
 

  

Abstract—Short-term power load forecasts are designed to 

accurately predict electricity demand over the next few hours to 

days, to optimize the scheduling and operation of the power 

system. Forecasting accuracy is critical to the efficient dispatch 

and stable operation of the power system. To this end, this 

paper proposes a hybrid model for power load forecasting, 

which combines improved depthwise separable convolution and 

a temporal convolutional network. Specifically, this paper 

preprocesses the data, with missing values filled using the 

generative adversarial network. After data pre-processing, 

using the Pearson correlation coefficient to measure the degree 

of association of the data, and selecting appropriate exogenous 

variables. Long-term trends, seasonal fluctuations, and 

stochastic fluctuations in power load data are also extracted by 

seasonal decomposition algorithms. Secondly, the prediction 

model stacks multiple layers of depthwise separable 

convolutions, and the stacked depthwise separable convolutions 

are improved to incorporate an attention mechanism as well as 

residual connections, to perform feature extraction on power 

load data. Subsequently, time series features were processed in 

conjunction with a temporal convolutional network. Eventually, 

the prediction results are output through the fully connected 

layer. It is shown that the model outperforms other models in 

terms of load forecasting accuracy. 

 
Index Terms—Power load forecasting, generative adversarial 

network, DSC, temporal convolutional network 

 

I. INTRODUCTION 

OWER load forecasting is crucial in power system 

operation and management[1]. Power load forecasting 

relies on analyzing large-scale data, such as historical load 

records and meteorological conditions. Additionally, 

socio-economic factors, including population growth and 

economic development levels, must be considered. With a 

certain degree of accuracy, power load forecasting can 

predict future power usage for a given period[2]. Power load 
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forecasting can be used in the day-to-day operations of utility 

companies (suppliers)[3]. For example, it can support 

scheduling power generation, power transmission, and 

real-time energy dispatch. Short Term Load Forecasting 

(STLF) is the basis for power dispatch and planning, helping 

power companies to develop rational power generation plans, 

optimize grid operations, and ensure reliability and economic 

supply[4-6]. With the growing demand for energy in modern 

society, the importance of power load forecasting is 

becoming more and more prominent[7]. Scientific 

forecasting of power loads has become a pressing issue for 

power companies and grid operators[8]. Effective 

management of electricity demand, along with reduced grid 

volatility and fewer power supply interruptions, helps to 

guarantee people's quality of life. 

The accuracy of power load forecasting is critical to the 

efficient dispatch and stable operation of power systems. 

How to improve the accuracy of load forecasting has become 

the focus of research by scholars at home and abroad[9, 10]. 

New techniques and methods have been introduced at each 

stage of research development to improve the accuracy and 

reliability of forecasts. Earlier, statistical methods were 

widely used in power load forecasting. The foundation was 

laid by the AutoRegressive (AR) and Moving Average (MA) 

models proposed by George Box et al. On this basis, the 

Seasonal Autoregressive Integrated Moving Average Model 

(SARIMA) adds a seasonal component that can 

accommodate a variety of non-seasonal and seasonal 

patterns[11]. It can also be adapted to different characteristics 

of the time series, and this flexibility makes the SARIMA 

model suitable for a wide range of application scenarios[12, 

13]. 

With the development of artificial intelligence and 

machine learning technologies, power load forecasting has 

entered a new phase[14]. Widely used models include 

Support Vector Machines (SVM), Artificial Neural Networks 

(ANN), and others. SVM models are particularly good at 

handling high-dimensional data and non-linear classification 

problems. Their main advantages include effectively 

capturing non-linear relationships and high-dimensional 

features, as well as maintaining high prediction accuracy with 

small sample sizes[15, 16]. ANN models are widely used in 

the field of artificial intelligence and machine learning. 

Deep Learning (DL) is an important branch of artificial 

neural networks that emphasizes the use of multi-layer neural 

networks (deep neural networks, DNN) for feature extraction 

and representation learning[17]. Common deep learning 

models include Long Short-Term Memory (LSTM) 
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Networks, introduced by Hochreiter et al., and their 

applications in time series forecasting. LSTM networks solve 

the problem of gradient vanishing and explosion in Recurrent 

Neural Networks (RNN) by introducing a gating mechanism 

that captures temporal dependencies in the data[18, 19]. The 

use of memory units to store important temporal information 

significantly improves the network’s ability to handle 

long-term dependencies. In 2017, François Chollet 

introduced the concept of Depthwise Separable Convolution 

(DSC) and demonstrated its advantages in terms of 

computational efficiency and performance. DSC decomposes 

the convolution operation into depth convolution and point 

convolution. This decomposition reduces computational 

complexity, improves model efficiency, and maintains the 

performance of convolutional neural networks while 

reducing memory requirements. Also in 2017, Ashish 

Vaswani et al. introduced the self-attention mechanism of the 

Transformer model and demonstrated its effectiveness in 

processing long sequence data[20-24]. The Transformer is 

more efficient when dealing with long sequences because it 

does not depend on the previous moment's computation[25]. 

This independence allows Transformer to process long 

sequences faster and to parallelize them more easily. 

To address the shortcomings of single models, Wolpert 

proposed the idea of multi-layer model integration. Zhou et al. 

provide a detailed overview of integration methods, 

describing how different models can be integrated to improve 

prediction performance. In recent years, much of the deep 

learning literature has begun to focus on combining different 

deep learning models to improve prediction. Hybrid 

predictive models overcome the limitations of a single model 

by combining the strengths of several different models, often 

resulting in better predictive performance in a variety of 

applications. 

To improve the prediction performance of the model, an 

improved hybrid model of DSC and Temporal Convolutional 

Network (TCN) is proposed in this paper. The model 

captures patterns and features in a time series through 

efficient convolutional operations. DSC consists of two parts: 

depth convolution and point convolution. Depth convolution 

operates independently on each time series channel, enabling 

efficient extraction of features in each dimension (e.g., 

temperature, humidity, historical loads, etc. in power load 

data). Point convolution linearly combines these features 

through a 1 1  convolution kernel, integrating information 

from different channels to enhance the expressive and 

predictive performance of the model. 

In this paper, multiple layers of DSCs are stacked, and the 

stacked DSCs are improved to include an attention 

mechanism as well as residual connections. TCN efficiently 

captures dependencies of long time series by causal 

convolution and dilated convolution. The causal convolution 

ensures that the output timestep depends only on the current 

and previous timesteps, preventing information leakage. 

Dilated convolution expands the receptive field to capture 

dependencies over longer time scales[26]. TCN also uses 

zero padding to ensure that the length of the output sequence 

after convolution is the same as the length of the input 

sequence, which is suitable for tasks where the length of the 

time series needs to be maintained. 

In addition, to deal with the continuous vacancies in the 

power load data, this paper utilizes Generative Adversarial 

Networks (GAN) to efficiently fill in the missing data and 

make the dataset more complete by generating realistic data 

complements[27]. Selection of exogenous variables is a 

critical step in power load forecasting; this is because these 

variables significantly affect the performance of the 

predictive model[28-30]. In this paper, Pearson Correlation 

Coefficient (PCC) is used as a valid statistical method for 

detecting and quantifying relationships between variables. In 

order to better understand the stochastic and cyclical 

characteristics of power loads[31], in this paper, a seasonal 

decomposition algorithm is used to decompose the power 

load data into trend, seasonal, and residual components. This 

decomposition allows for deeper learning and modelling of 

the different characteristics of power loads, thus improving 

the accuracy of the forecasting model. 

The main innovations and contributions of this paper are as 

follows: 

1) In this paper, an innovative power load forecasting 

model is proposed, which combines improved DSC and 

TCN. The improved DSC excels in feature 

 

 
Fig 1. GAN structure 
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extraction and computational optimization, while the 

TCN excels in modelling long time dependencies. This 

combination not only improves the model's prediction 

performance on time series data but also achieves a good 

balance between computational efficiency and 

processing power. Such models possess efficient feature 

extraction and processing capabilities, enhanced 

capacity to model short- and long-term dependencies, 

and strike a balance between computational efficiency 

and model complexity. 

2) To fill the gaps in data, in this paper, GAN is used to deal 

with the problem of missing power load data. It takes 

better account of the complex relationships and 

dependencies between data than traditional methods. 

3) In this paper, exogenous variables are selected using the 

Pearson correlation coefficient and then combined with 

seasonal decomposition results as inputs to the time 

series forecasting model. This preprocessing step 

provides the model with highly relevant and denoised 

input data. 

II. DATE PROCESSING 

A. Data Preprocessing 

Missing data may have a significant impact on power load 

forecasting. Missing data can lead to incomplete data being 

used by the model during training, thereby affecting the 

learning of data patterns and features by the model. 

Inaccurate forecasts may result from models that do not fully 

capture trends and seasonal variations in the data. This may 

also make the model training process more difficult. Filling 

in missing data helps to maintain data continuity and integrity; 

this is essential for the model to learn patterns and trends in 

the data. 

In this paper, GAN is used to fill in continuous data. As 

shown in Fig. 1, GAN fills in the missing data by generating 

values that are close to real data, thereby recovering the 

incomplete parts and improving the accuracy of the 

predictive model. 

In the training process, the generator and discriminator are 

applied together. The generator uses the Mean Square Error 

(MSE) loss function to generate data that are as realistic as 

possible, making it difficult for the discriminator to 

distinguish between generated and real data. 

 2

1

1
ˆ( )

n

i i

i

MSE y y
n =

= −  (1) 

where iy  is the actual value of the i -th sample, ˆ
iy  is the 

predicted value of the i -th sample, n  is the total number of 

samples. 

The discriminator optimizes its parameters using the 

binary classification crossentropy loss function V . The goal 

is to distinguish as accurately as possible between real and 

generated data. 

 
1

1
( , ) [log ( ) log(1 ( ( )))]

m

m

i i

i

V D G D x D G z
=

+ −=  (2) 

where m  denotes a total of m  samples. ix  denotes arbitrary 

real data, iz  denotes arbitrary random data with the same 

structure as the real data. ( )iG z  denotes the fake data 

generated in the generator based on iz , ( )iD x  denotes the 

result judged by the discriminator on the real data ix . 

( ( ))iD G z  denotes the result judged by the discriminator on 

the false data ( )iG z . Where ( )iD x  and ( ( ))iD G z  are the 

probability that the sample is true. The loss V  reaches its 

maximum value when the judgment of the discriminator is at 

its best. 

The trained generator can be used to fill in data with 

missing values in the test set. The filler data generated by the 

generator replaces missing values, thus recovering the 

complete data. 

 

 
Fig 2. Heat map of Pearson correlation coefficient between power load and characteristic variables 
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B. Data Characterisation 

Choosing the right features can help models capture 

patterns and trends in the data more accurately and reduce 

noise interference, thereby improving the accuracy of 

forecasts[32]. Feature selection reduces the number of model 

input variables and helps identify which factors significantly 

impact load, thereby facilitating a better understanding of 

load patterns. 

Complex non-linear relationships may exist between 

exogenous variable characteristics and target variables in 

power load data. In this paper, we choose to use the Pearson 

Correlation Coefficient (PCC) to effectively capture these 

linear and non-linear dependencies, which helps identify the 

most relevant exogenous variables.  
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where r  is the Pearson correlation coefficient, Range 

 1,1− . ia , ib  are the observed values of variables 

A , B . a , b  are the mean values of variables A , B . 

 

 
Fig 3. Seasonal decomposition algorithm decomposition diagram 

 

The heat map of the Pearson correlation coefficient 

between load and characteristic variables is shown in Fig. 2. 

The PCC is used to measure the relationship between 

power load and external variables such as temperature and 

weather, and to select external variables. While choosing the 

right exogenous variables, the decomposition of time series 

data ty  into trend ( )T t , seasonal ( )S t  and stochastic 

components ( )R t  using seasonal decomposition algorithm. 

As shown in Fig. 3. This can help identify long-term trends 

and cyclical fluctuations, thus better understanding of the 

changing law of power load. 

 y( ) ( ) ( ) ( )t T t S t R t=    (4) 

 
( )

( )
( )

y t
S t

T t
=  (5) 

 
( )

( )
( ) ( )

y t
R t

T t S t
=


 (6) 

The overall process is shown in Fig. 4, where the data is 

processed and fed into the prediction model. 

 

III. POWER LOAD FORECASTING MODEL 

The improved hybrid model of DSC and TCN is described 

in detail in this section. 

The data is processed and fed into a predictive model. In 

this paper, we use a power load forecasting model consisting 

of multiple layers of improved depthwise separable 

convolutional layers[33], a temporal convolutional network 

layer, and a fully connected layer. The fully connected layer 

outputs the predicted power load for the next 24 hours. The 

improved DSC-TCN model is shown in Fig. 5. 

Specifically, the improved DSC, first, the input feature Y  

is subjected to a DSC operation, as shown in Fig. 6. The DSC 

contains depth convolution and point convolution. Depth 

convolution performs the convolution operation 

independently for each input channel, unlike conventional  

 

 
Fig 4. Overall flow chart 
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Fig 5. Structural diagram of the improved DSC-TCN model 

 

 

 
Fig 6. Depth separable convolutional structure diagram 

 

convolution which convolves all input channels. Then, point 

convolution uses a 1 1  convolution kernel to convolve the 

output of the depth convolution, to fuse channel information 

and change the number of channels. 

The DSC output features   go through the Sigmoid 

activation function, generating attention weights  , these 

weights indicate the importance of each position. 

 
1

i ( )
1

S gmoid
e 

 
−

= =
+

 (7) 

Using these attentional weights, the original input features 

are adjusted to highlight the important parts and assign 

weights to input time steps and input features. The output of 

the feature after adding the attention mechanism is 1 . 

 1 Y =   (8) 

More complex and abstract features can be extracted 

incrementally using multi-layer DSCs, enabling the model to 

capture more detailed patterns and information. By 

processing layer by layer, the model can continuously 

optimize the feature representation and enhance both its 

nonlinear capabilities and overall expressiveness. The 

weighted features are then processed through two layers of 

DSC to obtain the output feature 3 [33]. 

 
2 2 1

3 3 2

Re ( ( ))

Re ( ( ))

LU DSC

LU DSC

 

 

=

=
 (9) 

At the same time, the inclusion of residual connections in 

the model makes the training of deep networks more stable 

and efficient, enabling the network to optimize and converge 

more easily. Attention mechanisms are included in the input 

features of residual connections. Sum the input with the 

processed output features, for the ultimate in improved DSC 

output characteristics 
final . 

 
3final Residual = +  (10) 

In the residual connection, when the shape of input feature 

1  matches the shape of output feature 3 , they can be 

directly summed; When the shape of 1  does not match the 

shape of 3 , a convolution operation is needed to adjust the 

shape of the input features, align it with the output features. 

 
1 1 3

1 1 3

,

( ),N conv conv

Residual
Stack W k

  

  

=
= 

 + 
 (11) 

where convW  denotes the convolution kernel,   denotes the 

convolution operation and convk  is the bias. 

In this paper, three improved depth-separable 

convolutional layers are used, and the model performance 

can be improved. 

Then, TCN was applied for effective processing and 

feature extraction of time series data. TCN contains causal 

convolution and dilated convolution. TCN uses causal 

convolution to ensure that only current and past time-step 

data are used, thus avoiding information leakage. The causal 

convolution formula is: 

 
1

0

( ) ( ) ( )
J

j

C t j u t j
−

=

=  −  (12) 

where ( )u t j−  denotes the input value at time step 

t j− , ( )j  denotes the weight of the convolution kernel at 
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position j , J  denotes the length of the convolution kernel. 

By dilated convolution, TCN extends the sensory field, 

capable of capturing long distance dependencies, while 

maintaining computational efficiency. The dilated 

convolution formula is: 

 
1

0

( ) ( ) ( )
J

j

C t j u t d j
−

=

=  −   (13) 

where d  is the expansion rate, which controls the spacing of 

the convolution kernels. In this paper the first layer expansion 

is 1, the second expansion is 2, and the third layer expansion 

is 4. t d j−   is the input index of the expansion convolution. 

Meanwhile, the use of residual connections in TCN further 

enhances the stability of the network. Reduced the problem 

of disappearing gradients, which makes the model training 

process smoother and more efficient. 

IV. MODEL PERFORMANCE ANALYSIS 

A. Experimental Environment 

The configuration of the experimental environment is 

shown in Table I. 
TABLE I 

EXPERIMENTAL ENVIRONMENT CONFIGURATION TABLE 

Environment Parametric Configure 

Hardware 

Environment 

CPU AMD Ryzen 9 7950X 16-Core 

Processor   4.50 GHz 

 RAM 64GB 

 GPU GeForce RTX 4090 D 24G 

Software 

Environment 

operating 

system 

Windows 11 

 development 

framework 

PyTorch 2.5.1 

 development 

language 

Python 3.9.20 

 

B. Experimental Data 

The data used in this paper are derived from power load 

demand data from 1 January 2013 to 31 December 2014 for 

the New England region of the United States, and from 1 

January to 31 December 2018 for the Nordic region. The 

sampling interval for each historical load sample is 1 hour. 

The dataset includes multiple cities and regions, such as 

Connecticut (CT), Maine (ME), and New Hampshire (NH), 

and provides rich information on power loads and their 

associated features. The input features of this paper include 

two PCC-selected exogenous variables, three 

post-decomposition variables for power load data, and raw 

power load data. This paper uses the data from reference [33] 

for comparison, and the results demonstrate the accuracy of 

the proposed model. 

C.  Results 

The improved DSC-TCN combined model demonstrates 

its significant prediction accuracy and computational 

efficiency advantages in power load forecasting. Compared 

to other models, the improved model has advantages in terms 

of long-range dependency capture, model stability and 

feature extraction capability. In this paper, we compare the 

point prediction and interval prediction results of the 

improved DSC-TCN combination model with the improved 

DSC model. The input in this paper are all 6 channels of input 

data. 

Point Forecast 

Power load point forecasts are forecasts of power use over 

the next 24 hours; this refers to the forecast of a single value 

of power load at a future point in time. This forecast provides 

a power load value that indicates the expected demand, 

supporting planning and scheduling to ensure a stable and 

reliable power supply. In this paper, MSE is used as a loss 

function to obtain predictive data. The MSE formula is 

shown in Eq. (1). 

Three evaluation criteria Mean Absolute Error (MAE), 

Root Mean Square Error (RMSE) and R Squared (R2) were 

selected to analyze the results of the point prediction[34]. As 

shown in Table Ⅱ, From the three evaluation criteria in the 

table, it can be seen that the point prediction performance of 

the improved DSC-TCN combined model is better than that 

of the improved DSC model. 
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where n  is the number of samples,  ip is the actual value of 

the i -th sample, ˆ
ip  is the predicted value for the i -th 

sample, p  is the mean of the actual values. 

when 2R  = 1 indicates that the model fits the data 

perfectly, all variation is explained by the model. 

As can be seen in Table Ⅱ, the improved combined 

DSC-TCN model shows different levels of improvement for 

different evaluation metrics of point prediction. Fig. 7 

illustrates the predicted results of the model point predictions 

in a graph, only one section of the data was selected. 

 

 
Fig 7. Point prediction results of the improved DSC-TCN model 

 

Interval Forecast 

Interval prediction provides a prediction interval, not a 

single value, indicates that future load values may fall within 

this range. Power load interval forecasts can provide upper 

and lower bounds on forecast values, giving the range of  
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TABLE Ⅱ 

INDICATORS FOR ASSESSING MODEL POINT PROJECTIONS 

 

 

TABLE Ⅲ 

INDICATORS FOR ASSESSING MODEL INTERVAL PROJECTIONS 

Region  FNN GRU Transformer CNN-LSTM TCN CNNs-Transformer DR-DNN AM-LSTM ATDSCN[33] 
This 

paper 

CT CWC 0.221 0.223 0.241 0.232 0.226 0.236 0.235 0.222 0.214 0.185 

 RWS 0.12 0.119 0.131 0.122 0.126 0.126 0.128 0.116 0.119 0.090 

ME CWC 0.213 0.219 0.215 0.234 0.219 0.218 0.217 0.225 0.205 0.201 

 RWS 0.092 0.09 0.088 0.094 0.096 0.091 0.092 0.09 0.087 0.064 

VT CWC 0.244 0.254 0.265 0.265 0.263 0.263 0.247 0.279 0.242 0.213 

 RWS 0.094 0.094 0.099 0.098 0.102 0.1 0.094 0.104 0.093 0.076 

RI CWC 0.219 0.213 0.245 0.231 0.225 0.228 0.23 0.218 0.208 0.207 

 RWS 0.117 0.111 0.126 0.118 0.119 0.119 0.122 0.111 0.111 0.103 

NH CWC 0.224 0.221 0.246 0.237 0.235 0.238 0.234 0.222 0.217 0.201 

 RWS 0.108 0.101 0.114 0.107 0.115 0.11 0.109 0.102 0.103 0.087 

EE CWC 0.248 0.286 0.289 0.319 0.274 0.299 0.254 0.311 0.246 0.245 

 RWS 0.081 0.089 0.088 0.096 0.092 0.093 0.082 0.095 0.081 0.085 

DK CWC 0.261 0.292 0.278 0.314 0.267 0.266 0.268 0.275 0.246 0.268 

 RWS 0.095 0.1 0.096 0.107 0.097 0.096 0.099 0.097 0.088 0.088 

LV CWC 0.212 0.238 0.227 0.285 0.231 0.24 0.212 0.272 0.203 0.205 

 RWS 0.075 0.074 0.074 0.091 0.078 0.078 0.073 0.088 0.068 0.064 

 

 

uncertainty of the load. In this paper, Quantile Regression 

(QR) is used as the loss function, selecting the desired 

quantile for defining the lower and upper bounds of the 

interval respectively, to define a prediction interval. The loss 

function formula is shown in Eq. (17). 

 ˆ ˆ ˆ( , ) max( ,0) (1 ) max( ,0)L q q q q q q  =  − + −  −  (17) 

where q  is the true value, q̂  is the predicted value of the 

model.   is the quantile parameter, its value ranges between 

(0,1)  and in this paper it takes the value of 0.05. 

Region  FNN GRU Transformer CNN-LSTM TCN CNNs-Transformer DR-DNN AM-LSTM ATDSCN[33] 
This 

paper 

CT MAE 130.1 136.5 141.4 143.6 134.3 135 133.9 141.9 121.8 107.4 

 RMSE 197 204.5 207.1 217.9 201.6 199.5 201.9 215.5 188.1 150.9 

 R2 0.912 0.908 0.901 0.896 0.907 0.91 0.908 0.898 0.921 0.951 

ME MAE 33.66 36.37 38.99 40.44 35.19 36.65 35.89 40.11 32.78 25.81 

 RMSE 49.7 52.28 54.98 56.51 51.67 52.69 52.54 56.38 48.93 34.19 

 R2 0.929 0.924 0.915 0.912 0.921 0.921 0.922 0.914 0.932 0.972 

VT MAE 20.45 21.35 22.62 22.92 21.45 21.76 21.09 22.44 19.72 15.45 

 RMSE 29.29 30.37 31.55 32.15 30.43 30.46 30 31.71 28.44 21.3 

 R2 0.909 0.906 0.898 0.896 0.9 0.903 0.906 0.897 0.915 0.962 

RI MAE 33.8 33.84 37.49 37.57 34.57 35.08 34.84 37.26 31.87 29.96 

 RMSE 51.01 52.93 54.45 57.43 51.81 52.76 51.55 57.52 48.99 42.13 

 R2 0.912 0.91 0.901 0.893 0.908 0.909 0.911 0.895 0.92 0.942 

NH MAE 43.61 42.85 49.22 48.69 44.83 45.89 43.86 46.42 41.4 34.64 

 RMSE 68.31 67.01 74.58 75.77 70.54 70.37 68.47 72.56 66.76 48.73 

 R2 0.92 0.926 0.908 0.905 0.913 0.917 0.921 0.912 0.925 0.963 

EE MAE 27.85 30.29 33.38 34.24 27.99 31.49 27.86 35.56 27.86 31.04 

 RMSE 42.92 43.6 48.63 48.92 41.14 46.52 41.77 51.75 41.77 40.68 

 R2 0.944 0.941 0.93 0.928 0.948 0.935 0.946 0.918 0.946 0.955 

DK MAE 68.38 75.29 76.75 86.33 69.04 72.88 69.88 85.11 69.88 67.37 

 RMSE 107.1 114.6 125.4 132.5 105.7 112 108.6 131.7 108.6 85.41 

 R2 0.941 0.933 0.922 0.904 0.941 0.937 0.94 0.91 0.94 0.965 

LV MAE 22.18 26.45 24.81 27.9 22.52 24.63 21.69 28.39 21.69 23.63 

 RMSE 37.06 40.57 41.64 43.31 36.91 40.58 37.08 43.9 37.08 34.13 

 R2 0.953 0.944 0.945 0.934 0.953 0.945 0.954 0.934 0.954 0.963 
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Fig 8. Interval prediction results of the improved DSC-TCN model 

 

In this paper, the evaluation criteria of Coverage Width 

Criterion (CWC) and Relative Width Score (RWS) were 

selected to analyze the interval prediction results. The CWC 

combines forecast interval width and coverage, is an 

indicator that balances breadth and accuracy. A lower CWC 

indicates that the prediction interval is as narrow as possible 

while maintaining high coverage and the model predicts 

better. RWS assesses the tightness and accuracy of the 

model's prediction intervals. A smaller value of RWS 

indicates a narrower prediction interval with guaranteed 

coverage of the prediction interval, and more accurate 

prediction intervals. 
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where iU , iL  are the upper and lower bounds of the 

prediction interval; R  is the target value range. n  is the 

sample size;   is the penalty factor;   is the penalty factor, 

and the value of   in the article is 2.   is used to control the 

intensity of the penalty when PICP  <  ,   is 0.9 in the 

article. PICP  is the prediction interval coverage probability. 

where 
,true iq  is the true value. ( )x  is the indicator function, 

takes a value of 1 when the condition is true, and 0 otherwise. 
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where i  is the relative width of the prediction interval, 

measures the size of the interval width relative to its position. 

i_L RWS  is the relative score for each sample, including 

interval widths and penalties for exceeding the interval. 

Table Ⅲ compares the model interval prediction 

assessment metrics CWC and RWS. From the evaluation 

criteria in the table, it can be seen that the improved 

DSC-TCN combination model interval prediction 

performance is better than the improved DSC model. Fig. 8 

illustrates a plot of the prediction results for the model 

interval prediction, where only one segment of data was 

selected. 

In summary, the model in this paper shows good prediction 

results in both point prediction and interval prediction. 

V. CONCLUSION 

Power load forecasting is crucial for the stability and 

sustainability of the electricity supply. Traditional methods 

often struggle with missing or inaccurate historical data and 

fail to adequately consider external factors like climate 

change and seasonal variations. This paper addresses these 

issues by using GAN to fill in missing data, PCC to select 

exogenous variables, and seasonal decomposition to reduce 

noise and capture seasonal features. An improved DSC-TCN 

model is proposed, combining local feature extraction and 

long-term time-dependent modeling for more accurate 

forecasts. Although the model performs well, there are some 

limitations including the fact that the GAN requires a large 

training dataset and that the PCC may be inaccurate due to 

outliers, which are areas for future improvement. 
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