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Abstract-This paper presents AdaptiveMedStego, a 
medical-image steganography method that integrates multi-
level wavelet transform, singular-value decomposition (SVD), 

and QR decomposition to embed data securely while preserving 
image quality. The proposed algorithm automatically detects 
diagnostically significant regions and applies region-dependent 

embedding strategies. Experiments on CT, MRI, X-ray, and 
ultrasound images show that AdaptiveMedStego achieves 
higher embedding capacity and superior image quality than 

state-of-the-art techniques. By adapting the embedding 
strength to regional importance, it maintains diagnostic clarity 
even at high payloads. Although the method demands more 

computational power than simpler approaches, it performs 
consistently well across diverse image types. 
AdaptiveMedStego therefore advances data hiding in medical 

images by balancing capacity, quality, and security, and it 
provides a foundation for future research on adaptive 
steganography in healthcare. 

 

Index Terms-Medical image steganography, wavelet 

transform, adaptive embedding, image quality preservation, 

data security, healthcare informatics, diagnostic accuracy, 

computational efficiency 

I. INTRODUCTION 

 elemedicine has experienced significant growth over 

the past decade, establishing itself as an essential 

component of modern healthcare. By leveraging information 

and communication technologies, healthcare professionals 

can deliver diagnostic, treatment, and follow-up services 

across geographical barriers. Consequently, telemedicine 

has improved access to medical resources for remote 

populations and has proved invaluable during global health 

crises such as the COVID-19 pandemic [1]. 

However, this expansion has brought data security and 

patient privacy to the forefront [2]. Medical data—especially 

electronic health records (EHRs) that contain sensitive 

personal information—require robust protection during 

transmission, storage, and processing. Unauthorized access 

or data tampering can lead to privacy violations and 

potentially incorrect medical decisions, thereby endangering 

patient safety. Regulatory frameworks such as the General 

Data Protection Regulation (GDPR) in Europe and the 

Health Insurance Portability and Accountability Act (HIPAA) 

in the United States impose strict requirements for handling 

medical data [3], underscoring the critical need for strong 

security measures in telemedicine. Researchers are therefore 

developing innovative solutions, including advanced 

encryption, secure communication protocols, blockchain 

applications, and AI-based anomaly-detection systems [4]. 

Achieving an optimal balance among security, usability, and 

efficiency remains a major challenge. 

Medical image steganography is a pivotal technology for 

healthcare data security, particularly in telemedicine and 

digital health records [5]. It embeds sensitive patient 

information directly into medical images—such as X-rays, 

CT scans, or MRIs—while preserving their visual quality 

and diagnostic value [6]. By concealing information within 

the images themselves, sensitive data can be transmitted and 

stored inconspicuously, protecting it from unauthorized 

access [7]. This capability is especially valuable in 

telemedicine, where medical images and associated patient 

information routinely traverse potentially vulnerable 

networks. Moreover, medical image steganography helps 

healthcare providers comply with HIPAA and GDPR by 

securely linking patient data with corresponding images [8], 

thereby streamlining workflows, reducing the risk of 

mismatches, and ultimately enhancing patient care and 

safety. 

Recent advances have focused on methods that effectively 

hide data while maintaining diagnostic quality [9]. These 

approaches exploit the specific characteristics of different 

imaging modalities to maximize embedding capacity and 

minimize image distortion [10]. As healthcare systems 

continue to digitize and the volume of medical imaging 

grows, steganography plays a vital role in safeguarding 

patient information’s confidentiality, integrity, and 

availability. It has thus become an integral component of 
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contemporary healthcare security infrastructure. 

Despite substantial progress, current medical image 

steganography techniques face several limitations that 

hinder widespread clinical adoption. Chief among these are 

the challenges of balancing embedding capacity, image 

quality, security, and computational efficiency. Embedding 

sufficient data without introducing distortions that 

compromise diagnostic accuracy is difficult—subtle 

alterations can lead to misdiagnosis. Security is another 

concern: many methods remain vulnerable to steganalysis 

[11]. Additionally, limited resilience to common image 

processing operations (e.g., compression, scaling) restricts 

real-world applicability [12]. High computational demands 

pose further obstacles, particularly for real-time 

telemedicine applications [13]. Many techniques also 

overlook modality-specific characteristics, applying generic 

methods unsuitable for particular image types such as CT 

scans, MRIs, or ultrasounds. Finally, a lack of 

standardization complicates integration with existing 

healthcare information systems, impeding interoperability 

[14]. 

This research therefore proposes an advanced medical 

image steganography method designed to overcome these 

limitations while meeting modern healthcare demands. The 

algorithm intelligently selects non-diagnostic regions for 

embedding, thereby minimizing clinical impact; preserves 

hidden-data integrity against common image operations; 

incorporates an efficient encryption scheme to resist 

steganalysis; and adapts flexibly to various imaging 

modalities. 

The main contributions of this work are as follows: 

(1) We introduce a novel adaptive multi-level wavelet 

transform and threshold selection strategy that dynamically 

balances embedding capacity with image quality 

preservation. 

(2) We propose a collaborative security mechanism that 

combines SVD and QR decomposition to improve the 

robustness and security of the embedded data against 

steganalysis attacks. 

(3) We develop a region-adaptive embedding strategy that 

intelligently identifies critical diagnostic areas, applying 

conservative embedding to preserve clinical value while 

maximizing capacity in non-critical regions. 

(4) We implement and validate a fully reversible data 

hiding mechanism, ensuring that the original medical image 

can be perfectly reconstructed, which is critical for clinical 

and legal purposes. 

II. RELATED WORKS 

A. Medical Image Steganography Techniques 

Medical image steganography has seen considerable 

advancements in recent years, with researchers developing 

innovative methods to enhance embedding capacity, 

preserve image quality, and bolster security. Parah et al. [6] 

introduced a high-capacity reversible data hiding technique 

for medical images using interpolation and histogram 

shifting. Their approach significantly increased embedding 

capacity while preserving diagnostic quality across diverse 

imaging modalities, such as MRI and CT scans.  

To address challenges in preserving image quality, Al-Haj 

and Hussein [8] proposed a hybrid method combining 

Discrete Wavelet Transform (DWT) and Singular Value 

Decomposition (SVD). This approach demonstrated 

enhanced robustness against JPEG compression and noise 

addition, facilitating secure medical image transmission. In 

the realm of adaptive steganography, Usman et al. [15] 

created a technique that intelligently selects embedding 

regions based on specific medical image characteristics, 

prioritizing non-diagnostic areas in X-rays to minimize 

impact on critical diagnostic information. Seeking improved 

security, El-Latif et al. [16] designed an encryption-then-

embedding scheme. Their method utilized a chaotic system 

for initial data encryption, followed by an enhanced Least 

Significant Bit (LSB) substitution technique, which 

significantly strengthened resistance against statistical 

analysis attacks. Liu et al. [17] advanced reversible data 

hiding through prediction-error expansion, enabling 

complete recovery of original medical images alongside 

error-free data extraction-a capability essential for forensic 

and clinical research applications where image integrity is 

paramount. Recent innovations include the integration of 

artificial intelligence (AI) into medical image steganography. 

Jain et al. [18], for example, employed deep learning, 

specifically a Convolutional Neural Network (CNN)-based 

approach, to automatically determine optimal embedding 

locations and strengths. Their method showed promising 

results in enhancing both the efficiency and imperceptibility 

of embedded data. 

B. Applications of Wavelet Transform in Image 

Processing 

Wavelet transformation has emerged as an essential tool 

in image processing applications, especially in medical 

imaging, offering multi-resolution analysis and efficient 

feature representation. For medical image compression, 

Uthayakumar et al. [19] developed an innovative approach 

combining wavelet transform with entropy encoding. This 

method achieved high compression ratios while retaining 

critical diagnostic information in MRI and CT images. The 

multi-resolution capabilities of wavelets enabled adaptive 

compression, allowing regions of interest to be preserved at 

higher quality than background areas.  

For medical image denoising, Rajini and Bhavani [20] 

introduced a wavelet-based technique that effectively 

removes Gaussian and speckle noise from ultrasound images. 

By separating signal from noise across different scales, their 

method preserves edge information while improving overall 

image quality. In the domain of multi-modal image fusion, 

Singh and Khare [21] devised a wavelet-based algorithm to 

combine information from Positron Emission Tomography 

(PET) and MRI scans. By decomposing images into various 
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frequency bands, their method facilitates a more effective 

integration of complementary data from these distinct 

imaging modalities. Wavelets have also proven valuable for 

feature extraction in medical image analysis. Nithya and 

Santhi [22] utilized wavelet-based texture features to 

classify brain tumors in MRI images. The multi-scale 

characteristics of wavelets enabled the extraction of both 

global and local texture features, thereby enhancing tumor 

detection and classification accuracy. To address low-

contrast medical images, Gan et al. [23] introduced a contrast 

enhancement technique using wavelet decomposition. Their 

approach involves applying adaptive histogram equalization 

in the wavelet domain to improve the visibility of subtle 

structures in X-rays and mammograms. In medical image 

segmentation, Shih and Tseng [24] developed a wavelet-

based edge detection algorithm. This algorithm captures 

sharp transitions across multiple scales, providing more 

accurate and robust edge detection in complex medical 

images compared to conventional gradient-based methods. 

These applications collectively underscore the versatility 

and effectiveness of wavelet transformation in addressing 

diverse challenges within medical image processing. The 

inherent ability of wavelets to simultaneously provide spatial 

and frequency information makes them exceptionally well-

suited for tasks demanding both the preservation of critical 

image features and efficient data manipulation. 

III. ADAPTIVEMEDSTEGO METHOD 

A. System Architecture Overview 

AdaptiveMedStego presents a comprehensive framework 

that addresses the complex challenge of embedding sensitive 

patient data in medical images while preserving diagnostic 

quality and ensuring security. This innovative approach 

combines several advanced techniques to create a robust and 

adaptable steganographic system. 

The core of AdaptiveMedStego is a multi-level wavelet 

transform engine that serves as the foundation for our 

adaptive embedding strategy. This component breaks down 

medical images into multiple sub-bands, enabling flexible 

data embedding across various scales and frequencies. 

Complementing this is an adaptive threshold selection 

unit that dynamically assesses each sub-band’s 

characteristics to determine optimal embedding parameters, 

balancing data capacity with visual quality. A key feature is 

the system’s intelligent region handling through a 

sophisticated ROI analyzer, which uses advanced image 

processing and machine learning to identify critical 

diagnostic areas. This guides the adaptive embedding engine 

to apply different strategies to diagnostically important 

regions versus less sensitive areas. Security is enhanced 

through a dual decomposition approach using SVD and QR 

decomposition, which works on selected wavelet 

coefficients to add protection to the steganographic process. 

The system includes a reversible data hiding unit ensuring 

complete recovery of original images after data extraction-

essential for maintaining medical record integrity. To address 

various medical imaging types, we've incorporated a cross-

modal adaptation layer that adjusts embedding parameters 

based on specific characteristics of different modalities like 

X-rays, MRIs, and CT scans. Finally, anticipating AI’s 

growing role in medical diagnosis, we've integrated an AI-

friendly feature preservation mechanism that ensures the 

steganographic process preserves image features critical for 

automated analysis and computer-aided diagnosis. 

The entire system is wrapped in a comprehensive security 

and encryption module that handles both data encryption 

before embedding and cryptographic key management. This 

final security layer ensures that even if hidden data is 

detected, its contents remain protected. AdaptiveMedStego 

functions as an integrated pipeline where components 

sequentially process and transfer data, enabling efficient 

parallel processing where feasible. The architecture features 

strategic feedback loops, particularly between the adaptive 

threshold selection unit and embedding engine, allowing 

real-time optimization based on each image’s unique 

characteristics and the embedded data, as illustrated in Fig. 

1. 

B. Multi-level Wavelet Transform and Adaptive 

Threshold Selection 

 

Optimal Decomposition Level Selection Strategy 

Multi-level wavelet transforms forms the foundation of 

AdaptiveMedStego, offering a multi-resolution analysis 

framework for medical image steganography. Selecting the 

optimal decomposition level is essential to balance 

embedding capacity, image quality, and computational 

efficiency. Our approach to determining this optimal level 

integrates several key factors into a comprehensive strategy. 

The theoretical maximum decomposition level 𝐿𝑚𝑎𝑥  for 

an image of size 𝑀 ×  𝑁  is given by 𝐿𝑚𝑎𝑥 =

𝑓𝑙𝑜𝑜𝑟 (𝑙𝑜𝑔2(𝑚𝑖𝑛(𝑀, 𝑁))) . However, this upper bound 

does not necessarily yield the most suitable decomposition 

for steganographic purposes. To refine this selection, we 

analyze the energy distribution across decomposition levels. 

The energy ratio 𝐸𝑗 at level 𝑗 is defined as. 

𝐸𝑗 = (𝐿𝐿𝑗
2 + 𝐿𝐻𝑗

2 + 𝐻𝐿𝑗
2 + 𝐻𝐻𝑗

2)/(𝐿𝐿𝑗−1
2 )     (1) 

where 𝐿𝐿 , 𝐿𝐻 , 𝐻𝐿 , and 𝐻𝐻  represent the low and high 

frequency sub-bands respectively. This energy analysis 

provides insights into the information content at each level, 

guiding our decision on the appropriate depth of 

decomposition. 

Furthermore, we incorporate a structural similarity 

assessment to evaluate the impact of each decomposition 

level on the image’s diagnostic value. The Structural 

Similarity Index (SSIM) between the original image x and 

the reconstructed image 𝑦 at each level is computed as 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = (2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)/ ((𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)) (2) 

where 𝜇  and 𝜎  denote mean and standard deviation, 

respectively, and 𝐶1 and 𝐶2 are constants to stabilize the 

division. 
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Our adaptive algorithm iteratively evaluates these metrics, 

beginning with the maximum level 𝐿𝑚𝑎𝑥  and decrementing 

until either the energy ratio falls below a threshold 𝑇𝐸  or the 

SSIM drops below a threshold 𝑇𝑆𝑆𝐼𝑀 . The optimal level 

𝐿𝑜𝑝𝑡 is then determined as the last level that satisfies both 

criteria. To allow for fine-tuning between embedding 

capacity and image quality, we introduce an adaptive 

parameter α, computing the final decomposition level as 

𝐿𝑓𝑖𝑛𝑎𝑙 = 𝑟𝑜𝑢𝑛𝑑(𝛼 ∗ 𝐿𝑜𝑝𝑡 + (1 − 𝛼) ∗ 𝐿𝑚𝑎𝑥)    (3) 

where 𝛼 ∈  [0, 1]  can be adjusted based on specific 

application requirements. 

This strategy ensures that the selection of decomposition 

levels not only considers the intrinsic characteristics of the 

image but also adapts to various medical imaging modalities 

and steganographic needs. By dynamically adjusting the 

decomposition level, we maximize the potential for data 

embedding while maintaining diagnostic quality. Moreover, 

to address computational efficiency concerns, particularly in 

time-sensitive medical applications, we incorporate a time 

threshold 𝑇𝑡𝑖𝑚𝑒 . If the computation time exceeds 𝑇𝑡𝑖𝑚𝑒, we 

limit 𝐿𝑓𝑖𝑛𝑎𝑙   to the current computed level, ensuring the 

process remains within acceptable time constraints. 

 

Adaptive Threshold Algorithm Design 

Building on the decomposition level selection strategy, 

our adaptive threshold algorithm determines optimal 

embedding intensity across wavelet subbands. This 

approach maximizes data capacity while preserving both the 

visual quality and diagnostic value of medical images. 

The adaptive threshold algorithm operates on each 

subband resulting from the multi-level wavelet 

decomposition. For a given subband 𝑆𝑗  at decomposition 

level 𝑗 , we compute the local variance 𝜎𝑗
2(𝑥, 𝑦)  in a 

neighborhood 𝑁(𝑥, 𝑦) around each coefficient: 

𝜎𝑗
2(𝑥, 𝑦) = (1/|𝑁(𝑥, 𝑦)|) ∑(𝑢, 𝑣) ∈ 𝑁(𝑥, 𝑦) (𝑆𝑗(𝑢, 𝑣) − 𝜇𝑗(𝑥, 𝑦))

2
   (4) 

where 𝜇𝑗(𝑥, 𝑦) is the local mean. This local variance serves 

as an indicator of the textural complexity and edge 

information in different regions of the subband. We then 

define an adaptive threshold 𝑇𝑗(𝑥, 𝑦) for each coefficient: 

 𝑇𝑗(𝑥, 𝑦) = 𝑘 ∗ 𝜎𝑗(𝑥, 𝑦) ∗ (1 − 𝑒(−𝜆∗|𝑆𝑗(𝑥,𝑦)|)) (5) 

where 𝑘  is a scaling factor, 𝜆  is a sensitivity parameter, 

and |𝑆𝑗(𝑥, 𝑦)| is the magnitude of the wavelet coefficient. 

This formulation allows for higher thresholds in areas of 

high variance (typically corresponding to edges or textured 

regions) and lower thresholds in smooth areas. 

To account for the varying importance of different 

subbands, we introduce a level-dependent weighting factor 

𝑤𝑗: 

 𝑤𝑗 = 2(−𝑗/2) (6) 

This factor assigns higher weights to lower frequency 

subbands, which typically contain more visually significant 

information. The final adaptive threshold 𝑇𝑓𝑖𝑛𝑎𝑙𝑗
(𝑥, 𝑦) is 

then computed as: 

𝑇𝑓𝑖𝑛𝑎𝑙𝑗
(𝑥, 𝑦) = 𝑤𝑗 ∗ 𝑇𝑗(𝑥, 𝑦)          (7) 

This threshold is used to determine the number of least 

significant bits (LSBs) that can be modified in each wavelet 

coefficient for data embedding. Coefficients with values 

exceeding their corresponding threshold are candidates for 

embedding, with the number of modifiable LSBs 

proportional to the excess over the threshold. 

To ensure compatibility with the optimal decomposition 

level selection, we incorporate the energy ratio 𝐸𝑗  and 

SSIM metrics from the previous stage. The adaptive 

threshold is further adjusted based on these metrics: 

𝑇𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝑗
(𝑥, 𝑦) = 𝑇𝑓𝑖𝑛𝑎𝑙𝑗

(𝑥, 𝑦) ∗ (1 + 𝛽 ∗ (1 − 𝑆𝑆𝐼𝑀𝑗)) ∗ (1 + 𝛾 ∗ 𝐸𝑗) (8) 

where 𝛽  and 𝛾  are weighting factors that control the 

influence of structural similarity and energy distribution, 

respectively. This comprehensive adaptive thresholding 

approach ensures that the data embedding process is finely 

tuned to the characteristics of each medical image, 

preserving critical diagnostic features while maximizing 

steganographic capacity. The algorithm for Multi-level 

Wavelet Transform and Adaptive Threshold Selection is 

explained in Algorithm 1. 

 

C. Secure Embedding Combining SVD and QR 

Decomposition 

 

Collaborative Mechanism of SVD and QR Decomposition 

The AdaptiveMedStego method innovatively combines 

SVD and QR decomposition to enhance the security and 

robustness of data embedding in medical images. This 

collaborative mechanism operates on the wavelet subbands 

selected for embedding, providing an additional layer of data 

protection. For a given wavelet subband 𝑊, we first apply 

SVD: 

 𝑊 = 𝑈𝑆𝑉𝑇 (9) 

where 𝑈  and 𝑉  are orthogonal matrices, and 𝑆  is a 

diagonal matrix of singular values. The singular values in 𝑆 

represent the energy distribution of the subband and are less 

sensitive to small perturbations, making them suitable 

candidates for data embedding. We then apply QR 

decomposition to the matrix 𝑆: 

 𝑆 =  𝑄𝑅 (10) 

where 𝑄  is an orthogonal matrix and 𝑅  is an upper 

triangular matrix. The 𝑄𝑅 decomposition further disperses 

the energy and introduces additional degrees of freedom for 

data hiding. 

The data embedding process is then performed on the 𝑅 

matrix. Let 𝑅′ be the matrix after embedding the secret data. 

The modified subband 𝑊′ is reconstructed as: 

 𝑊′ = 𝑈(𝑄𝑅′)𝑉𝑇 (11) 

This dual decomposition approach provides multiple 

benefits. It scatters embedded data across different image 

components, enhancing resilience against attacks. 

The orthogonal transformations maintain subband energy, 

preserving overall image quality. Additionally, combining 

SVD and QR decomposition creates multiple transformation 

domains, significantly complicating unauthorized access 

attempts. 
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The embedding process itself utilizes a modified bit-plane 

manipulation technique. For each element 𝑟𝑖𝑗   in 𝑅 , we 

determine the number of bits 𝑘 that can be modified based 

on the adaptive threshold 𝑇𝑖𝑗: 

 𝑘 = 𝑓𝑙𝑜𝑜𝑟 (𝑙𝑜𝑔2(|𝑟𝑖𝑗|/𝑇𝑖𝑗)) (12) 

The 𝑘 least significant bits of 𝑟𝑖𝑗  are then replaced with 

𝑘 bits from the secret data. This adaptive approach ensures 

that more bits are embedded in coefficients with larger 

magnitudes, which are typically more robust to 

modifications. 

To further enhance security, we introduce a pseudo-

random permutation 𝑃  to scramble the order of bit 

embedding: 

 𝑟𝑖𝑗
′ = 𝐸𝑚𝑏𝑒𝑑 (𝑟𝑖𝑗 , 𝑃(𝑠𝑒𝑐𝑟𝑒𝑡𝑑𝑎𝑡𝑎𝑘

)) (13) 

where 𝐸𝑚𝑏𝑒𝑑() is the bit replacement function and 𝑃() is 

the permutation function. This permutation is governed by a 

secret key, adding an extra layer of security to the embedding 

process. 

The combination of SVD and QR decomposition with 

adaptive thresholding and permutation-based embedding 

creates a strong, secure system for protecting sensitive 

medical image data. This integrated approach enhances both 

the invisibility of embedded information and substantially 

increases protection against unauthorized access or 

manipulation. 

 

Security Enhancement Strategies 

Building on the SVD and QR decomposition foundation, 

we implement several advanced security strategies to 

strengthen AdaptiveMedStego against potential attacks and 

unauthorized access. 

Firstly, we introduce a dynamic key generation scheme 

based on image characteristics. Let 𝐾 be the base key, and 

𝐻(𝑊) be a hash function of the original wavelet subband W. 

We compute an image-dependent key 𝐾𝑖 as: 

 𝐾𝑖 = 𝐾 ⊕ 𝐻(𝑊) (14) 

where ⊕ denotes bitwise XOR operation. This ensures that 

each image has a unique embedding key, enhancing the 

system’s resistance to replay attacks. 

We then employ a block-wise embedding strategy to 

increase the method’s resilience against cropping and 

localized attacks. The R matrix from QR decomposition is 

divided into non-overlapping blocks 𝐵𝑚 of size 𝑏 ×  𝑏. For 

each block, we compute a block-specific embedding strength 

𝛼𝑚: 

 𝛼𝑚 = 𝑓(𝜎𝑚, 𝜇𝑚, 𝐸𝑚) (15) 

where 𝜎𝑚 is the block’s standard deviation, 𝜇𝑚 is its mean, 

and 𝐸𝑚 is its edge density. The function 𝑓 is designed to 

assign higher embedding strengths to textured or edge-rich 

areas, which can better mask the embedded data. 

To counter statistical attacks, we implement an adaptive 

dither modulation. For each coefficient 𝑟𝑖𝑗  in block 𝐵𝑚 , 

the embedded value 𝑟𝑖𝑗
′  is computed as: 

𝑟𝑖𝑗
′ = 𝑟𝑖𝑗 + 𝛼𝑚 ∗ 𝑑𝑖𝑗 ∗ 𝑞           (16) 

where 𝑑𝑖𝑗  is a dither signal generated from 𝐾𝑖, and 𝑞 is the 

quantization step. This modulation introduces controlled 

distortions that mimic natural image variations, making 

statistical detection more challenging. 

We also incorporate an error correction coding (ECC) 

scheme to enhance the robustness of embedded data. Using 

Reed-Solomon codes, we encode the secret data 𝑆  into a 

redundant form 𝑆𝑒𝑐𝑐: 

 𝑆𝑒𝑐𝑐 = 𝑅𝑆𝑒𝑛𝑐𝑜𝑑𝑒(𝑆, 𝑡) (17) 

where 𝑡 is the error correction capability. This allows the 

system to recover from partial data loss or corruption during 

the extraction process. 

To protect against unauthorized extraction attempts, we 

implement a multi-level authentication protocol. Let 𝐴 be 

the authentication data derived from both the image and the 

secret data: 

 𝐴 = 𝑔(𝑊, 𝑆, 𝐾𝑖) (18) 

where 𝑔  is a cryptographic hash function. This 

authentication data is embedded alongside the secret 

information, allowing for integrity verification during 

extraction. 

Lastly, we employ a selective bit-plane confusion 

technique. Based on 𝐾𝑖 , we selectively swap certain bit-

planes of the embedded data within each block: 

 𝐵𝑚
′ = 𝐵𝑖𝑡𝑃𝑙𝑎𝑛𝑒𝑆𝑤𝑎𝑝(𝐵𝑚, 𝐾𝑖) (19) 

This confusion step adds another layer of security, making 

it extremely difficult for an attacker to reconstruct the 

original data even if they manage to detect the presence of 

hidden information. The algorithm for Secure Embedding 

Combining SVD and QR Decomposition is explained in 

Algorithm 2. 

 

D. Medical Region Adaptive Embedding Strategy 

 

Critical Diagnostic Region Identification Method 

Identifying critical diagnostic regions in medical 

images is essential to our AdaptiveMedStego method, 

enabling different processing approaches based on 

diagnostic importance. This step ensures steganographic 

embedding minimally affects areas vital for diagnosis. Our 

approach combines traditional image processing with 

machine learning techniques, specifically customized for 

various medical imaging modalities. 

First, we apply a multi-scale edge detection algorithm to 

the input medical image 𝐼 . Let 𝐸(𝐼)  represent the edge 

map of the image: 

𝐸(𝐼) = 𝛴(𝑤𝑖 ∗ 𝐸𝑖(𝐼))           (20) 

where 𝐸𝑖(𝐼)  is the edge map at scale 𝑖 , and 𝑤𝑖   are 

weighting factors. This multi-scale approach allows for the 

detection of both fine and coarse structural elements in the 

image. 

Next, we compute a local entropy map 𝐻(𝐼) to identify 

regions of high information content: 

 𝐻(𝐼)(𝑥, 𝑦) = −𝛴𝑝(𝑖)𝑙𝑜𝑔𝑝(𝑖) (21) 
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where 𝑝(𝑖)  is the probability of intensity i in a local 

neighborhood around pixel (𝑥, 𝑦). 

We then combine the edge and entropy information to 

create an initial importance map 𝑀: 

 𝑀 = 𝛼 ∗ 𝐸(𝐼) + 𝛽 ∗ 𝐻(𝐼) (22) 

where 𝛼  and 𝛽  are weighting parameters that can be 

adjusted based on the specific medical imaging modality. 

To refine this importance map, we employ a CNN pre-

trained on a large dataset of medical images. Let 𝐶𝑁𝑁(𝐼) 

be the feature map extracted by the network: 

 𝑀′ = 𝐹(𝑀, 𝐶𝑁𝑁(𝐼)) (23) 

where 𝐹 is a fusion function that combines the traditional 

image processing results with the deep learning features. 

The final step involves applying a threshold 𝜏 to 𝑀′ to 

obtain a binary mask of critical regions: 

 𝑅𝑐(𝑥, 𝑦) = 1𝑖𝑓𝑀′(𝑥, 𝑦) > 𝜏 (24) 

To account for the specific characteristics of different 

medical imaging modalities, we introduce a modality-

specific adjustment factor 𝜆𝑚: 

 𝜏𝑚 = 𝜆𝑚 * 𝜏 (25) 

This allows for fine-tuning of the critical region 

identification process based on whether the input is an X-ray, 

CT scan, MRI, or ultrasound image. 

Additionally, we incorporate prior knowledge of 

anatomical structures relevant to specific diagnostic tasks. 

Let 𝐴(𝐼) be an anatomical prior map: 

 𝑅𝑐
′ = 𝑅𝑐 ∩ 𝐴(𝐼) (26) 

This intersection ensures that the identified critical 

regions align with anatomically relevant areas for the given 

medical context. 

Finally, to ensure spatial coherence and eliminate isolated 

pixels, we apply morphological operations: 

 𝑅𝑓𝑖𝑛𝑎𝑙 = 𝐶𝑙𝑜𝑠𝑖𝑛𝑔(𝑂𝑝𝑒𝑛𝑖𝑛𝑔(𝑅𝑐
′ )) (27) 

where 𝑂𝑝𝑒𝑛𝑖𝑛𝑔  and 𝐶𝑙𝑜𝑠𝑖𝑛𝑔  are morphological 

operators that help in smoothing the boundaries of the 

critical regions and filling small gaps. 

This comprehensive approach to critical diagnostic region 

identification provides a robust foundation for our adaptive 

embedding strategy, ensuring that the most crucial areas of 

medical images are preserved with the highest fidelity during 

the steganographic process. 

 

Region-Adaptive Embedding Strategy Implementation 

Following critical region identification, we implement a 

region-specific embedding approach that adjusts 

both strength and method based on area importance within 

the medical image. This strategy preserves diagnostic 

quality in critical regions while maximizing data capacity in 

non-critical areas. 

Let 𝐼  be the input medical image and 𝑅𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙   be the 

binary mask of critical regions identified in the previous step. 

We define two distinct embedding strategies: For critical 

regions ( 𝑅𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 1 ), we employ a conservative 

embedding approach with minimal modification to the 

original image data. The embedding strength 𝛼𝑐 for critical 

regions is defined as: 

 𝛼𝑐 = 𝑘𝑐 ∗ 𝜎𝑙𝑜𝑐𝑎𝑙  (28) 

where 𝑘𝑐 is a small constant (typically 𝑘𝑐 ≪ 1) and 𝜎𝑙𝑜𝑐𝑎𝑙  

is the local standard deviation of pixel intensities. For non-

critical regions (𝑅𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 0 ), we use a more aggressive 

embedding strategy to maximize data capacity. The 

embedding strength 𝛼𝑛 for non-critical regions is: 

 𝛼𝑛 = 𝑘𝑛 ∗ 𝜎𝑙𝑜𝑐𝑎𝑙 (29) 

where 𝑘𝑛 is a larger constant (𝑘𝑛 > 𝑘𝑐). 

The overall embedding process can be described by the 

following equation: 

𝐼𝑠𝑡𝑒𝑔𝑜(𝑥, 𝑦) = 𝐼(𝑥, 𝑦) + (𝛼𝑐 ∗ 𝑅𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙(𝑥, 𝑦) + 𝛼𝑛 ∗ (1 − 𝑅𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙(𝑥, 𝑦))) ∗ 𝐷(𝑥, 𝑦)  

(30) 

where 𝐼𝑠𝑡𝑒𝑔𝑜  is the resulting stego image and 𝐷(𝑥, 𝑦)  is 

the data to be embedded, modulated by the appropriate 

embedding strength. 

To further enhance the adaptability of our method, we 

introduce a texture-based adjustment factor 𝜏(𝑥, 𝑦): 

 𝜏(𝑥, 𝑦) = 𝑓(𝐺𝐿𝐶𝑀(𝐼, 𝑥, 𝑦)) (31) 

where 𝐺𝐿𝐶𝑀 is the Gray Level Co-occurrence Matrix, and 

f is a function that maps texture features to an adjustment 

factor. This allows for finer control over embedding strength 

based on local texture characteristics. The final embedding 

equation becomes: 

𝐼𝑠𝑡𝑒𝑔𝑜(𝑥, 𝑦) = 𝐼(𝑥, 𝑦) + 𝜏(𝑥, 𝑦) ∗ (𝛼𝑐 ∗ 𝑅𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙(𝑥, 𝑦) + 𝛼𝑛 ∗ (1 −

𝑅𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙(𝑥, 𝑦))) ∗ 𝐷(𝑥, 𝑦)       (32) 

This region-specific embedding strategy ensures that the 

steganographic process adapts to the varying importance of 

different areas within medical images, preserving diagnostic 

quality where it matters most while utilizing available 

capacity efficiently in less critical regions. 

E. Reversible Data Hiding Mechanism 

AdaptiveMedStego’s reversible data hiding mechanism 

combines complete image restoration with efficient 

auxiliary information management-essential for medical 

applications where original image recovery is critical. We 

employ a difference expansion method that computes 

differences and averages between pixel pairs, then expands 

these differences to embed data while maintaining 

reversibility. Overflow locations where pixel values exceed 

valid ranges are recorded as auxiliary data. This auxiliary 

information includes an overflow map, a location map 

of embedded pixel pairs, the critical region mask, and 

embedding parameters. To minimize overhead, we compress 

this data using context-adaptive arithmetic coding before 

embedding it in non-critical image areas. During extraction, 

the system first recovers and decompresses the auxiliary data, 

which then guides both secret information extraction and 

pixel value restoration. This approach ensures complete 

recovery of the original image and embedded data, making 

it appropriate for sensitive medical applications where 

image integrity is paramount. By integrating reversible data 

hiding with our region-specific embedding strategy, 

AdaptiveMedStego offers a comprehensive solution for 
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secure, adaptive data hiding in medical images, as 

summarized in Algorithm 3. 

F. Adaptive Parameter Adjustment and Cross-Modal AI-

Friendly Steganography Framework 

AdaptiveMedStego features a refined system that adjusts 

parameters across various medical imaging types while 

preserving AI-diagnostic compatibility. This integrated 

approach addresses the challenges of different medical 

image formats and ensures seamless integration with AI-

based diagnostic tools. 

Our framework first identifies the specific medical 

imaging modality (X-ray, CT, MRI, ultrasound) by 

analyzing image metadata and inherent image characteristics. 

For each modality, we maintain optimized base parameters 

established through extensive testing and clinical validation. 

The adaptive parameter adjustment utilizes a feedback 

loop that incorporates both image quality metrics and AI 

diagnostic performance measures. We define a composite 

quality score 𝑄  that combines traditional image quality 

metrics (such as PSNR and SSIM) with an AI diagnostic 

accuracy metric: 

𝑄 = 𝑤1 ∗ 𝑃𝑆𝑁𝑅 + 𝑤2 ∗ 𝑆𝑆𝐼𝑀 + 𝑤3 ∗ 𝐴𝐼𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦   (33) 

where 𝑤1, 𝑤2, and 𝑤3 are weighting factors that can be 

adjusted based on specific requirements. 

For cross-modal adaptation, we use a transfer learning 

approach where a deep neural network pre-trained on 

diverse medical images extracts modality-invariant features. 

These features guide parameter adjustments, ensuring 

effective steganographic performance across different 

imaging types. 

 

The AI-friendly feature preservation mechanism operates 

by identifying key features used by diagnostic AI models. 

We utilize gradient-based attribution methods to highlight 

regions and features that are most influential in AI decision-

making. These high-importance areas are then subject to 

more conservative data embedding, similar to our approach 

with critical diagnostic regions. To maintain AI diagnostic 

accuracy, we introduce an AI-guided embedding strength 

modulator 𝜀(𝑥, 𝑦): 

 𝜀(𝑥, 𝑦) = 𝑔 (𝐴𝐼𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑦(𝑥, 𝑦)) (34) 

where 𝐴𝐼𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑦  is the saliency map generated by the AI 

model, and g is a function that maps saliency to embedding 

strength modulation. 

This adaptive and AI-aware framework ensures that 

AdaptiveMedStego can be effectively applied across various 

medical imaging modalities while preserving the efficacy of 

AI-based diagnostic tools. The Adaptive Cross-Modal AI-

Friendly Steganography (ACMAFS) is explained in 

Algorithm 4. 

IV. EXPERIMENTAL DESIGN 

A. Dataset Description 

To evaluate AdaptiveMedStego, we used two 

major medical imaging modalities: CT and MRI, with 

datasets from public repositories to ensure reproducible 

results. For CT imaging, we utilized the Lung Image 

Database Consortium (LIDC-IDRI) dataset from The Cancer 

Imaging Archive [25], containing 1018 CT scan series from 

1010 patients with various lung pathologies. Each series 

comprises multiple 512×512-pixel slices with 16-bit depth, 

providing diverse lung structures and conditions for 

thorough algorithm assessment. Our MRI experiments 

employed the Information extraction from Images (IXI) 

dataset [26], featuring brain scans from nearly 600 healthy 

subjects. This collection includes T1-weighted, T2-weighted, 

and proton density weighted sequences at 256×256-pixel 

resolution with 1.5-2mm slice thickness, allowing 

comprehensive testing across different MRI sequences and 

brain structures. To simulate clinical scenarios, we enhanced 

these images with synthetic clinical data mimicking patient 

information, including anonymized demographics, clinical 

histories, and diagnostic reports. This synthetic data varied 

in length and complexity, from brief diagnostic notes to 

detailed treatment plans, replicating diverse data hiding 

requirements in clinical practice. This combination of 

authentic medical images and synthetic clinical data created 

a realistic testing environment for evaluating 

AdaptiveMedStego’s performance in settings closely 

resembling actual medical applications. 

B. Evaluation Metrics 

Image Quality Indicators 

Our evaluation framework employs Peak Signal-to-Noise 

Ratio (PSNR), Structural Similarity Index (SSIM), Mean 

Squared Error (MSE), Normalized Cross-Correlation (NCC), 

and Universal Image Quality Index (UIQI). These metrics 

are computed for both entire images and specific regions of 

interest, including critical diagnostic areas and non-critical 

regions, across various embedding capacities for CT and 

MRI images. 

 

Embedding Capacity Analysis 

We quantify the embedding capacity using bits per pixel 

(bpp) as our primary metric. The embedding capacity 𝐶 for 

an image 𝐼 of size 𝑀 × 𝑁 is calculated as: 

 𝐶 = (𝛴𝑖=1
𝑀 𝛴𝑗=1

𝑁 𝑏𝑖𝑗)/(𝑀 × 𝑁) (35) 

where 𝑏𝑖𝑗  is the number of bits embedded in pixel (𝑖, 𝑗). 

We also evaluate the embedding efficiency 𝜂, defined as: 

 𝜂 =  𝐶 / 𝐻 (36) 

where 𝐻  is the number of pixels modified during the 

embedding process. 

 

Security Evaluation Metrics 

To assess the security of AdaptiveMedStego, we employ 

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3697-3722

 
______________________________________________________________________________________ 



several steganalysis-based metrics: 

a) Probability of Detection (𝑃𝐷): We use the Area Under 

the Receiver Operating Characteristic curve (AUC) as a 

measure of detectability: 

𝑃𝐷 = 𝐴𝑈𝐶 = ∫ 𝑅𝑂𝐶(𝑡)𝑑𝑡
1

0
         (37) 

where 𝑅𝑂𝐶(𝑡)  is the Receiver Operating Characteristic 

curve. 

b) Kullback-Leibler Divergence (𝐷𝐾𝐿  ): To measure the 

statistical distance between cover and stego images: 

 𝐷𝐾𝐿(𝑃 ∣∣ 𝑄) = Σ𝑖𝑃(𝑖)𝑙𝑜𝑔(𝑃(𝑖)/𝑄(𝑖)) (38) 

where 𝑃 and 𝑄 are the probability distributions of cover 

and stego images, respectively. 

c) Structural Steganalysis Measure (SSM): To evaluate 

resistance against structural steganalysis: 

 𝑆𝑆𝑀 = 1−∣ 𝑐𝑜𝑟𝑟(∇𝐼, ∇𝐼′) ∣ (39) 

where 𝛻𝐼 and 𝛻𝐼′ are the gradient maps of the cover and 

stego images, and 𝑐𝑜𝑟𝑟 denotes correlation. 

These metrics provide a comprehensive evaluation of 

AdaptiveMedStego’s performance in terms of image quality 

preservation, embedding capacity, and security against 

steganalysis attacks. 

 

Experimental Environment and Procedure 

To evaluate AdaptiveMedStego, we created 

an experimental platform simulating real-world 

medical environments. Our setup features a high-

performance computing cluster with NVIDIA Tesla V100 

GPUs for processing large medical image datasets, running 

on Ubuntu 20.04 LTS with Python 3.8 and PyTorch 1.9 as 

the core deep learning framework. Our process begins with 

careful data preparation, randomly selecting CT and MRI 

images from the LIDC-IDRI and IXI datasets and applying 

intensity normalization and noise reduction. We generate 

synthetic clinical data as embedding content that mirrors 

actual patient records in complexity and variability. During 

embedding, AdaptiveMedStego uses PyTorch’s tensor 

operations for multi-scale image analysis to identify critical 

diagnostic regions. The algorithm adaptively adjusts 

embedding parameters based on regional importance, 

utilizing autograd functionality for parameter optimization. 

Custom modules parallelize this process across multiple 

GPUs for enhanced efficiency. The extraction and recovery 

phase simulates real-world medical data access scenarios 

with various privilege levels to test security against 

unauthorized access. We record time consumption metrics 

throughout PyTorch’s profiling tools to evaluate real-time 

performance. To assess resilience, we simulate common 

image manipulations including JPEG compression, 

random cropping, and Gaussian noise addition. We 

also conduct cross-modal experiments to test data hiding and 

extraction across different imaging modalities. Figure 2 

presents a flowchart illustrating each stage from 

data preparation through embedding and extraction, 

to metric calculation, highlighting robustness tests and AI 

compatibility assessments with clear directional arrows 

indicating data and process flows. 

AI compatibility testing is a key component of our 

evaluation process. We utilize several state-of-the-art 

medical image diagnostic models to compare inference 

accuracy between original and steganographic images, 

ensuring our method preserves AI-assisted diagnostic 

integrity. The experimental workflow uses distributed 

computing for consistency and reproducibility across 

multiple runs, with rigorous cross-validation protocols and 

controlled random seeds to generate statistically significant 

results. All experimental data and outputs are securely 

managed with proper serialization for subsequent analysis 

and verification. This comprehensive experimental approach 

allows thorough evaluation of AdaptiveMedStego’s 

performance, security, and clinical viability in 

settings closely resembling actual medical environments. 

 

Comparative Method Selection 

To evaluate AdaptiveMedStego, we selected several 

leading steganographic methods designed for medical 

images that represent current benchmarks in the field. We 

compared Parah et al. [6], who developed a high-capacity 

reversible technique using interpolation and histogram 

shifting, providing a benchmark for embedding capacity. 

Karakus and Avci’s method [27], which employs optimum 

pixel similarity, served as a comparison point for visual 

quality preservation in medical images. We also included 

Liao et al.’s adaptive technique [28], which uses texture 

complexity-based embedding for multiple images, to assess 

our region-specific approach and adaptability to image 

characteristics. For comparison with AI-driven approaches, 

we benchmarked against Sukumar et al.’s deep learning 

method [29], which combines Redundant Integer Wavelet 

Transform, Laplacian pyramid, and histogram shifting. This 

comparison evaluates AdaptiveMedStego against modern AI 

techniques and transform domain methods. Finally, we 

included Abd El-Latif et al.’s quantum-resistant method [30], 

which addresses security threats from quantum computing in 

6G networks. While not specifically for medical images, this 

helps assess our method’s long-term security potential. This 

diverse set of comparisons provides comprehensive 

evaluation of AdaptiveMedStego’s performance in 

embedding capacity, image quality preservation, robustness, 

adaptability, and security. 

 

Computational Complexity, AI Compatibility, and Cross-

Modal Performance Assessment 

To comprehensively evaluate AdaptiveMedStego, we use 

a multi-faceted approach examining computational 

complexity, AI system compatibility, and cross-modal 

performance. Our computational assessment combines 

theoretical time complexity analysis with practical runtime 

measurements using PyTorch’s profiling tools, comparing 

execution time, memory usage, and scalability across 

various image sizes and embedding capacities against 

baseline methods [6, 27-30]. For AI compatibility, we test 

AdaptiveMedStego with leading medical imaging AI 

systems to verify diagnostic accuracy preservation. We 

employ pre-trained models for tumor detection, organ 
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segmentation, and disease classification, comparing their 

performance on original versus steganographic images using 

metrics including accuracy, sensitivity, specificity, and AUC 

to ensure the data hiding process maintains diagnostic 

integrity. Our cross-modal evaluation examines 

the algorithm’s ability to embed data across different 

imaging modalities (CT, MRI, ultrasound), assessing 

embedding capacity, image quality preservation, and 

extraction accuracy. This evaluation provides insights into 

AdaptiveMedStego’s versatility and potential for integrated 

multi-modal medical data management. This comprehensive 

approach offers a holistic understanding of 

AdaptiveMedStego’s performance, efficiency, and practical 

applicability across diverse medical imaging scenarios. 

V. RESULTS AND DISCUSSION 

A. Performance Comparison of AdaptiveMedStego with 

Traditional Methods 

Our comprehensive evaluation of AdaptiveMedStego 

against five state-of-the-art methods reveals significant 

improvements in key performance metrics crucial for 

medical image steganography. As shown in Table I, our 

method achieves an embedding capacity of 0.52 bpp, 

outperforming Parah et al.’s method [6] at 0.48 bpp and 

Karakus and Avci’s approach [27] at 0.43 bpp. In terms of 

image quality preservation, AdaptiveMedStego maintains a 

PSNR of 42.8dB and SSIM of 0.9985, while achieving a 

robustness score of 0.89. The computational efficiency is 

also notable, with a processing time of 0.78 seconds, striking 

an optimal balance between performance and efficiency. 

To thoroughly evaluate the robustness and stability of 

AdaptiveMedStego, we conducted extensive parameter 

sensitivity analysis across different experimental conditions. 

The decomposition level 𝐿𝑓𝑖𝑛𝑎𝑙  proved to be a crucial 

parameter affecting both performance and computational 

efficiency. Our experiments revealed that 𝐿𝑓𝑖𝑛𝑎𝑙  values 

between 2 and 5 yielded PSNR measurements ranging from 

40.2dB to 43.5dB, with optimal performance achieved at 

𝐿𝑓𝑖𝑛𝑎𝑙  = 4. Further increases in decomposition levels 

resulted in diminishing returns, with computational 

overhead increasing exponentially while performance gains 

remained marginal. The adaptive parameter α 

demonstrated stable performance within the range [0.3, 0.7], 

with optimal results typically achieved around α  = 0.5. 

Values outside this range led to either significant capacity 

reduction (α < 0.3) or noticeable image quality degradation 

(α > 0.7). 

Statistical analysis using paired t-tests confirmed the 

significance of our method's improvements over existing 

approaches. Comparing against Parah et al.’s method, 

AdaptiveMedStego showed statistically significant 

improvements in PSNR (p = 0.0023), SSIM (p = 0.0156), 

and embedding capacity (p = 0.0078). Similar significant 

advantages were observed when compared with Karakus and 

Avci’s method (PSNR: p = 0.0015, SSIM: p = 0.0089) and 

Liao et al.’s approach (PSNR: p = 0.0187, SSIM: p = 0.0256). 

These results quantitatively demonstrate the superior 

performance of our method across all key metrics. 

Through comprehensive failure case analysis, we 

identified several important limitations of the current 

implementation. Performance degradation was observed in 

high-noise environments, with extraction accuracy falling 

below 85% when image SNR dropped below 15dB. Highly 

uniform regions, such as lung cavities, presented challenges 

for capacity optimization, while highly textured areas 

occasionally produced visible artifacts under maximum 

embedding conditions. Computational constraints became 

evident when processing ultra-high-resolution images 

(>2048×2048), particularly in real-time applications. 

Modality-specific challenges included speckle noise 

interference in ultrasound images and reduced algorithm 

stability in nuclear medicine images due to inherently low 

signal-to-noise ratios. 

We further conducted a comprehensive security 

assessment of AdaptiveMedStego, including its resistance to 

multiple steganalysis attacks. Using state-of-the-art 

steganalysis tools, we found that our method maintained a 

low detection rate of 5.2% at 0.45 bpp embedding capacity, 

significantly outperforming traditional methods which 

averaged 9.8% detection under the same conditions. This 

advantage is primarily attributed to our adaptive embedding 

strategy and the multi-resolution characteristics of the 

wavelet transform, which makes the embedding process 

more closely aligned with natural image properties. In terms 

of robustness, AdaptiveMedStego demonstrated significant 

resistance to common image processing operations including 

JPEG compression, Gaussian noise, and median filtering, 

maintaining data extraction accuracy above 99.2% for 

compression quality factors not below 65. 

We also evaluated the preservation of diagnostic accuracy, 

which is crucial in medical image steganography. Working 

with three radiologists having 5-15 years of experience, we 

had them independently assess the diagnostic value of 

original and steganographic images. Results showed that at 

an embedding rate of 0.52 bpp, the diagnostic consistency 

score reached 98.7%, indicating that critical diagnostic 

features remained fully recognizable even with slightly 

reduced image quality. The radiologists were unable to 

reliably distinguish between original and steganographic 

images in blind evaluations, further confirming the 

exceptional performance of our method in preserving 

diagnostic value. 

Regarding clinical workflow integration, we evaluated the 

compatibility of AdaptiveMedStego with mainstream 

medical imaging systems. Experimental results showed that 

the method can be seamlessly integrated into DICOM 

workflows, maintaining full compatibility with PACS 

systems, with additional processing time adding only 4.3% 

to existing workflow durations. Through end-to-end testing 

on 100 different medical cases, we validated the feasibility 

of implementing embedding and extraction processes in real 

clinical environments, with an average processing time of 
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0.78 seconds for 1024×1024 resolution images, fully 

meeting the requirements for real-time clinical processing. 

To validate the scalability of the method, we conducted 

large-scale testing using over 5000 images from four 

different medical imaging datasets. Results showed that 

AdaptiveMedStego exhibited stable performance across 

various imaging conditions and image content, with 

performance metric standard deviations remaining low 

(PSNR standard deviation of 0.42dB, SSIM standard 

deviation of 0.0008). This consistency is critical for clinical 

applications, demonstrating that the method can adapt to the 

diversity and complexity of real medical images. 

The summary table above provides an overview of the 

comparative performance across all evaluated methods. 

AdaptiveMedStego demonstrates superior performance in 

most metrics, particularly in embedding capacity and image 

quality preservation. AdaptiveMedStego achieves the 

highest average embedding capacity across all tested 

medical image modalities, significantly outperforming 

traditional methods. As evident from Fig. 3, our method 

consistently achieves higher bits per pixel (bpp) compared to 

other techniques, with a notable improvement in CT and 

MRI modalities. The adaptive region selection strategy of 

AdaptiveMedStego allows for optimized capacity utilization, 

particularly in non-critical image areas. The ability to 

maintain high image quality post-embedding is crucial in 

medical applications. Our results show that 

AdaptiveMedStego excels in this aspect. 

Fig. 4 illustrates the superior performance of 

AdaptiveMedStego in maintaining both high PSNR and 

SSIM values across various modalities. Notably, our method 

consistently outperforms Parah et al. [6] and Karakus and 

Avci [27] in quality preservation, especially in critical 

diagnostic regions. Resistance to common image processing 

operations is essential for practical applications of 

steganography in medical imaging. 

The radar chart in Fig. 5 demonstrates that 

AdaptiveMedStego exhibits robust performance against 

various attacks, particularly excelling in resistance to JPEG 

compression and Gaussian noise. While the method by Liao 

et al. [28] shows comparable robustness in some respects, 

our approach provides a more balanced resistance across all 

tested perturbations. Balancing performance with 

computational requirements is crucial for real-world 

applications. 

As shown in Fig. 6, AdaptiveMedStego strikes an optimal 

balance between performance and computational cost. 

While not as lightweight as Karakus and Avci’s method [27], 

it significantly outperforms the computationally intensive 

approaches of Sukumar et al. [29] and Abd El-Latif et al. 

[30], especially for larger image sizes. A key strength of 

AdaptiveMedStego is its versatility across various medical 

imaging modalities. 

The heatmap in Fig. 7 clearly illustrates the superior 

adaptability of AdaptiveMedStego across CT, MRI, X-ray, 

and Ultrasound modalities. This versatility is a significant 

advantage over methods like [6] and [27], which show 

optimal performance only in specific modalities. 

B. Unique Advantages of Wavelet Transform in Medical 

Image Steganography 

The wavelet transforms, as implemented in 

AdaptiveMedStego, demonstrates several unique 

advantages in the context of medical image steganography. 

This section elucidates these advantages through a series of 

comparative experiments against non-wavelet-based 

methods. 

 

Multi-resolution Analysis Capability 

The multi-resolution analysis capability of the wavelet 

transform proves particularly advantageous in medical 

image steganography, where image resolutions can vary 

significantly across different modalities and acquisition 

parameters. Figure 8 illustrates the performance of 

AdaptiveMedStego compared to a non-wavelet method 

across various image resolutions. The wavelet-based 

approach maintains consistently higher PSNR values, 

especially as resolution increases. This superiority is 

attributed to the wavelet transform's ability to adaptively 

decompose the image into multiple levels, allowing for more 

nuanced data embedding that aligns with the image's 

inherent structure at different scales. Such capability is 

crucial in medical imaging, where preserving diagnostic 

quality across various resolutions is paramount. 

 

Frequency Domain Adaptability 

Medical images from different modalities exhibit distinct 

frequency characteristics, necessitating a steganographic 

method that can adapt to these variations. As evident from 

Fig. 9, AdaptiveMedStego demonstrates superior SSIM 

values across CT, MRI, and X-ray modalities compared to 

the non-wavelet method. This performance can be attributed 

to the wavelet transform’s ability to decompose the image 

into various frequency subbands. By selectively embedding 

data in appropriate subbands, AdaptiveMedStego can adapt 

to the unique frequency characteristics of each modality, 

thereby minimizing perceptual distortions and maintaining 

diagnostic integrity. 

 

Noise Resistance 

Robustness against noise is a critical factor in medical 

image steganography, given the potential for image 

degradation during transmission or storage. Figure 10 

compares the data extraction accuracy of AdaptiveMedStego 

and a non-wavelet method under various noise levels. The 

wavelet-based approach exhibits superior noise resistance, 

maintaining higher accuracy even as noise levels increase. 

This resilience stems from the wavelet transform’s inherent 

denoising properties and its ability to concentrate signal 

energy in specific coefficients, allowing for more robust data 

embedding and extraction in noisy environments. 
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Computational Efficiency 

In clinical settings, where large volumes of medical 

images are processed daily, the computational efficiency of 

steganographic methods is of paramount importance. Figure 

11 demonstrates the superior computational efficiency of 

AdaptiveMedStego compared to the non-wavelet method as 

the number of processed images increases. The wavelet 

transform’s efficiency in representing image information 

allows for faster processing times, particularly evident in 

large-scale applications. This advantage is crucial for the 

practical implementation of steganographic techniques in 

real-world medical workflows, where timely processing is 

often critical. 

In conclusion, the wavelet transform, as implemented in 

AdaptiveMedStego, offers multifaceted advantages in 

medical image steganography. Its multi-resolution analysis 

capability ensures consistent performance across various 

image resolutions, while its frequency domain adaptability 

allows for modality-specific optimization. The enhanced 

noise resistance and computational efficiency further 

solidify its suitability for real-world medical applications. 

These advantages collectively position wavelet-based 

techniques, particularly AdaptiveMedStego, as a robust and 

versatile solution for secure medical data embedding, 

addressing the diverse challenges posed by different medical 

imaging modalities and clinical scenarios. 

C. Trade-off Analysis 

In medical image steganography, striking an optimal 

balance between embedding capacity, image quality, and 

preservation of diagnostic value is crucial. This section 

presents a comprehensive analysis of these interrelated 

factors, demonstrating how AdaptiveMedStego navigates 

this complex trade-off. To visualize this multifaceted 

relationship, we conducted a series of experiments varying 

the embedding capacity and measuring its impact on both 

overall image quality and diagnostic value preservation. The 

results are presented in Fig. 12. 

Fig. 12 illustrates the intricate relationship between 

embedding capacity (measured in bits per pixel, bpp), image 

quality (measured by PSNR), and preservation of diagnostic 

value (represented by diagnostic accuracy). As embedding 

capacity increases, both PSNR and diagnostic accuracy 

show a declining trend. This inverse relationship 

underscores the fundamental challenge in steganography: 

increasing data payload often comes at the cost of image 

fidelity. The decline in both PSNR and diagnostic accuracy 

is non-linear. Initially, small increases in embedding capacity 

result in minimal degradation. However, beyond a certain 

threshold (approximately 0.4 bpp in our data), the rate of 

quality deterioration accelerates. Notably, the impact on 

diagnostic accuracy is less severe than on PSNR for lower 

embedding capacities. This suggests that AdaptiveMedStego 

effectively prioritizes the preservation of diagnostically 

relevant features even when overall image quality begins to 

degrade. The graph reveals an optimal operating range 

between 0.2 and 0.4 bpp, where high diagnostic accuracy 

(>98.5%) is maintained with acceptable PSNR levels (>41 

dB). This range represents the sweet spot for balancing 

security needs with clinical utility. AdaptiveMedStego’s 

performance curve demonstrates its ability to adaptively 

manage this trade-off. By employing region-specific 

embedding strategies, it maintains high diagnostic accuracy 

even at increased capacities, outperforming traditional 

methods that often show a more rapid decline in image 

quality and diagnostic value. 

The ability of AdaptiveMedStego to maintain high 

diagnostic accuracy even as PSNR decreases is particularly 

noteworthy. This characteristic is attributed to its wavelet-

based approach, which allows for more intelligent data 

embedding that preserves crucial image features. The 

method’s adaptive nature enables it to concentrate data in 

less diagnostically significant regions, thereby minimizing 

the impact on critical image areas. However, it is important 

to note that beyond 0.6 bpp, both image quality and 

diagnostic accuracy begin to deteriorate more rapidly. This 

suggests a practical upper limit for embedding capacity in 

medical applications, beyond which the risks to diagnostic 

integrity become more pronounced. 

D. Ablation Study 

To demonstrate the individual contributions of 

AdaptiveMedStego’s core components, we conducted an 

ablation study. We evaluated several variants of our method: 

(i) the full AdaptiveMedStego system; (ii) 

AdaptiveMedStego without the SVD-QR secure embedding 

module (SVD-QR removed, embedding directly into 

wavelet coefficients using adaptive thresholds); (iii) 

AdaptiveMedStego without the Medical Region Adaptive 

Embedding Strategy (uniform embedding strength across the 

image, not distinguishing critical diagnostic regions); and (iv) 

AdaptiveMedStego without the AI-Friendly Feature 

Preservation mechanism (no AI saliency map guidance). 

These variants were tested on a representative subset of the 

LIDC-IDRI (CT) and IXI (MRI) datasets, using metrics such 

as embedding capacity (bpp), PSNR (dB), SSIM, and 

steganalysis detection probability ( 𝑃𝐷 ) using a standard 

spatial rich model (SRM) steganalyser. 

The results, summarized in Fig. 13, highlight the 

importance of each component. Removing the SVD-QR 

module led to a noticeable increase in 𝑃𝐷 (from 0.052 for 

the full system to approximately 0.15), indicating a 

significant reduction in security against steganalysis, 

although capacity and PSNR/SSIM remained relatively 

stable. Disabling the Medical Region Adaptive Embedding 

Strategy resulted in a drop in PSNR, particularly in images 

with distinct diagnostic regions, and a less optimal trade-off 

between capacity and image quality, as embedding could not 

be intelligently biased towards non-critical areas. The 

absence of AI-Friendly Feature Preservation, while having a 

smaller impact on general PSNR/SSIM, showed a potential 

decrease in the preservation of subtle features important for 

AI diagnostic models (evaluated qualitatively and with a 
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proxy AI model performance metric on a small subset, not 

fully detailed here due to space but indicating a trend). The 

full AdaptiveMedStego system consistently demonstrated 

the best balance across all metrics, underscoring the 

synergistic effect of its integrated components. This study 

confirms that each key design choice in AdaptiveMedStego 

contributes meaningfully to its overall superior performance 

in terms of capacity, image quality, security, and diagnostic 

utility. 

E. Resilience Against Advanced Deep Learning-Based 

Steganalysis 

The security evaluation in Section IV.B primarily focused 

on traditional steganalysis. To further assess 

AdaptiveMedStego’s robustness, we conducted experiments 

against a state-of-the-art deep learning-based steganalyser. 

We selected Yedroudj-Net [31], a well-known CNN 

designed for spatial domain steganalysis, as it has shown 

high accuracy in detecting various steganographic methods. 

We trained Yedroudj-Net on a dataset comprising original 

medical images and images embedded with data using 

AdaptiveMedStego and two leading comparative methods 

(Parah et al. [6] and Liao et al. [28]) at an embedding rate of 

0.4 bpp. A separate, unseen test set was used for evaluation, 

and the primary metric was the Acc and the Area AUC. 

Fig. 14 presents the comparative results. 

AdaptiveMedStego demonstrated significantly higher 

resilience against Yedroudj-Net compared to the other 

methods. While Parah et al. [6] and Liao et al. [28] were 

detected with accuracies of 78% (AUC 0.85) and 72% (AUC 

0.81) respectively, steganographic images generated by 

AdaptiveMedStego were detected with an accuracy of only 

61% (AUC 0.67). This lower detection rate for 

AdaptiveMedStego can be attributed to its multi-faceted 

approach: the adaptive wavelet decomposition spreads 

embedding modifications across various frequencies, the 

SVD-QR mechanism further diffuses data within selected 

subbands, and the region-adaptive strategy mimics natural 

image texture variations more closely, especially in non-

critical regions where more data is embedded. These 

characteristics make it more challenging for deep learning 

models, which learn statistical footprints of embedding, to 

distinguish AdaptiveMedStego’s stego images from original 

cover images. This experiment underscores the enhanced 

security provided by AdaptiveMedStego against 

sophisticated, learning-based attacks. 

F. Performance Evaluation on Challenging Ultrasound 

Image Datasets 

While AdaptiveMedStego has shown strong performance 

on CT and MRI datasets, ultrasound imaging presents unique 

challenges due to inherent speckle noise and often lower 

contrast, which can affect both embedding capacity and the 

imperceptibility of hidden data. To evaluate our method’s 

efficacy under such conditions, we utilized a publicly 

available dataset of abdominal ultrasound images [32], 

known for its variability in image quality and presence of 

speckle. We embedded synthetic clinical data of varying 

lengths (0.1 bpp to 0.5 bpp) using AdaptiveMedStego and 

compared its performance with Karakus and Avci [27], a 

method also tested on medical images. Key evaluation 

metrics were PSNR, SSIM, and a qualitative assessment of 

diagnostic feature preservation by an experienced 

sonographer on a subset of 50 stego-images. 

The results, partially illustrated in Fig. 15, demonstrate 

AdaptiveMedStego’s adaptability to the challenging 

characteristics of ultrasound imagery. Our method 

consistently achieved higher PSNR and SSIM values 

compared to Karakus and Avci [27] across different 

embedding rates. For instance, at 0.3 bpp, 

AdaptiveMedStego maintained an average PSNR of 39.5 dB 

and SSIM of 0.975, whereas Karakus and Avci achieved 37.2 

dB and 0.961, respectively. Crucially, the qualitative 

assessment revealed that AdaptiveMedStego, due to its 

wavelet-based adaptive thresholding and region-specific 

embedding, was better at preserving subtle textural details 

and avoiding artifact introduction in diagnostically relevant 

areas, even in noisy US images. The sonographer reported 

no significant loss of diagnostic information in images 

processed by AdaptiveMedStego up to 0.4 bpp. This 

experiment highlights the robustness and versatility of 

AdaptiveMedStego, extending its applicability to more 

challenging imaging modalities like ultrasound, thereby 

broadening its potential clinical utility. 

G. Verification of AI-based Diagnostic Compatibility 

To validate the AI-friendly design of AdaptiveMedStego, 

we conducted a direct evaluation of its impact on an AI-

based diagnostic task. We employed a pre-trained U-Net 

model for lung nodule segmentation on a test set of 200 CT 

images from the LIDC-IDRI dataset. The model's 

performance was first benchmarked on the original, 

unmodified images. Subsequently, we generated 

steganographic versions of these images using 

AdaptiveMedStego at embedding capacities of 0.2, 0.4, and 

0.6 bpp. The same U-Net model was then used to perform 

segmentation on these stego-images without retraining. We 

compared key segmentation performance metrics: the Dice 

Similarity Coefficient (DSC) and the Intersection over 

Union (IoU). 

As illustrated in Fig. 16, the performance of the AI model 

remained remarkably stable. On the original images, the 

model achieved a mean DSC of 0.88 and an IoU of 0.79. For 

stego-images at 0.4 bpp, the DSC was 0.87 and the IoU was 

0.78, a statistically insignificant change (p > 0.05). Even at 

a high capacity of 0.6 bpp, the model maintained a high DSC 

of 0.85. This stability is attributed to our AI-guided 

embedding modulator (Eq. 34), which minimizes 

modifications in regions identified as critical by AI saliency 

maps. The experiment provides strong evidence that 

AdaptiveMedStego can be integrated into clinical workflows 

that rely on AI-powered diagnostic tools without 

compromising their accuracy. 
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H. Data Integrity and Reversibility Analysis 

The reversibility of a data hiding technique is a non-

negotiable requirement for many medical applications, as the 

original, pristine image must be perfectly recoverable for 

legal and diagnostic archival purposes. We conducted an 

experiment to verify the lossless nature of 

AdaptiveMedStego’s reversible data hiding mechanism 

(Section III.E). Using a sample of 100 images from each of 

the CT and MRI datasets, we embedded a pseudo-random 

data payload at the maximum capacity determined by our 

algorithm for each image. After embedding, the data was 

extracted, and the cover image was reconstructed. 

The results, shown in Fig. 17, confirm the perfect 

reversibility of our method. For every single test case, the 

extracted data was identical to the original embedded 

payload, resulting in a Bit Error Rate (BER) of 0%. 

Furthermore, the reconstructed cover image was compared 

to the original image. The Mean Squared Error (MSE) was 

0, leading to an infinite Peak Signal-to-Noise Ratio (PSNR), 

and the Structural Similarity Index (SSIM) was exactly 1.0. 

This perfect, bit-for-bit reconstruction is achieved because 

our method carefully records all modification locations and 

overflow data as compressed auxiliary information, which is 

used to precisely reverse the embedding process. This 

experiment unequivocally demonstrates that 

AdaptiveMedStego meets the stringent requirement of 

perfect reversibility for sensitive medical imaging 

applications. 

VI. CONCLUSION 

Our comprehensive study of AdaptiveMedStego revealed 

significant advancements in medical image steganography. 

The method consistently outperformed traditional 

approaches in key metrics, showing higher PSNR values and 

increased embedding capacities. The wavelet-based 

approach demonstrated excellent adaptability across CT, 

MRI, X-ray, and ultrasound images, maintaining high SSIM 

values throughout. Notably, AdaptiveMedStego effectively 

managed the trade-off between embedding capacity and 

image quality, preserving diagnostic accuracy even at higher 

embedding rates. Computationally, the method processed 

large medical image datasets efficiently while maintaining 

steganographic integrity. 

AdaptiveMedStego’s innovation lies in several key 

features. Its intelligent identification and prioritization of 

non-diagnostic regions for data embedding preserves 

clinical value. The wavelet transforms integration 

enables effective handling of various image resolutions and 

modalities, providing versatility across medical imaging 

environments. The combination of SVD and QR 

decomposition with wavelet transform creates an enhanced 

security framework with improved resistance to steganalysis. 

The method’s compatibility with AI-based diagnostic tools 

preserves features essential for automated analysis, while its 

performance across different image types indicates strong 

scalability and potential for diverse clinical applications. 

Despite these advances, AdaptiveMedStego has 

limitations. It requires more computational resources than 

simpler techniques, potentially limiting use in resource-

constrained settings. While adaptable to various modalities, 

performance could benefit from modality-specific 

optimizations. The current implementation may face 

challenges with extremely large datasets, suggesting a need 

for big data optimization. Applications requiring real-time 

processing, such as live medical imaging, may encounter 

limitations. Finally, ongoing assessment of compliance with 

evolving healthcare data protection regulations will be 

necessary. 

 

 

Fig. 1. Block diagram of the AdaptiveMedStego. 
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Algorithm 1: Multi-level Wavelet Transform and Adaptive Threshold Selection 

function AdaptiveWaveletSteganography (image, secret_data): 

     𝐿𝑚𝑎𝑥 = 𝑓𝑙𝑜𝑜𝑟 (𝑙𝑜𝑔2(𝑚𝑖𝑛(𝑖𝑚𝑎𝑔𝑒. 𝑤𝑖𝑑𝑡ℎ, 𝑖𝑚𝑎𝑔𝑒. ℎ𝑒𝑖𝑔ℎ𝑡))) 

     𝐿𝑜𝑝𝑡 = 𝐿𝑚𝑎𝑥 

     for 𝑗 =  1 to 𝐿𝑚𝑎𝑥: 

       [𝐿𝐿, 𝐿𝐻, 𝐻𝐿, 𝐻𝐻] = 𝑊𝑎𝑣𝑒𝑙𝑒𝑡𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑒(𝑖𝑚𝑎𝑔𝑒, 𝑗) 

     𝐸𝑗 = 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐸𝑛𝑒𝑟𝑔𝑦𝑅𝑎𝑡𝑖𝑜(𝐿𝐿, 𝐿𝐻, 𝐻𝐿, 𝐻𝐻) 

       𝑆𝑆𝐼𝑀𝑗 = 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑆𝑆𝐼𝑀(𝑖𝑚𝑎𝑔𝑒, 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝐼𝑚𝑎𝑔𝑒(𝐿𝐿, 𝐿𝐻, 𝐻𝐿, 𝐻𝐻)) 

       if 𝐸𝑗 < 𝑇𝐸𝑜𝑟𝑆𝑆𝐼𝑀𝑗 < 𝑇𝑆𝑆𝐼𝑀: 

          𝐿𝑜𝑝𝑡 = 𝑗 − 1 

         break 

     α = SelectAdaptiveParameter() 

     𝐿𝑓𝑖𝑛𝑎𝑙 = 𝑟𝑜𝑢𝑛𝑑(𝛼 ∗ 𝐿𝑜𝑝𝑡 + (1 − 𝛼) ∗ 𝐿𝑚𝑎𝑥) 

     for 𝑗 =  1 to 𝐿𝑓𝑖𝑛𝑎𝑙: 

        [𝐿𝐿, 𝐿𝐻, 𝐻𝐿, 𝐻𝐻] = 𝑊𝑎𝑣𝑒𝑙𝑒𝑡𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑒(𝑖𝑚𝑎𝑔𝑒, 𝑗) 

        for each subband 𝑆 in [𝐿𝐻, 𝐻𝐿, 𝐻𝐻]: 

            for each coefficient (𝑥, 𝑦) in 𝑆: 

                𝜎𝑗 = 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐿𝑜𝑐𝑎𝑙𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑆, 𝑥, 𝑦) 

                𝑇𝑗 = 𝑘 ∗ 𝜎𝑗 ∗ (1 − 𝑒𝑥𝑝(−𝜆 ∗ |𝑆(𝑥, 𝑦)|)) 

                𝑤𝑗 = 2(−𝑗/2) 

                𝑇𝑓𝑖𝑛𝑎𝑙𝑗
= 𝑤𝑗 ∗ 𝑇𝑗  

               𝑇𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝑗
= 𝑇𝑓𝑖𝑛𝑎𝑙𝑗

∗ (1 + 𝛽 ∗ (1 − 𝑆𝑆𝐼𝑀𝑗)) ∗ (1 + 𝛾 ∗ 𝐸𝑗) 

               𝐸𝑚𝑏𝑒𝑑𝑑𝑎𝑏𝑙𝑒𝐵𝑖𝑡𝑠 = 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝐸𝑚𝑏𝑒𝑑𝑑𝑎𝑏𝑙𝑒𝐵𝑖𝑡𝑠 (𝑆(𝑥, 𝑦), 𝑇𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝑗
) 

               𝐸𝑚𝑏𝑒𝑑𝐷𝑎𝑡𝑎(𝑆, 𝑥, 𝑦, 𝑠𝑒𝑐𝑟𝑒𝑡𝑑𝑎𝑡𝑎, 𝐸𝑚𝑏𝑒𝑑𝑑𝑎𝑏𝑙𝑒𝐵𝑖𝑡𝑠) 

       𝑠𝑡𝑒𝑔𝑜𝑖𝑚𝑎𝑔𝑒 = 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝑊𝑎𝑣𝑒𝑙𝑒𝑡𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝐿𝐿, 𝐿𝐻, 𝐻𝐿, 𝐻𝐻) 

       return stego_image 
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Algorithm 2: SVD-QR Secure Embedding and Extraction (SQSEE) 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑆𝑄𝑆𝐸𝐸𝐸𝑚𝑏𝑒𝑑(𝑊, 𝑆, 𝐾): 

    𝑈, 𝑆, 𝑉 = 𝑆𝑉𝐷(𝑊) 

    𝑄, 𝑅 =  𝑄𝑅(𝑆) 

    𝐾𝑖 = 𝐾𝑋𝑂𝑅𝐻𝑎𝑠ℎ(𝑊) 

    𝑆𝑒𝑐𝑐 = 𝑅𝑒𝑒𝑑𝑆𝑜𝑙𝑜𝑚𝑜𝑛𝐸𝑛𝑐𝑜𝑑𝑒(𝑆, 𝑡) 

    𝐴 = 𝐻𝑎𝑠ℎ𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑊, 𝑆, 𝐾𝑖) 

    𝑏𝑙𝑜𝑐𝑘𝑠 = 𝐷𝑖𝑣𝑖𝑑𝑒𝐼𝑛𝑡𝑜𝐵𝑙𝑜𝑐𝑘𝑠(𝑅) 

    for each block B in blocks: 

        𝛼 = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝐵) 

        for each 𝑟 in B: 

            𝑑 = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐷𝑖𝑡ℎ𝑒𝑟(𝐾𝑖) 

            𝑘 = 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝐸𝑚𝑏𝑒𝑑𝑑𝑎𝑏𝑙𝑒𝐵𝑖𝑡𝑠(𝑟, 𝑇) 

            𝑑𝑎𝑡𝑎 = 𝐺𝑒𝑡𝑁𝑒𝑥𝑡𝐵𝑖𝑡𝑠(𝑆𝑒𝑐𝑐 + 𝐴, 𝑘) 

            𝑟′ = 𝑟 + 𝛼 ∗ 𝑑 ∗ 𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑒(𝑑𝑎𝑡𝑎) 

        𝐵′ =  𝐵𝑖𝑡𝑃𝑙𝑎𝑛𝑒𝑆𝑤𝑎𝑝(𝐵, 𝐾_{𝑖}) 

    𝑅′ = 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝐹𝑟𝑜𝑚𝐵𝑙𝑜𝑐𝑘𝑠(𝑏𝑙𝑜𝑐𝑘𝑠) 

    𝑊′ =  𝑈 ∗  (𝑄 ∗  𝑅′)  ∗  𝑉^𝑇 

    return 𝑊′ 

function 𝑆𝑄𝑆𝐸𝐸𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝑊′, 𝐾): 

    𝑈, 𝑆′, 𝑉 = 𝑆𝑉𝐷(𝑊′) 

    𝑄, 𝑅′ =  𝑄𝑅(𝑆′) 

    𝐾_{𝑖}  =  𝐾 𝑋𝑂𝑅 𝐻𝑎𝑠ℎ(𝑊′) 

    𝑏𝑙𝑜𝑐𝑘𝑠 = 𝐷𝑖𝑣𝑖𝑑𝑒𝐼𝑛𝑡𝑜𝐵𝑙𝑜𝑐𝑘𝑠(𝑅′) 

    𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝑑𝑎𝑡𝑎 = [ ] 

    for each block 𝐵′ in blocks: 

        𝐵 = 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝐵𝑖𝑡𝑃𝑙𝑎𝑛𝑒𝑆𝑤𝑎𝑝(𝐵′, 𝐾𝑖) 

        𝛼 = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝐵) 

        for each 𝑟′ in 𝐵: 

            𝑑 = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐷𝑖𝑡ℎ𝑒𝑟(𝐾𝑖) 

            𝑘 = 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝐸𝑚𝑏𝑒𝑑𝑑𝑎𝑏𝑙𝑒𝐵𝑖𝑡𝑠(𝑟′, 𝑇) 

            𝑑𝑎𝑡𝑎 = 𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝑟′, 𝛼, 𝑑, 𝑘) 

            𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝑑𝑎𝑡𝑎.𝑎𝑝𝑝𝑒𝑛𝑑(𝑑𝑎𝑡𝑎) 

    𝑆𝑒𝑐𝑐 , 𝐴 = 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝐷𝑎𝑡𝑎(𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝑑𝑎𝑡𝑎) 

    𝑆 = 𝑅𝑒𝑒𝑑𝑆𝑜𝑙𝑜𝑚𝑜𝑛𝐷𝑒𝑐𝑜𝑑𝑒(𝑆𝑒𝑐𝑐) 

    𝑖𝑓 𝐻𝑎𝑠ℎ𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑊′, 𝑆, 𝐾_{𝑖})  ==  𝐴: 

        return S 

    else: 

        return "Authentication Failed" 
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Algorithm 3: Reversible Data Hiding (RDH) 

function 𝑅𝐷𝐻𝐸𝑚𝑏𝑒𝑑(𝐼, 𝐷, 𝑅𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙): 

    𝐴 = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐴𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦𝐷𝑎𝑡𝑎(𝐼, 𝑅𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙) 

    𝐴𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 = 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝐷𝑎𝑡𝑎(𝐴) 

    𝐼𝑚𝑎𝑟𝑘𝑒𝑑 = 𝐸𝑚𝑏𝑒𝑑𝐿𝑆𝐵(𝐼, 𝐴𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑) 

    for each suitable pixel pair (𝑥, 𝑦) in 𝐼𝑚𝑎𝑟𝑘𝑒𝑑: 

        𝑑 =  𝑥 −  𝑦 

        𝑚 =  (𝑥 +  𝑦) / 2 

        𝑏 =  𝐺𝑒𝑡𝑁𝑒𝑥𝑡𝐵𝑖𝑡(𝐷) 

        𝑑′ =  2𝑑 +  𝑏 

        𝑥′ =  𝑚 + (𝑑′ +  1) / 2 

        𝑦′ =  𝑚 −  𝑑′ / 2 

        𝑈𝑝𝑑𝑎𝑡𝑒𝐼𝑚𝑎𝑔𝑒(𝐼𝑚𝑎𝑟𝑘𝑒𝑑 , 𝑥′, 𝑦′) 

    return 𝐼𝑚𝑎𝑟𝑘𝑒𝑑 

function 𝑅𝐷𝐻𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝐼𝑚𝑎𝑟𝑘𝑒𝑑): 

    𝐴𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 = 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝐿𝑆𝐵(𝐼𝑚𝑎𝑟𝑘𝑒𝑑) 

    𝐴 = 𝐷𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝐷𝑎𝑡𝑎(𝐴𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑) 

    𝐼 = 𝑅𝑒𝑠𝑡𝑜𝑟𝑒𝐼𝑚𝑎𝑔𝑒(𝐼𝑚𝑎𝑟𝑘𝑒𝑑 , 𝐴) 

    𝐷 = 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝐷𝑎𝑡𝑎(𝐼𝑚𝑎𝑟𝑘𝑒𝑑 , 𝐴) 

return 𝐼, 𝐷 

 

 

Algorithm 4: Adaptive Cross-Modal AI-Friendly Steganography (ACMAFS) 

function 𝐴𝐶𝑀𝐴𝐹𝑆𝐸𝑚𝑏𝑒𝑑(𝐼, 𝐷, 𝐴𝐼𝑀𝑜𝑑𝑒𝑙): 

    𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦 =  𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑦𝑀𝑜𝑑𝑎𝑙𝑖𝑡𝑦(𝐼) 

    𝑏𝑎𝑠𝑒𝑝𝑎𝑟𝑎𝑚𝑠 = 𝐺𝑒𝑡𝐵𝑎𝑠𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠(𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦) 

    features = ExtractModalityInvariantFeatures (I) 

    𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝑝𝑎𝑟𝑎𝑚𝑠 = 𝐴𝑑𝑗𝑢𝑠𝑡𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠(𝑏𝑎𝑠𝑒𝑝𝑎𝑟𝑎𝑚𝑠 , 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) 

    𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦𝑚𝑎𝑝 = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐴𝐼𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑦(𝐼, 𝐴𝐼𝑀𝑜𝑑𝑒𝑙) 

    for each pixel (𝑥, 𝑦) in 𝐼: 

        𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ = 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝑝𝑎𝑟𝑎𝑚𝑠.𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ ∗ 𝜀(𝑥, 𝑦) 

        𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ
 ∗= (1 − 𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦𝑚𝑎𝑝[𝑥, 𝑦]) 

        𝐼𝑠𝑡𝑒𝑔𝑜[𝑥, 𝑦] = 𝐸𝑚𝑏𝑒𝑑𝐷𝑎𝑡𝑎(𝐼[𝑥, 𝑦], 𝐷, 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ) 

    Q = EvaluateQuality(𝐼, 𝐼𝑠𝑡𝑒𝑔𝑜 , 𝐴𝐼𝑀𝑜𝑑𝑒𝑙) 

    if 𝑄 <  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑: 

        return 𝐴𝐶𝑀𝐴𝐹𝑆𝐸𝑚𝑏𝑒𝑑(𝐼, 𝐷, 𝐴𝐼𝑀𝑜𝑑𝑒𝑙)with adjusted parameters 

    return I_stego 

function 𝐴𝐶𝑀𝐴𝐹𝑆𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝐼𝑠𝑡𝑒𝑔𝑜 , 𝐴𝐼𝑀𝑜𝑑𝑒𝑙): 

    modality = IdentifyModality(I_stego) 

    𝑝𝑎𝑟𝑎𝑚𝑠 = 𝐼𝑛𝑓𝑒𝑟𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠(𝐼𝑠𝑡𝑒𝑔𝑜 , 𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦) 

    𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦𝑚𝑎𝑝 = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐴𝐼𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑦(𝐼𝑠𝑡𝑒𝑔𝑜 , 𝐴𝐼𝑀𝑜𝑑𝑒𝑙) 

    D = [] 

    for each pixel (𝑥, 𝑦) in 𝐼𝑠𝑡𝑒𝑔𝑜 : 

        𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ = 𝑝𝑎𝑟𝑎𝑚𝑠. 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ ∗ 𝜀(𝑥, 𝑦) 

        𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ ∗= (1 − 𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦𝑚𝑎𝑝[𝑥, 𝑦]) 

        𝑑𝑎𝑡𝑎 = 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝐷𝑎𝑡𝑎(𝐼𝑠𝑡𝑒𝑔𝑜[𝑥, 𝑦], 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ) 

        D.append(data) 

return D 
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Fig. 2. Illustration of the AdaptiveMedStego experimental workflow. 

 

TABLE I 

SUMMARY OF PERFORMANCE METRICS FOR ALL METHODS 

Method Embedding Capacity (bpp) PSNR (dB) SSIM Robustness Score (0-1) Execution Time (s) 

AdaptiveMedStego 0.52 42.8 0.9985 0.89 0.78 

Parah et al. [6] 0.48 41.2 0.9972 0.82 0.65 

Karakus and Avci [27] 0.43 40.5 0.9968 0.78 0.52 

Liao et al. [28] 0.50 41.9 0.9978 0.85 0.91 

Sukumar et al. [29] 0.49 42.3 0.9981 0.87 1.24 

Abd El-Latif et al. [30] 0.45 41.5 0.9974 0.90 1.37 
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Fig. 3. Bar graph of embedding capacity across different modalities. 

 

Fig. 4. Scatter plot of PSNR vs. SSIM for all methods. 
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Fig. 5. Radar chart of robustness against different attacks. 

 

 

Fig. 6. Line graph of execution time vs. image size. 
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Fig. 7. Heatmap of performance across different modalities. 

 

 

 

Fig. 8. PSNR vs Image Resolution. 
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Fig. 9. SSIM Comparison Across Different Modalities. 

 

 

Fig. 10. Noise Resistance Comparison. 

 

Fig. 11. Computational Efficiency Comparison. 
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Fig. 12. Trade-off between Embedding Capacity, Image Quality, and Diagnostic Value. 

 

 

Fig. 13. Impact of Components on Performance Metrics. 
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Fig. 14. ROC curves comparing the resilience of AdaptiveMedStego against Parah et al. [6] and Liao et al. [28] when subjected to deep learning-based 

steganalysis (Yedroudj-Net). 

 

 

Fig. 15. Performance comparison on challenging ultrasound image dataset: (Top) PSNR vs. Embedding Capacity and (Bottom) SSIM vs. Embedding Capacity 

for AdaptiveMedStego and Karakus and Avci [27]. AdaptiveMedStego consistently maintains higher PSNR and SSIM values across various embedding rates, 

demonstrating its superior image quality preservation and adaptability to noisy US imagery. 
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Fig. 16. Impact of AdaptiveMedStego on AI-based lung nodule segmentation. The Dice Similarity Coefficient (DSC) and Intersection over Union (IoU) of a 

pre-trained U-Net model show negligible decline when operating on stego-images with embedding capacities up to 0.4 bpp, and only a minor drop at 0.6 bpp. 

This demonstrates the effectiveness of the AI-friendly feature preservation mechanism in maintaining diagnostic integrity for automated systems. 

 

 

Fig. 17. Verification of reversibility and data integrity. The graph confirms that for all tested images, the Bit Error Rate (BER) of the extracted payload is zero, 

and the Structural Similarity Index (SSIM) between the original and recovered cover images is 1, indicating perfect, lossless reconstruction. 
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