4-41.7%. The results reinforce the model's 

robustness and efficacy across multiple evaluation metrics. 

 

c. Standard deviation test  

The performance of several ML models and the introduced 

model is assessed in the above table based on some measures, 

such as MCC, Kappa value, F-1 score, accuracy, recall, and 

precision. The performance of each model and the standard 

deviation across multiple iterations or cross-validation folds 

are presented. From the results, the study observes that the 

introduced model for the ‘Frankfurt’  dataset generally 

exhibits competitive performance across most metrics, with 

relatively low standard deviations evaluated against other 

models. This suggests that the performance of the proposed 

model is consistent across different evaluations (see Table 

XI). 

E. ROC Curve 

Plotting TPR (Sensitivity) versus FPR (1 - Specificity) at 

different threshold values forms the ROC curve. A distinct 

threshold setting is represented by each point on the curve. 

Better performance is indicated by a higher curve that is 

closer to the top-left corner of the plot; this suggests that the 

model maintains a low FPR across a range of threshold 

values while achieving greater TPR. The ROC curves for 

both datasets are shown in Figures 2 & 3. 

F. Error Rates 

Error rates are a collection of variables used in ML models 

to assess how well predictions match actual or predicted 

outcomes. Error rate reduction is the goal for optimal 

outcomes. These metrics provide insight into the size, 

precision, and variability of prediction errors, among other 

aspects of model performance. The equations in Table XII 

were utilized in this investigation to calculate the error rates. 

The “Root Mean Squared Error (RMSE)” is a commonly 

used method to evaluate model error in statistical data 

prediction. Its values lie between 0.0 and 0.5, implying strong 

prediction accuracy. “Relative Root Squared Error (RRSE)” 

is a crucial indicator for evaluating the performance of 

models; lower values indicate better performance. Relative 

Squared Error (RSE) is used to anticipate the target's mean by 

comparing the squared error of a regression model to that of a 

basic baseline model. A low RSE indicates good model 

performance, while values near one suggest no discernible 

improvement over the baseline model. The “Mean Absolute 

Error (MAE)”, quantifies the average absolute deviation 

across predicted values and actual values, serving as a 

commonly used statistic in regression models. Lower MAE 

values are indicative of higher model accuracy[49]. The 

“Mean Squared Total Sum of Squares (MSTSS) quantifies 

the total variation in a dataset by summing the squared 

deviations of each data point from the overall mean and 

subsequently dividing this sum by the total number of data 

points”. Depending on the requirements, it is advised to give 

priority to the classifier with the lowest priority to the 

classifier with the lowest RRSE or MAE, and RMSE when 

choosing one based on these parameters. For better classifier 

predictions, low RRSE values are especially required. Table 

XIII illustrates the results for error rates of the two datasets. 

Overall, the interpretation of these metrics suggests that 

the model is performing very well with high accuracy, 

precision, recall, relatively low errors, and discrepancies 

compared to baseline models with the latest research. 

VI. DISCUSSION 

This study emphasizes the significance of utilizing 

techniques for selecting features to identify the most pertinent 

features for diabetes diagnosis. Identifying features that 

correspond to doctors’ diagnostic criteria is more important 

than focusing on optimizing performance measures. In real-

world scenarios, features that might just improve 

performance without aiding in an accurate diagnosis are 

considered less significant. Conversely, even while some 

diagnostically important features result in unsatisfactory 

predictive results, they are still significant since they enable 

doctors to make knowledgeable selections. 

 Therefore, this study utilizes the Boruta and Genetic 

algorithms for selecting features, after which Min-Max 

scaling and the SMOTE method are applied to normalize the 

chosen features and correct any class imbalance. Our model 

is further improved with ensemble learning and parameter 

tuning. Experimentation on two datasets, combined with 

careful comparison with other approaches, shows minimal 

error rates in all major experimental measures. Interestingly, 

feature selection is done before normalization to highlight 

significance, decrease complexity, enhance interpretability, 

avoid overfitting, and handle imbalance more effectively. 

One of the major limitations of our research is the limited 

dataset size, which could impact model training robustness. 

In future work, efforts will be made to acquire a broader and 

more realistic diabetes dataset to further reduce the threat of 
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undertrained models. 

VII. CONCLUSION 

 Thus, the combination of Boruta and Genetic Algorithms 

presents a promising feature selection technique for diabetes 

prediction. Experiments on the PID diabetes dataset attained 

a remarkable accuracy of 99.1% using tenfold cross-

validation. This research utilized a stacking ensemble for 

classification with NB and DT as base models at level 0 and 

KNN as the meta-model at level 1. Compared to other 

models, this solution presented better results. Validation of 

the Hospital Frankfurt dataset also attested to the strength and 

reliability of our model in diabetes detection. The present 

study not only upturns prediction accuracy but also provides 

information about the most instructive features that were 

involved in the diagnosis of diabetes. This work improves 

feature selection methods for diabetes prediction, and it may 

be applied to various healthcare contexts. 
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 TABLE II 
 DIFFERENT PARAMETER VALUES (70-30 SPLIT) 

 
TABLE III 

DIFFERENT PARAMETER VALUES WITH TEN-FOLD CROSS VALIDATION 

 Accuracy Recall Precision F-1 MCC Kappa Value 

SVM 0.778 0.822 0.757 0.787 0.560 0.556 

LR 0.737 0.708 0.752 0.729 0.475 0.474 

DT 0.764 0.794 0.749 0.770 0.529s 0.528 
NB 0.741 0.692 0.768 0.727 0.484 0.482 

KNN 0.779 0.856 0.742 0.794 0.566 0.558 
Boruta, K-means, 

NB, KNN, DT, SVM 

[12] 

0.981 0.984 0.977 0.980 0.965 0.962 

SMOTE, Boruta, 

Grid Search, Grey 
Wolf[15] 

0.963 0.971 0.982 0.980 0.743 ------- 

CNN-Bi-LSTM [53] 0.988 0.940 0.980 0.960 ------- 0.940 

VAE + SAE With 
CNN [54] 

0.932 ------- ------- ------- ------- ------- 

X-BLR [55] 0.940 0.940 0.920 0.930 ------- ------- 
CGLSTM [56] 0.978 0.896 0.914 0.856 ------- ------- 

KF Predict [57] 0.935 0.980 0.850 ------- ------- ------- 

PIMA(proposed 
model) 

0.990 0.987 0.988 0.987 0.987 0.980 

 
                  TABLE IV 

DIFFERENT PARAMETER VALUES (70-30 SPLIT) FOR RAW DATA 

 Accuracy Recall Precision F-1 MCC Kappa Value 

SVM 0.735 0.487 0.661 0.561 0.387 0.378 

LR 0.740 0.625 0.625 0.625 0.426 0.426 

DT 0.727 0.650 0.597 0.622 0.410 0.409 
NB 0.744 0.662 0.623 0.642 0.444 0.444 

KNN 0.688 0.562 0.548 0.555 0.315 0.315 
PIMA (proposed model) 0.774 0.550 0.733 0.628 0.481 0.471 

 
TABLE V 

DIFFERENT PARAMETER VALUES WITH TEN-FOLD CROSS-VALIDATION FOR RAW DATASET 

 
   TABLE VI 

STANDARD DEVIATION VALUES FOR DIFFERENT CLASSIFIERS 

 Accuracy Recall Precision F-1 MCC Kappa Value 

SVM 0.04618 0.11605 0.07477 0.10878 0.11951 0.12548 

LR 0.06523 0.12613 0.10740 0.11924 0.15650 0.15818 
DT 0.05074 0.12894 0.06717 0.09107 0.12096 0.12122 

NB 0.05669 0.12838 0.08984 0.10335 0.13006 0.13449 
KNN 0.04267 0.08270 0.07377 0.06319 0.09176 0.09121 

PIMA (proposed model) 0.07987 0.11456 0.18476 0.11985 0.11985 0.17749 

 
 TABLE VII  

DIFFERENT PARAMETER VALUES (70-30 SPLIT) 

 Accuracy Recall Precision F-1 MCC Kappa Value 

SVM 0.796 0.802 0.655 0.721 0.571 0.564 
LR 0.779 0.723 0.647 0.683 0.516 0.514 

DT 0.974 0.921 0.960 0.958 0.941 0.939 
NB 0.783 0.710 0.658 0.683 0.520 0.519 

KNN 0.809 0.815 0.673 0.738 0.597 0.590 

SMOTE, SMO [50] 0.990 0.982 0.962 0.977 ------- ------- 
GA, SMOTE, NB [51] 0.829 ------- ------- ------- ------- ------- 

SMOTE, GA, DT [52] 0.821 0.859 0.807 ------- ------- ------- 
KPCA, GA, SVM [30] 0.973 0.914 0.924 0.919 ------- 0.890 

PIMA(proposed model) 0.991 0.986 0.986 0.986 0.980 0.980 

 Accuracy Recall Precision F-1 MCC Kappa Value 

SVM 0.727 0.457 0.652 0.562 0.435 0.411 
LR 0.735 0.529 0.621 0.602 0.480 0.422 

DT 0.720 0.526 0.599 0.597 0.388 0.385 

NB 0.747 0.574 0.688 0.608 0.453 0.425 

KNN 0.720 0.553 0.618 0.580 0.376 0.372 

PIMA (proposed model) 0.753 0.550 0.706 0.609 0.609  0.433 

 Accuracy Recall Precision F-1 MCC Kappa Value 

SVM 0.805 0.826 0.678 0.745 0.597 0.589 
LR 0.743 0.734 0.605 0.663 0.464 0.459 

DT 0.985 0.992 0.975 0.982 0.988 0.988 
NB 0.775 0.719 0.659 0.688 0.513 0.512 

KNN 0.950 0.975 0.876 0.932 0.897 0.892 

Frankfurt (proposed model) 0.998 0.998 0.993 0.995 0.994 0.996 
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TABLE VIII 

DIFFERENT PARAMETER VALUES WITH TEN-FOLD CROSS-VALIDATION 

 

TABLE IX 

 DIFFERENT PARAMETER VALUES (70-30 SPLIT) FOR RAW DATA 

 
TABLE X 

DIFFERENT PARAMETER VALUES WITH TEN FOLD CROSS-VALIDATION FOR ORIGINAL DATA 

 
TABLE XI 

STANDARD DEVIATION VALUES FOR DIFFERENT CLASSIFIERS 

 

 

 

 

 
 
 

 

 

 
 

 

 
 

 

 
 

 

 

 Accuracy Recall Precision F-1 MCC Kappa Value 

SVM 0.800 0.827 0.785 0.805 0.602 0.604 
LR 0.734 0.705 0.750 0.726 0.470 0.468 

DT 0.973 0.963 0.983 0.972 0.947 0.946 
NB 0.731 0.679 0.759 0.716 0.465 0.462 

KNN 0.878 0.967 0.823 0.888 0.770 0.757 

Frankfurt (proposed 
model) 

0.995 0.988 0.990 0.990 0.990 0.990 

 Accuracy Recall Precision F-1 MCC Kappa Value 

SVM 0s.788 0.559 0.776 0.650 0.518 0.504 

LR 0.805 0.625 0.776 0.692 0.559 0.552 
DT 0.961 0.981 0.915 0.947 0.918 0.917 

NB 0.795 0.663 0.729 0.694 0.542 0.540 

KNN 0.813 0.690 0.748 0.718 0.580 0.579 
Frankfurt (proposed model) 0.961 0.981 0.915 0.947 0.918 0.917 

 Accuracy Recall Precision F-1 MCC Kappa Value 
SVM 0.764 0.486 0.730 0.581 0.445 0.427 

LR 0.761 0.522 0.700 0.595 0.443 0.432 
DT 0.945 0.921 0.918 0.918 0.878 0.877 

NB 0.751 0.573 0.653 0.608 0.431 0.428 

KNN 0.782 0.654 0.695 0.672 0.512 0.510 
Frankfurt (proposed model) 0.961 0.981 0.918 0.948 0.948 0.917 

 Accuracy Recall Precision F-1 MCC Kappa Value 

SVM 0.02857 0.05319 0.07273 0.05086 0.07127 0.06811 

LR 0.03443 0.06605 0.08155 0.05951 0.08455 0.08144 
DT 0.02214 0.04647 0.04193 0.03218 0.04852 0.04896 

NB 0.03270 0.06243 0.06337 0.05221 0.07354 0.07347 

KNN 0.02842 0.06161 0.04705 0.04413 0.06504 0.06433 
Frankfurt (proposed model) 0.02242 0.02307 0.04708 0.02960 0.02960 0.04750 

 
Fig. 2. ROC Curve for PIMA Indian Diabetes Dataset 

 
Fig. 3. ROC Curve for Hospital Frankfurt Diabetes Dataset 
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TABLE XII 
DIFFERENT ERROR RATES FORMULAS 

 

 

 

 

 

 

 

 
 

 TABLE XIII 

VALUES OF ERROR RATES FOR BOTH DATASETS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Error Rates Formulas 

RSE 
 

RRSE 
 

MAE 

 
RMSE 

 
MSTSS 

 

Error Rates for the 
Proposed Method 

PIMA Hospital Frankfurt 

RSE 0.019 0.036 

RRSE 0.140 0.192 
MAE 0.008 0.0016 

RMES 0.093 0.040 

MSTSS 0.22 0.226 
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