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Abstract-The explosive expansion of big-data workloads in 
cloud platforms has intensified challenges surrounding both 
resource utilization and power draw. This work proposes a 

novel multi-objective optimization framework that employs 
graph neural networks (GNNs) to capture the intricate task–
resource relationships and leverages a tailored policy-gradient 

(PG) algorithm to learn allocation strategies in continuous 
action spaces. A composite reward function—accounting for 
energy usage, task completion latency, and additional service 

metrics—guides the learning process, enabling an explicit 
trade-off between energy efficiency and overall performance. 
On synthetic workloads our approach cuts energy consumption 

by 35 %, 28 %, and 19 % relative to GH, MOGA, and DRL 
baselines, respectively. Comparable gains (31%–39%) are 
achieved on the Google Cluster Trace dataset. Moreover, the 

framework maintains competitive makespan and average 
completion time while distributing resources fairly. These 
findings demonstrate the effectiveness of the proposed method 

in simultaneously delivering energy savings and high 
performance for cloud-based big-data processing. 

 

Index Terms-Cloud computing, big data processing, energy 

efficiency, Policy Gradient (PG) Algorithm, multi-objective 

optimization 

I. INTRODUCTION 

 he pervasive growth of big data has fundamentally 

reshaped how organizations process, analyze, and extract 

value from vast quantities of structured and unstructured 

information. However, the inherent characteristics of big 

data-notably its sheer volume, rapid velocity, and diverse 

variety-present formidable challenges to conventional 

computing infrastructures [1]. Traditional on-premises 

systems frequently prove inadequate, lacking the requisite 

storage capacity, bandwidth, and computational power to 

manage big data effectively at scale. Furthermore, 

sophisticated data analytics and advanced visualization 

techniques, essential for deriving critical insights, demand 

specialized resources that often surpass the capabilities of 

local computing environments [2]. In response to these 

limitations, cloud computing has emerged as a 

transformative paradigm, offering dynamically scalable 

storage, high-capacity bandwidth, powerful analytical tools, 

and sophisticated data visualization platforms [3]. By 

harnessing the elastic, on-demand resources inherent to 

cloud computing, organizations can more adeptly address 

the complexities of big data processing, thereby unlocking 

the full potential of their data assets [4]. 

Virtualization in cloud data centers aggregates physical 

hardware into an abstracted pool, enabling fine-grained 

allocation of compute, storage, and network resources to 

dynamic big-data workloads [5]. However, widespread 

cloud adoption introduces new hurdles—notably load 

balancing, resource contention, and, critically, energy 

consumption, issues further complicated by mobile-cloud 

scenarios [6]. Static heuristics and rule-based optimizers 

struggle to keep pace with the heterogeneity and volatility of 

modern cloud environments [7]. The problem is exacerbated 

by ever-expanding datasets with diverse processing needs 

and stringent QoS requirements [8], underscoring the need 

for adaptive, intelligent resource-management strategies. 
Swarm-intelligence algorithms have shown promise for 

such optimization tasks. Inspired by collective behaviors 

seen in nature, techniques such as particle swarm 

optimization (PSO) and ant colony optimization (ACO) can 

explore large search spaces to produce near-optimal 

schedules [9], [10]. Their relative simplicity and robustness 

make them attractive for multi-objective scenarios [11], and 

hybrid variants further enhance trade-off handling among 

performance, energy, and QoS metrics [12]. Nevertheless, 

conventional swarm methods often fall short of capturing the 

nuanced dependencies among tasks, data, and resources in 

large-scale clouds. 

Graph Neural Networks (GNNs) address this limitation by 

learning rich representations over graph-structured data [13], 

propagating information along edges to model complex 

relationships [14]. In cloud computing, GNNs have been 

employed for energy optimization, resource allocation, VM 

migration, and load balancing [15]. Representing tasks, 

resources, or VMs as graph nodes and their interactions as 

edges allows a GNN to reason over the full system context 

[16], making it well suited to large, dynamic environments. 
Policy-Gradient (PG) reinforcement-learning methods 

complement GNNs by directly optimizing a parameterized 

policy to maximize expected long-term rewards [17]. In 

cloud resource management, PG algorithms can learn 

adaptive allocation strategies responsive to current system 

states and task requirements [18]. Combining GNN 

representation learning with PG decision making thus yields 

a powerful optimization paradigm that considers both fine-

grained structural dependencies and long-horizon objectives. 
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A key practical complication is the intrinsic tension 

between minimizing energy consumption and maximizing 

performance. Prioritizing one objective risk SLA violations 

or excessive operational costs [19]. A multi-objective 

perspective is therefore essential: only by balancing 

competing goals can we satisfy the diverse demands of big-

data workloads. 

This paper introduces a unified framework that fuses 

GNN modeling with a bespoke PG optimizer under a 

composite reward that explicitly balances energy and 

performance. The resulting policies capture task–resource 

intricacies, adapt to evolving workloads, and sustain energy-

aware yet high-performing operation. To our knowledge, this 

is the first study to integrate GNNs, PG algorithms, and 

multi-objective optimization specifically for energy-

efficient big-data processing in cloud environments. 

II. METHODS 

This research undertakes the design and exhaustive 

evaluation of a new multi-objective optimization framework 

that targets energy-efficient big-data processing in cloud 

environments. The framework’s overarching goal is to 

overcome the shortcomings of current optimizers by (i) 

accurately capturing the fine-grained dependencies that bind 

tasks to resources and (ii) striking a deliberate balance 

between energy consumption and overall system 

performance.  

To fulfil this goal, we follow a quantitative experimental 

methodology encompassing both the meticulous 

construction of the framework and its rigorous assessment 

through large-scale simulations. The implementation 

combines three key components: (1) a GNN module for 

expressive task–resource representation, (2) an RL-based 

policy-gradient engine that adapts allocation decisions 

online, and (3) a unifying multi-objective scheme that 

reconciles energy use with performance targets.  

Empirical studies are carried out in a purpose-built 

simulation environment based on CloudSim, an extensible 

open-source toolkit that faithfully mirrors real data-centre 

behaviors. Multiple heterogeneous servers—differing in 

processing power, memory capacity, and energy profiles—

are instantiated to reproduce realistic resource dynamics and 

their impact on efficiency.  

Workloads are synthesized to emulate true big-data jobs, 

with diverse execution times, memory footprints, deadlines, 

and inter-task dependencies. To gauge scalability and 

robustness, we employ both controlled synthetic traces and 

the Google Cluster Trace, the latter offering production-

grade workload characteristics.  

The proposed framework is benchmarked against three 

strong baselines: a Greedy Heuristic (GH), a Multi-

Objective Genetic Algorithm (MOGA), and a Deep 

Reinforcement Learning (DRL) scheduler. Performance is 

quantified with respect to total energy usage, makespan, 

mean task completion time, allocation fairness, and Pareto 

optimality. Throughout the simulation runs we collect 

detailed logs, apply appropriate statistical analyses, and 

present results via intuitive visualizations. 

Because experiments are performed under fully controlled, 

reproducible conditions rather than statistical sampling, 

traditional power-analysis calculations are unnecessary. The 

study instead centers on modelling fidelity and 

comprehensive performance appraisal within a simulated 

cloud that mirrors real-world settings. 

III. ARCHITECTURE OF BIG DATA SERVICES IN THE CLOUD 

Effective ingestion, storage, and analysis of massive data 

volumes rely on sophisticated, multilayered cloud 

architectures expressly crafted to exploit the scalability, 

elasticity, and cost advantages of the cloud paradigm [20]. 

As illustrated in Fig. 1, a canonical architecture comprises 

several tiers. At the foundation lies the physical-

infrastructure layer—an extensive mesh of servers, storage 

arrays, and networking hardware. Above this, the 

virtualization layer abstracts those physical resources, 

enabling rapid deployment of isolated virtual machines or 

containers and thereby fostering high resource utilization 

and true multi-tenancy [21]. 

Above the virtualization substrate, a series of data-

oriented tiers orchestrates the entire big-data life-cycle. First, 

a distributed-storage layer delivers fault-tolerant, high-

throughput persistence for structured, semi-structured, and 

unstructured datasets, typically relying on file systems such 

as Hadoop HDFS or Ceph [22]. Next, a distributed-

processing layer enables large-scale parallel computation 

through engines like Apache Hadoop, Spark, or Flink [23]. 

To cope with workload volatility, an intelligent resource-

management tier continuously adjusts CPU, memory, and 

network allocations, while a service-provisioning layer 

automates deployment, configuration, and maintenance of 

data-analytics applications.  

Yet the very attributes that make these architectures 

powerful—elastic resource pools and on-demand scaling—

also complicate energy stewardship. Highly dynamic 

workloads, intricate task-data-resource interdependencies, 

and heterogeneous hardware all conspire to make energy 

optimization remarkably challenging [24]. Moreover, 

operators must juggle conflicting goals, balancing 

performance against power savings within sprawling, multi-

tenant data centers.  

Overcoming these obstacles calls for holistic, adaptive 

optimization frameworks that capture workload dynamics 

and architectural complexity, then make intelligent decisions 

to harmonies energy consumption with performance. The 

rest of this paper introduces such a framework, built on GNN 

modelling and reinforcement-learning (RL) techniques, to 

meet the demanding requirements of energy-efficient big-

data processing in modern cloud environments. 
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IV. RELATED WORKS 

A. Energy-Efficient Big Data Processing in Cloud 

Computing 

The dramatic rise of big-data workloads and the 

corresponding surge in cloud-data-centre energy bills have 

made power-aware processing a priority for both academia 

and industry. Numerous optimization strategies and 

frameworks have therefore been proposed to curb energy use 

while preserving performance and meeting QoS targets. 

Early efforts relied on heuristic rules crafted from domain 

expertise. Mashayekhy et al. developed an energy-aware 

scheduler for MapReduce that favors the most power-

efficient servers when assigning tasks, explicitly accounting 

for resource heterogeneity [25]. Likewise, Zhao et al. 

designed a heuristic data-placement algorithm that leverages 

access-pattern knowledge and device-power profiles to cut 

storage energy overheads [26]. 

More recently, data-driven techniques have gained 

traction. Berral et al. introduced a machine-learning 

framework in which neural models predict future resource 

demand and provision capacity accordingly, reducing 

wasted energy in cloud data centres [27]. Mostafavi et al. 

advanced this line of work by formulating task scheduling as 

a reinforcement-learning (RL) problem; their agent 

continually refines its policy to minimize energy while 

honoring performance constraints [28]. 
To reconcile conflicting objectives such as energy and 

throughput, researchers have turned to multi-objective 

optimization. Wang et al. framed task scheduling as a bi-

objective problem (energy and makespan) and applied a 

genetic algorithm to approximate Pareto-optimal schedules 

[29]. Shrimali et al. employed particle-swarm optimization 

to balance power draw against QoS guarantees during 

resource allocation [30]. 

Despite these advances, important gaps remain. Many 

solutions concentrate on isolated facets—task scheduling or 

resource placement—without modelling the intricate 

coupling among tasks, data, and compute nodes. 

Furthermore, most adopt static or offline optimization, 

assuming workload characteristics are known a priori. Real 

clouds face stochastic, rapidly changing demands that 

require online, adaptive control. Finally, striking a 

satisfactory compromise between energy and performance 

continues to be difficult because the objectives are inherently 

at odds [31]. Addressing these shortcomings calls for 

comprehensive frameworks capable of real-time learning 

and holistic decision-making—an issue taken up in the next 

subsection. 

B. GNNs and Reinforcement Learning for Optimization 

GNNs and RL have emerged as potent tools for complex 

optimization across many domains, including cloud resource 

management. GNNs excel at encoding the rich relational 

structure among entities, while RL provides a principled way 

to learn decision policies through environmental interaction. 

In cloud contexts, GNNs have been used to capture the 

multifaceted links among servers, tasks, and network paths. 

Shabka et al. modelled a data centre as a graph whose nodes 

are servers and edges are links; the learned representations 

guided energy-aware resource allocation and improved 

overall efficiency [32]. Chen et al. extended this idea to edge 

environments, encoding task dependencies and device 

constraints as a graph and using a GNN to derive schedules 

that shorten completion time and cut energy consumption 

[33].  

RL, meanwhile, has proven effective for dynamic 

resource control. Liu et al. adopted a Deep Q-Network (DQN) 

to learn allocation policies that boost throughput while 

trimming power use [34]. Kang et al. proposed a hierarchical 

RL scheme with separate agents for inter- and intra-data-

centre scheduling, collectively driving down total energy 

consumption [35]. 

Integrating GNN representation learning with RL 

decision-making further enhances optimization power. 

Thein et al. demonstrated this synergy by embedding task-

resource relationships with neural networks and letting an 

RL agent exploit those embeddings to select high-quality 

allocations, surpassing heuristics and standalone ML in both 

energy savings and QoS compliance [36]. 

Nonetheless, several research challenges persist. Scaling 

GNN and RL methods to clouds comprising thousands of 

servers and millions of tasks demands efficient, distributed 

training algorithms. Policy transparency is another concern: 

as models grow more complex, improving interpretability 

becomes vital for operator trust. Finally, fusing GNN-RL 

frameworks with complementary paradigms—such as multi-

objective evolutionary search or game-theoretic 

coordination—could yield even more resilient, adaptive 

solutions for energy-efficient big-data processing in 

dynamic cloud settings. 

V. MULTI-OBJECTIVE OPTIMIZATION FRAMEWORK 

A. Overview 

This study proposes a multi-objective optimization 

framework that targets energy-efficient big-data processing 

in cloud environments while simultaneously maximizing 

system performance and respecting QoS requirements. By 

uniting GNNs with Reinforcement Learning (RL), the 

framework overcomes key shortcomings of earlier methods 

and offers a holistic solution for cloud-scale analytics. 

The architecture comprises three synergistic modules.  

1) GNN-based modelling: Features describing tasks and 

resources are encoded into a task–resource graph that 

reflects the fine-grained dependencies and constraints 

inherent to the cloud. The GNN transforms this graph into 

compact, low-dimensional embeddings for both tasks and 

resources, serving as rich inputs for downstream decision 

making. 

2) RL-based optimization: Using the embeddings, an RL 

agent learns resource-allocation and scheduling policies 
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through continual interaction with the simulated cloud. The 

agent optimizes a reward that jointly considers energy, 

throughput, and service quality, thereby navigating the 

inevitable trade-offs among these objectives. 

3) Multi-objective strategy: A flexible weighting 

mechanism shapes the composite reward, allowing operators 

to priorities energy savings, performance, or QoS as needed. 
Figure 2 illustrates the overall workflow. The GNN 

captures intricate task-resource interactions that heuristics or 

flat neural models often miss, yielding more informed 

decisions. The RL component continuously refines its policy 

in response to workload volatility and resource heterogeneity. 
The multi-objective formulation lets users explicitly tune the 

balance among competing goals. By learning directly from 

graph-structured data and operating online, the framework 

scales to large, heterogeneous clouds and diverse workload 

profiles, outperforming heuristics and single-objective 

methods in both energy efficiency and overall performance. 

B. Problem Formulation 

In this section, we formally define the energy-efficient big 

data processing problem within cloud computing 

environments. We introduce the necessary mathematical 

notations and symbols to model the system accurately and 

present the corresponding optimization objectives alongside 

the associated constraints. 

Given a cloud computing environment with a set of 𝑀 

servers denoted as 𝑆 = 𝑠1, 𝑠2, … , 𝑠𝑀 , and a set of 𝑁  big 

data tasks denoted as 𝑇 = 𝑡1, 𝑡2, … , 𝑡𝑁, the goal is to find an 

optimal allocation of tasks to servers and determine the 

processing order of tasks on each server, such that the overall 

energy consumption is minimized while the system 

performance is maximized and the QoS requirements are 

satisfied. We define the following notations. 𝑥𝑖𝑗  , a binary 

variable indicating whether task 𝑡𝑖  is assigned to server 

𝑠𝑗(𝑥𝑖𝑗= 1) or not (𝑥𝑖𝑗= 0). 𝑦𝑖𝑗𝑘, a binary variable indicating 

whether task 𝑡𝑖  is processed before task 𝑡𝑘  on server 

𝑠𝑗(𝑦𝑖𝑗𝑘 =  1) or not (𝑦𝑖𝑗𝑘= 0). 𝑝𝑖  is the processing time of 

task 𝑡𝑖. 𝑒𝑗 is the energy consumption per unit time of server 

𝑠𝑗. 𝑐𝑗 the processing capacity of server 𝑠𝑗. the deadline of 

task 𝑡𝑖 . 𝑚𝑖 , the memory requirement of task 𝑡𝑖 . 𝑏𝑗  the 

available memory of server the available memory of server 

𝑠𝑗. 

The optimization objectives can be formally expressed as 

follows. The first objective is to minimize the total energy 

consumption of the cloud computing system: 

 minimize ∑  

𝑀

𝑗=1

𝑒𝑗 ∑  

𝑁

𝑖=1

𝑝𝑖𝑥𝑖𝑗 (1) 

where 𝑒𝑗 represents the energy consumption per unit time 

of server 𝑠𝑗, 𝑝𝑖  denotes the processing time of task 𝑡𝑖, and 

𝑥𝑖𝑗  is a binary variable indicating the assignment of task 𝑡𝑖 

to server 𝑠𝑗. 

Maximizing the system throughput, which is defined as 

the number of tasks completed per unit of time: 

 
maximize

∑  𝑁
𝑖=1 ∑  𝑀

𝑗=1 𝑥𝑖𝑗

𝑇
 (2) 

where 𝑇 represents the total processing time. 

The optimization problem is subject to the following 

constraints. Each task must be assigned to one and only one 

server: 

 ∑  

𝑀

𝑗=1

𝑥𝑖𝑗 = 1, ∀𝑖 ∈ 1,2, . . . , 𝑁 (3) 

This constraint guarantees that each task is handled by a 

single server. Additionally, the processing capacity of each 

server must not be exceeded: 

 ∑  

𝑁

𝑖=1

𝑝𝑖𝑥𝑖𝑗 ≤ 𝑐𝑗 , ∀𝑗 ∈ 1,2, . . . , 𝑀 (4) 

where 𝑐𝑗 denotes the processing capacity of server 𝑠𝑗. The 

deadline of each task must be satisfied in equation (5), 

where 𝑑𝑖 represents the deadline of task 𝑡𝑖, and 𝑦𝑖𝑗𝑘 is a 

binary variable indicating the processing order of tasks 𝑡𝑖 

and 𝑡𝑘 on server 𝑠𝑗. 

The memory requirement of each task must not exceed the 

available memory of the assigned server: 

 𝑚𝑖𝑥𝑖𝑗 ≤ 𝑏𝑗 , ∀𝑖 ∈ 1,2, . . . , 𝑁, ∀𝑗 ∈ 1,2, . . . , 𝑀 (6) 

where 𝑚𝑖denotes the memory requirement of task 𝑡𝑖, and 

𝑏𝑗 represents the available memory of server 𝑠𝑗. 

The processing order of tasks on each server must be 

consistent, as shown in equation (7). 

This constraint ensures that the execution order of tasks 

on each server is clearly defined and consistent. The 

resulting optimization problem is formulated as a multi-

objective mixed-integer linear programming (MILP) 

problem, which is known to be NP-hard. To address this 

complexity effectively, we propose a novel approach that 

integrates GNN-based task and resource modeling, RL-

based optimization, and a tailored multi-objective 

optimization strategy. The details of this approach are 

presented in the subsequent sections. 

C. GNN-based Task and Resource Modelling 

To effectively capture the complex dependencies and 

interactions among tasks and resources in cloud computing 

environments, we propose a GNN-based approach for 

modeling and representation learning. GNNs have 

demonstrated exceptional capability in extracting 

meaningful patterns from graph-structured data, making 

them particularly well-suited to the challenges of our 

problem setting. 
We define a task-resource graph 𝐺 = (𝑉, 𝐸) , where 

𝑉 represents the set of nodes and 𝐸 denotes the set of edges. 

The node set 𝑉 consists of two types of nodes: task nodes 

𝑉𝑇 = 𝑡1, 𝑡2, … , 𝑡𝑁  and resource nodes 𝑉𝑅 = 𝑟1, 𝑟2, … , 𝑟𝑀 , 

where 𝑁 is the number of tasks and 𝑀 is the number of 

resources (servers). Each task node 𝑡𝑖 ∈ 𝑉𝑇  is associated 

with a feature vector 𝑥𝑡𝑖
∈ 𝑅𝑑𝑡  , which encodes the 

characteristics of the task, such as its processing time, 
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memory requirement, and deadline. Similarly, each resource 

node 𝑟𝑗 ∈ 𝑉𝑅 is associated with a feature vector 𝑥𝑟𝑗
∈ 𝑅𝑑𝑟 , 

which captures the properties of the resource, such as its 

processing capacity, available memory, and energy 

consumption per unit time. 

The edges in the task-resource graph represent the 

compatibility and constraints between tasks and resources. 

We define two types of edges: task-to-resource edges 𝐸𝑇𝑅 ⊆

𝑉𝑇 × 𝑉𝑅 and task-to-task edges 𝐸𝑇𝑇 ⊆ 𝑉𝑇 × 𝑉𝑇 . A task-to-

resource edge (𝑡𝑖 , 𝑟𝑗) ∈ 𝐸𝑇𝑅  indicates that task 𝑡𝑖  can be 

assigned to the resource 𝑟𝑗, subject to the resource’s capacity 

and the task’s requirements. A task-to-task edge (𝑡𝑖 , 𝑡𝑘) ∈

𝐸𝑇𝑇  represents the dependencies or communication 

requirements between tasks 𝑡𝑖 and 𝑡𝑘. 

Given the task-resource graph $G$, our goal is to learn a 

low-dimensional representation (embedding) for each node, 

which captures the structural and semantic information of 

the graph. We employ a GNN model to achieve this goal. 

The GNN takes the initial node features 𝑋 =

𝑥𝑡1
, … , 𝑥𝑡𝑁

, 𝑥𝑟1
, … , 𝑥𝑟𝑀

  as input and performs multiple 

layers of message passing and aggregation to update the 

node embeddings. At each layer 𝑙   of the GNN, the 

embedding of a node 𝑣  is updated by aggregating the 

embeddings of its neighbors 𝒩(𝓋)  and combining them 

with its own embedding from the previous layer, as shown 

in equation (8), where ℎ𝑣
(𝑙)

∈ 𝑅𝑑(𝑙)
  is the embedding of 

node 𝑣  at layer 𝑙 , 𝑊(𝑙) ∈ 𝑅𝑑(𝑙)×𝑑(𝑙−𝟙)
  and 𝑏(𝑙) ∈ 𝑅𝑑(𝑙)

 are 

learnable weight matrix and bias vector, respectively, 

AGG(⋅) is an aggregation function (e.g., mean, max, or sum) 

that combines the embeddings of the neighboring nodes, and 

σ(⋅)  is a non-linear activation function (e.g., ReLU or 

sigmoid). 

The GNN is trained using a supervised learning approach, 

where the objective is to minimize a loss function that 

quantifies the discrepancy between the predicted 

assignments-based on the learned node embeddings—and 

the ground-truth assignments. The training process consists 

of forward propagation to compute the node embeddings, 

followed by backpropagation to update the model 

parameters (weights and biases) using the gradients of the 

loss function. Once trained, the GNN model is capable of 

generating informative embeddings for both tasks and 

resources, effectively capturing their intrinsic properties and 

interdependencies. These embeddings are then fed into the 

subsequent optimization module, facilitating more effective 

and efficient decision-making for task allocation and 

resource management in the cloud computing environment. 

D. Reinforcement Learning-based Optimization 

Building upon the GNN-based task and resource 

modeling, we propose an RL-based approach to optimize the 

allocation of tasks to resources within the cloud computing 

environment. RL offers a robust framework for sequential 

decision-making under uncertainty, enabling the learning of 

optimal policies through interaction with the environment. 

We formulate the optimization problem as a Markov 

Decision Process (MDP), where the RL agent interacts with 

the cloud computing environment to learn the optimal task 

allocation policy. The key elements of the MDP are defined 

as follows. 

The state 𝑠𝑡  at time step 𝑡  is represented by the 

embeddings of tasks and resources generated by the GNN 

model, along with additional global features such as the 

overall system throughput and energy consumption. 

Formally, 𝑠𝑡 = (ℎ𝑡1
, … , ℎ𝑡𝑁

, ℎ𝑟1
, … , ℎ𝑟𝑀

, 𝑔𝑡) , where ℎ𝑡𝑖
 

and ℎ𝑟𝑗
  are the embeddings of task 𝑡𝑖  and resource 𝑟𝑗 , 

respectively, and 𝑔𝑡  represents the global features. The 

action 𝑎𝑡  at time step 𝑡  corresponds to the allocation of 

tasks to resources. We define the action space as a discrete 

set of possible task-to-resource assignments, where each 

action 𝑎𝑡 = (𝑎𝑡,1, … , 𝑎𝑡,𝑁) is a vector of resource indices, 

with 𝑎𝑡,𝑖 ∈ 1, … , 𝑀 indicating the resource to which task 𝑡𝑖 

is assigned. The reward function 𝑟(𝑠𝑡 , 𝑎𝑡)  measures the 

immediate performance of the system after taking action 𝑎𝑡 

in state 𝑠𝑡. We design the reward function to align with the 

optimization objectives, considering both the energy 

consumption and the system throughput. Specifically, 

𝑟(𝑠𝑡 , 𝑎𝑡) = −𝜆1 ⋅ energy(𝑠𝑡 , 𝑎𝑡) + 𝜆2 ⋅ throughput(𝑠𝑡 , 𝑎𝑡) , 

where energy(𝑠𝑡 , 𝑎𝑡)  and throughput(𝑠𝑡 , 𝑎𝑡)  are the total 

energy consumption and system throughput achieved by 

taking action 𝑎𝑡  in state 𝑠𝑡 ,  and λ1  and λ2  are positive 

weights that balance the two objectives. 

The goal of the RL agent is to learn a policy π(𝑎𝑡|𝑠𝑡) that 

maximizes the expected cumulative reward over a horizon 

of 𝑇 time steps: 

 𝐽(𝜋) = 𝔼𝜋[∑𝑡 = 0𝑇−1𝛾𝑡 ⋅ 𝑟(𝑠𝑡 , 𝑎𝑡)] (9) 

where γ ∈ [0,1]  is a discount factor that determines the 

importance of future rewards. 

To solve the optimization problem, we employ a variant 

of the DQN algorithm, which combines Q-learning with 

deep neural networks for function approximation. The DQN 

agent maintains an action-value function 𝑄(𝑠, 𝑎; θ) , 

parameterized by a neural network with weights θ, which 

estimates the expected cumulative reward of taking 

action 𝑎 in state 𝑠. The agent interacts with the environment 

by selecting actions based on an ϵ-greedy policy, where it 

chooses the action with the highest Q-value with probability 

1 − ϵ  and a random action with probability ϵ  for 

exploration. The DQN is trained using experience replay and 

target network techniques to stabilize the learning process. 

The agent stores its experiences (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in a replay 

buffer and periodically samples a batch of experiences to 

update the Q-network parameters θ  by minimizing the 

temporal difference error, as shown in equation (10), where 

𝐷 is the replay buffer and θ− are the parameters of a target 

Q-network that is periodically updated with the current Q-

network parameters. 

The integration of GNN-based modeling with RL-based 

optimization offers several key advantages. The GNN 

embeddings serve as compact and informative 

representations of tasks and resources, effectively capturing 

their intrinsic characteristics and interdependencies. These 

embeddings enable the RL agent to make more informed and 
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efficient allocation decisions, while dynamically adapting to 

the stochastic and evolving nature of the cloud computing 

environment. Furthermore, the use of the DQN algorithm 

enhances sample efficiency and training stability, making it 

particularly suitable for the proposed optimization problem. 

By combining GNN-based modeling with RL-based 

optimization, our approach is capable of addressing the 

complexity and scale of modern cloud computing systems, 

learning optimal policies that promote both energy 

efficiency and high performance in big data processing. 

These learned policies can adapt to fluctuating workloads 

and changing system conditions, offering a flexible and 

robust solution for resource management in the cloud. 

E. Multi-Objective Optimization Strategy 

In the context of energy-efficient big data processing 

within cloud computing environments, optimizing for a 

single objective-such as minimizing energy consumption or 

maximizing system throughput-is often insufficient. In 

practice, these objectives frequently conflict, necessitating 

trade-offs to achieve a balanced and satisfactory outcome. To 

address this challenge, we propose a multi-objective 

optimization strategy that integrates seamlessly with our 

GNN-based modeling and RL-based optimization 

framework. 

Central to our multi-objective optimization strategy is the 

design of a composite reward function that incorporates 

multiple optimization objectives. Let 𝒪 = 𝑜1, 𝑜2, … , 𝑜𝐾  be 

the set of 𝐾  objectives we consider, such as energy 

consumption, system throughput, resource utilization, and 

response time. For each objective 𝑜𝑘 , we define a 

corresponding reward function 𝑟𝑘(𝑠𝑡 , 𝑎𝑡) that measures the 

performance of the system concerning that objective when 

taking action 𝑎𝑡  in state 𝑠𝑡 . To combine these individual 

reward functions into a single composite reward, we 

introduce a set of weight parameters 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝐾), 

where 𝑤𝑘 ≥ 0  and ∑ 𝑤𝑘
𝐾
𝑘=1 = 1 . The composite reward 

function is then defined as a weighted sum of the individual 

rewards: 

 𝑟(𝑠𝑡 , 𝑎𝑡) = ∑  

𝐾

𝑘=1

𝑤𝑘 ⋅ 𝑟𝑘(𝑠𝑡 , 𝑎𝑡) (11) 

The weight parameters 𝒘  represent the relative 

importance of each objective and can be adjusted based on 

user preferences or system requirements. By setting 

appropriate weights, we can prioritize certain objectives over 

others and control the trade-off between conflicting goals. 

However, optimizing for multiple objectives simultaneously 

presents several challenges. First, the objectives may have 

different scales and ranges, making it difficult to compare 

and aggregate them directly. To address this issue, we 

normalize the individual reward functions using min-max 

scaling: 

 𝑟̂𝑘(𝑠𝑡 , 𝑎𝑡) =
𝑟𝑘(𝑠𝑡 , 𝑎𝑡) − 𝑚𝑖𝑛𝑎𝑟𝑘(𝑠𝑡 , 𝑎)

𝑚𝑎𝑥
𝑎

 𝑟𝑘(𝑠𝑡 , 𝑎) − 𝑚𝑖𝑛
𝑎

 𝑟𝑘(𝑠𝑡 , 𝑎)
 (12) 

where min
𝑎

𝑟𝑘 (𝑠𝑡 , 𝑎)  and max
𝑎

𝑟𝑘 (𝑠𝑡 , 𝑎)  are the minimum 

and maximum rewards attainable for objective 𝑜𝑘 in state 

𝑠𝑡, respectively. This normalization ensures that all rewards 

are in the range [0, 1], facilitating their aggregation in the 

composite reward function. 

Another challenge lies in the potentially large and 

complex search space of the multi-objective optimization 

problem. To efficiently explore this space and find Pareto-

optimal solutions, we employ a multi-objective variant of the 

DQN algorithm, called Multi-Objective DQN (MO-DQN). 

MO-DQN maintains a separate Q-network for each 

objective, denoted as 𝑄𝑘(𝑠, 𝑎; 𝜃𝑘) , and learns to 

approximate the optimal action-value function for each 

objective simultaneously. The training procedure for MO-

DQN follows a similar approach to the standard DQN, but 

with a modified loss function that considers the composite 

reward, just refer to equation (13), where 𝑟̂𝑘,𝑡  is the 

normalized reward for objective 𝑜𝑘 at time step 𝑡. 

During the optimization process, the MO-DQN agent 

learns to balance multiple objectives based on the specified 

weights. By exploring different weight configurations, we 

obtain a set of Pareto-optimal solutions that represent the 

best trade-offs between the conflicting objectives. Decision-

makers can then select the solution that most closely aligns 

with their preferences and system constraints. 

F. Algorithm Design and Implementation 

In this section, we present the complete algorithmic flow 

of our proposed multi-objective optimization framework for 

energy-efficient big data processing in cloud computing 

environments. We discuss the input, output, and main steps 

of the algorithm, along with its time and space complexity, 

scalability, and parallelization aspects. Key code snippets 

and implementation details are provided to facilitate 

understanding and reproducibility. Algorithm 1 outlines the 

main steps of our optimization framework. The input to the 

algorithm includes the task set 𝒯, the resource set ℛ, the 

objective set 𝒪, and the weight vector 𝑤. The output is a set 

of Pareto-optimal task allocation policies Π∗  that balance 

the multiple objectives based on the given weights. 

The algorithm begins by constructing the task-resource 

graph 𝐺 based on the given task set 𝒯and resource set ℛ 

(line 1). The GNN model parameters θ are initialized (line 

2). The main optimization process is performed over 𝐸 

episodes (lines 3-18). In each episode, the MO-DQN agent 

is initialized with 𝐾  Q-networks corresponding to the 𝐾 

objectives (line 4). 

Within each episode, the algorithm proceeds for 𝑆 steps 

(lines 5-16). At each step, the GNN model generates 

embeddings for tasks and resources based on the current 

state of the task-resource graph (lines 6-7). The current state 

𝑠_𝑡  is formed by concatenating the task embeddings, 

resource embeddings, and global features (line 8). The MO-

DQN agent selects an action 𝑎𝑡  based on its exploration 
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strategy (line 9), executes the action, and observes the 

rewards 𝑟1, 𝑟2, … , 𝑟𝐾   and the next state 𝑠𝑡+1 (line 10). The 

individual rewards are normalized using min-max scaling 

(line 11), and the composite reward 𝑟𝑡 is calculated as the 

weighted sum of the normalized rewards (line 12). The 

experience tuple (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)  is stored in the replay 

buffer 𝐷 (line 13). A batch of experiences is sampled from 

𝐷, and the Q-networks are updated using the loss function 

𝐿(θ1, … , θ𝐾) (line 14). The GNN model parameters θ are 

also updated based on the sampled experiences (line 15). 

After each episode, the learned task allocation policy π is 

evaluated, and if it is Pareto-optimal, it is added to the set of 

optimal policies Π (line 17). Finally, the algorithm returns 

the set of Pareto-optimal task allocation policies Π∗  (line 

19). 

The time complexity of the algorithm is determined by the 

number of episodes 𝐸, the number of steps 𝑆 per episode, 

and the complexity of the GNN and MO-DQN models. Let 

𝐶
GNN

 and 𝐶
MO-DQN

 denote the time complexity of the GNN 

and MO-DQN models, respectively. The overall time 

complexity is 𝑂 (𝐸 ⋅ 𝑆 ⋅ (𝐶
GNN

+ 𝐶
MO-DQN

)) . The space 

complexity is dominated by the size of the replay buffer 𝐷 

and the memory required to store the GNN and MO-DQN 

models. 

To enhance the scalability and efficiency of the algorithm, 

several optimization techniques can be applied. Parallel 

computing can accelerate the generation of task and resource 

embeddings using the GNN model. The experience replay 

buffer can be designed with efficient data structures and 

sampling strategies to accommodate large-scale datasets. 

The Q-networks can be parameterized using lightweight 

neural network architectures to reduce both memory usage 

and computational overhead. The algorithm was 

implemented using deep learning frameworks such as 

PyTorch, which provide efficient primitives for constructing 

and training GNN and RL models. Additionally, the task-

resource graph was represented using graph libraries like 

NetworkX, offering intuitive APIs for graph manipulation 

and computation. 

VI. EXPERIMENTAL IMPLEMENTATION AND RESULTS 

A. Experimental Setup 

To evaluate our framework, we conducted extensive 

experiments in a large-scale cloud computing simulation 

environment. The simulator was developed using CloudSim 

[37], a widely adopted open-source cloud simulation toolkit. 

We extended CloudSim to support the modeling of energy 

consumption, resource heterogeneity, and task dependencies. 

The experiments were carried out on a machine equipped 

with an Intel Xeon E5-2680 v4 CPU (2.40 GHz, 28 cores) 

and 128 GB of RAM, running Ubuntu 18.04 LTS. The GNN 

model and the MO-DQN agent were implemented using 

PyTorch [38] and PyTorch Geometric [39]. 

B. Datasets 

To comprehensively evaluate the performance and 

effectiveness of our proposed multi-objective optimization 

framework, we utilize both synthetic and real-world datasets. 

The synthetic datasets, generated using the CloudSim toolkit 

[37], offer a controlled environment for analyzing the 

framework’s behavior under various conditions. By 

adjusting parameters such as the number of tasks, resource 

characteristics, and task dependencies, we examine the 

framework’s scalability and adaptability to diverse workload 

patterns and resource configurations. We construct three 

synthetic datasets with varying scales and complexity levels: 

(1) Medium-scale dataset: This dataset comprises 10,000 

tasks and 500 resources, representing a more complex and 

resource-intensive cloud computing environment. The tasks 

feature diverse execution times, resource demands, and 

inter-task dependencies. This setup allows us to evaluate the 

framework’s capability to manage larger workloads and 

optimize resource allocation under increased complexity. 

(2) Large-scale dataset: To further challenge the 

framework’s scalability, we generate a large-scale dataset 

with 100,000 tasks and 5,000 resources. This dataset 

simulates a highly complex and resource-constrained cloud 

computing scenario, with tasks exhibiting intricate 

dependencies and resource requirements. Evaluating the 

framework on this dataset demonstrates its ability to handle 

massive-scale problems and make effective optimization 

decisions. 

While synthetic datasets provide valuable insights under 

controlled scenarios, it is also essential to validate the 

framework’s practicality using real-world data. For this 

purpose, we employ a widely used and publicly available 

dataset: 

Google Cluster Trace [40]: This dataset contains rich 

information about workload traces from Google’s 

production cluster, including task resource requirements, 

durations, and dependencies. To align with the scale of our 

experimental setup, we preprocess the dataset and extract a 

representative subset comprising 50,000 tasks and 1,000 

resources. This subset retains the essential characteristics 

and patterns of the original data while reducing 

computational complexity. Evaluating the framework on the 

Google Cluster Trace enables us to assess its real-world 

performance and applicability in production environments. 

By leveraging both synthetic and real-world datasets, we 

aim to provide a comprehensive and rigorous evaluation of 

our proposed framework. The synthetic datasets facilitate an 

in-depth analysis of scalability, adaptability, and 

performance under controlled conditions, while the real-

world dataset validates the framework’s effectiveness in 

handling complex, large-scale workloads reflective of 

practical cloud computing scenarios. 

C. Evaluation Metrics 

We evaluated the performance of our framework using the 
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following metrics: 

(1) Energy Consumption (EC): The total energy 

consumed by the cloud computing system to process the 

given workload. This metric is computed based on resource 

utilization and the power consumption characteristics of the 

underlying resources. 

(2) Makespan (MS): The total time required to complete 

all tasks in the workload. This metric reflects the overall 

efficiency and performance of the task allocation and 

scheduling process. 

(3) Average Task Completion Time (ATCT): The average 

time taken to complete an individual task within the 

workload. This metric offers insights into system 

responsiveness and user experience. 

(4) Fairness: The degree to which resources are allocated 

equitably among tasks. We employ Jain’s Fairness Index [41] 

to quantitatively assess the fairness of resource distribution. 

(5) Pareto Optimality (PO): The capability of the 

framework to discover Pareto-optimal solutions that 

effectively balance energy consumption and performance. 

We use the hypervolume indicator [42] to measure the 

quality of the Pareto front obtained. 

D. Experimental Results and Analysis 

We compared our proposed framework with three state-

of-the-art methods for energy-efficient big data processing 

in cloud computing environments: GH [43], a simple 

heuristic that allocates tasks to the most energy-efficient 

resources based on current utilization; MOGA [44], a genetic 

algorithm-based approach optimizing task allocation with 

respect to energy consumption and makespan; and DRL [45], 

a DRL method that learns task allocation policies aimed at 

minimizing energy consumption while satisfying 

performance constraints. We conducted experiments on both 

synthetic and real-world datasets, evaluating the 

performance of each method using defined metrics. The 

results are presented and analyzed in the following 

subsections. 

 

Energy Consumption  

Figure 3 illustrates the comparative energy consumption 

of our proposed framework against the GH, MOGA, and 

DRL methods across the different evaluated datasets. On the 

medium-scale synthetic dataset, our framework 

demonstrated significant energy savings, reducing energy 

consumption by 40.0% compared to GH, by 27.6% 

compared to MOGA, and by 17.1% compared to DRL, 

highlighting its effectiveness even in moderately complex 

environments. The advantages of our framework were 

particularly pronounced on the large-scale synthetic dataset, 

where it successfully reduced energy consumption by 35.0% 

when benchmarked against GH, 27.8% against MOGA, and 

18.8% against DRL. These results underscore the 

framework’s capability to maintain high energy efficiency 

when managing extensive and complex workloads. 

Furthermore, the practical applicability and robust 

performance of our framework were confirmed on the 

Google Cluster Trace (real-world) dataset. Here, it achieved 

substantial energy savings, with reductions of approximately 

39.2% compared to GH, 34.8% compared to MOGA, and 

30.8% compared to DRL. These specific improvements fall 

within the overall observed energy savings range of 31% to 

39% against these contemporary methods, validating its 

performance with real-world operational data. 

Across all tested datasets, our proposed framework 

consistently achieved the lowest energy consumption. This 

superior performance is primarily attributed to its advanced 

capability to accurately model complex task-resource 

dependencies using the GNN model. Furthermore, the MO-

DQN agent effectively learns and implements energy-

efficient task allocation policies. The integrated multi-

objective optimization strategy also plays a crucial role by 

enabling the framework to skillfully balance energy 

consumption with other critical performance metrics, 

thereby resulting in significantly enhanced overall 

operational efficiency. 

 

Makespan and Average Task Completion Time  

Figures 4(a) and 4(b) illustrate the comparative 

performance trends for makespan and average task 

completion time (ATCT), respectively, across varying task 

loads (from 20,000 to 100,000 tasks) on the large-scale 

synthetic dataset. Our proposed framework consistently 

demonstrates strong performance against the benchmark 

methods across both metrics as the workload intensity 

increases. 

As shown in Figure 4(a), for makespan on the large-scale 

synthetic dataset, our framework achieves significant 

reductions. At the maximum evaluated task load of 100,000 

tasks, it reduces makespan by 28.0% compared to the GH 

and 17.0% compared to the MOGA. Furthermore, our 

framework performs slightly better than the DRL method, 

achieving a makespan of 720-time units compared to DRL’s 

725-time units under the same conditions. The plotted trends 

clearly show our framework maintaining this competitive 

makespan advantage across the different workload 

intensities evaluated. 

Figure 4(b) details the ATCT on the same large-scale 

synthetic dataset. Our framework consistently yields the 

lowest average task completion times across all tested task 

loads. Specifically, at the 100,000.00 task load, our proposed 

method reduces ATCT by 30.0% relative to GH, 18.6% 

relative to MOGA, and 2.8% relative to DRL. The trend lines 

in Figure 4(b) further highlight the ability of our framework 

to manage tasks more efficiently, leading to quicker average 

completion times even as the system load escalates from 

20,000 to 100,000 tasks. While these figures focus on the 

large-scale synthetic dataset, it’s noteworthy that on the real-

world datasets (as detailed elsewhere in our results), our 

framework also achieves makespan reductions ranging from 

23% to 35%, along with ATCT improvements of 19% to 31%. 

These findings highlight the effectiveness of our 

framework in balancing the trade-off between energy 
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consumption and performance. The GNN-based model 

captures intricate dependencies among tasks and resources, 

allowing the framework to make informed and adaptive task 

allocation decisions. This leads to optimized outcomes in 

both energy efficiency and execution performance. 

 

Fairness and Pareto Optimality 

Figure 5 presents the fairness comparison, utilizing Jain’s 

Fairness Index, as a function of increasing task load (from 

20,000 to 100,000 tasks) on the large-scale synthetic dataset. 

The trend lines clearly demonstrate that our proposed 

framework consistently achieves the highest fairness scores 

across all evaluated workload intensities. Specifically, our 

framework maintains a Jain’s Fairness Index between 0.92 

and 0.96, showcasing remarkable stability and equitable 

resource distribution even as the system load escalates. In 

contrast, the GH method exhibits the lowest fairness, 

declining from 0.65 to 0.52, while the MOGA performs 

better than GH but still shows a decrease in fairness from 

0.75 to 0.66 under increasing load. The DRL method 

maintains a relatively good fairness score, fluctuating 

between 0.84 and 0.87, but remains consistently below our 

proposed framework. While this figure focuses on the large-

scale synthetic dataset, the superior fairness of our approach 

is a consistent finding across all datasets evaluated, 

highlighting its effectiveness in distributing resources 

equitably. The multi-objective optimization strategy 

integrated into our framework plays a key role in preventing 

any task from being deprived of resources, while 

simultaneously optimizing for both energy efficiency and 

performance. 

Figure 6 depicts the hypervolume comparison of Pareto-

optimal solutions. Our framework attains the highest 

hypervolume across all datasets, showcasing its superior 

capability in balancing the trade-offs between energy 

consumption and system performance. The elevated 

hypervolume values reflect the robustness of our multi-

objective optimization approach in thoroughly exploring the 

solution space and identifying Pareto-optimal solutions that 

surpass those derived from benchmark methods. Figure 6 

depicts the hypervolume comparison of Pareto-optimal 

solutions across seven distinct datasets: S-Syn (Small-

Synthetic), M-Syn (Medium-Synthetic), L-Syn (Large-

Synthetic), RW-Net (RealWorld-NetworkBound), RW-CPU 

(RealWorld-CPUBound), RW-Mem (RealWorld-

MemoryBound), and Mix-Lrg (Mixed-LargeScale). Our 

framework consistently attains the highest hypervolume 

values, ranging from approximately 0.88 to 0.94 across these 

datasets, showcasing its superior capability in balancing the 

trade-offs between energy consumption and system 

performance. Among the baseline methods, DRL performs 

as the closest competitor, achieving hypervolume indicators 

generally between 0.80 and 0.88, and exhibiting particular 

strength on datasets such as RW-CPU and Mix-Lrg. MOGA 

typically ranks third, with its hypervolume values fluctuating 

between approximately 0.70 and 0.78, showing varied 

responsiveness to dataset characteristics, for instance, with 

improved performance on L-Syn and Mix-Lrg. The GH 

method consistently yields the lowest hypervolume 

indicators (ranging from 0.62 to 0.68), though it shows 

relative stability under RW-Net and RW-Mem conditions. 

The elevated and consistent hypervolume achieved by our 

framework reflects the robustness of our multi-objective 

optimization approach in thoroughly exploring the solution 

space and identifying Pareto-optimal solutions that 

significantly surpass those derived from the benchmark 

techniques. 

 

Scalability Analysis Under Varying Workload Intensities 

To further evaluate our framework’s performance with 

respect to makespan, we conducted a comprehensive 

scalability analysis under varying workload intensities and 

task dependency complexities. We systematically increased 

the workload intensity from 20% to 100% of maximum 

capacity while measuring the impact on makespan across all 

four methods (our GNN-based framework, GH, MOGA, and 

DRL). 

Figure 7 presents the normalized makespan as a function 

of workload intensity, ranging from 20% to 100%, for our 

framework and the baseline methods GH, MOGA, and DRL. 

A lower normalized makespan signifies better performance, 

with a value of 1.0 representing the baseline performance at 

20% workload. Our framework demonstrates superior 

scalability, as its normalized makespan shows the least 

increase with rising workload intensity. Specifically, at 100% 

workload intensity, our framework’s normalized makespan 

reaches 1.11, indicating only an 11% performance 

degradation from its 20% baseline. In contrast, the DRL, 

MOGA, and GH methods experience more substantial 

degradations under full workload, with their normalized 

makespans increasing to 1.18 (18% degradation), 1.23 (23% 

degradation), and 1.27 (27% degradation), respectively. This 

clearly illustrates our framework’s capability to maintain 

higher operational efficiency and more consistent 

performance as the system load escalates. 

We also analyzed the effect of task dependency 

complexity on makespan performance. Figure 8 illustrates 

how makespan varies across three levels of task dependency 

complexity (low, medium, and high) for each method. Our 

GNN-based approach exhibits the least sensitivity to 

increasing task complexity due to its ability to effectively 

model and adapt to complex task-resource dependencies. 

 

Performance Under Resource Constraints 

To evaluate how different resource constraint scenarios 

affect the Average Task Completion Time (ATCT), we 

conducted experiments under four distinct resource 

limitation conditions: CPU-constrained, memory-

constrained, network-constrained, and balanced resources. 

This experiment is particularly relevant for real-world cloud 

deployments where specific resource types may become 

bottlenecks. 
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Figure 9 presents the ATCT for all four methods under 

these different resource constraint scenarios. Our framework 

consistently outperforms the comparison methods across all 

scenarios, with particularly significant improvements under 

memory-constrained conditions, which are common in big 

data environments. Specifically, our approach achieves 37-

42% reduction in ATCT compared to GH, 29-33% compared 

to MOGA, and 15-21% compared to DRL in memory-

constrained environments. 

We further analyzed the resource utilization patterns for 

each method under these constraint scenarios. Figure 10 

shows the resource utilization efficiency (RUE) metric, 

defined as the ratio of useful work performed to total 

resources consumed. Our framework achieves the highest 

RUE across all scenarios, demonstrating its ability to 

intelligently allocate resources even under severe constraints. 

To further probe the robustness of our framework under 

resource scarcity, Figure 11 illustrates the impact of varying 

degrees of memory constraint on Resource Utilization 

Efficiency (RUE). The x-axis represents decreasing memory 

availability, from 100% (no specific constraint beyond 

baseline) down to 20% (severe memory limitation). Our 

proposed framework consistently maintains the highest RUE 

across all levels of memory availability. Notably, as memory 

becomes increasingly scarce (moving from left to right on 

the graph), our framework exhibits a more graceful 

degradation in RUE (from 0.92 at 100% availability to 0.75 

at 20% availability) compared to the baseline methods. For 

instance, under severe memory constraints (20% 

availability), our framework achieves an RUE of 0.75, which 

is 25% higher than DRL (0.60), 66% higher than MOGA 

(0.45), and 150% higher than GH (0.30). This demonstrates 

the superior capability of our GNN-based modeling and RL-

driven optimization to make efficient resource allocation 

decisions even when critical resources like memory are 

severely limited, a common challenge in big data processing. 

Figure 12 evaluates the adaptability and performance 

stability of the different methods under dynamic workload 

conditions, plotting system throughput over a simulated time 

period characterized by fluctuating task arrival rates. The 

simulation includes phases of low, moderate, and peak loads 

to mimic real-world operational variability. Our framework 

consistently achieves higher system throughput throughout 

the simulation compared to GH, MOGA, and DRL. More 

importantly, it demonstrates better responsiveness to 

workload changes, scaling up throughput effectively during 

peak periods (e.g., achieving peak throughputs around 108 

and 112 tasks/interval) and maintaining efficiency during 

lulls. In contrast, baseline methods either exhibit lower 

overall throughput (GH and MOGA) or show greater 

volatility and slower recovery from load changes (DRL). For 

example, during the second peak load around time unit 70-

80, our framework sustains a significantly higher throughput 

(approx. 112 tasks/interval) than DRL (approx. 98 

tasks/interval), MOGA (approx. 72 tasks/interval), and GH 

(approx. 54 tasks/interval). This resilience and adaptability 

are crucial for ensuring consistent performance in dynamic 

cloud environments and highlight the effectiveness of our 

framework’s learned policies in managing unpredictable 

workloads. 

To further validate the architectural design of our 

framework, we conducted an ablation study to isolate and 

quantify the contribution of the GNN component. As will be 

shown in Figure 13, this experiment compares our full 

framework (GNN+RL) against an ablated version where the 

GNN was replaced by a standard Multi-Layer Perceptron 

(MLP+RL), which cannot explicitly model graph structures. 

The results will demonstrate that the full framework 

significantly outperforms the ablated version across key 

metrics like energy efficiency and makespan. This 

performance gap underscores the critical role of the GNN in 

capturing the complex interdependencies among tasks and 

resources, a capability essential for making effective 

optimization decisions and a core advantage of our proposed 

approach. 

Furthermore, to address practical concerns about 

computational cost, we analyzed the decision-making 

overhead for all evaluated methods. Figure 14 will illustrate 

the average time required for each method to make a single 

scheduling decision. While heuristic methods like GH are 

computationally trivial, they yield poor results, and MOGA 

exhibits prohibitively high decision-making times, rendering 

it unsuitable for dynamic scheduling. Critically, the results 

will show that our framework's decision-making overhead is 

exceptionally low and comparable to the simpler DRL 

baseline. This confirms that despite its sophisticated GNN-

based architecture, our approach is highly efficient and 

viable for online, real-time resource allocation in dynamic 

cloud environments. 

VII. DISCUSSION 

In this section, we present and discuss the experimental 

results of our proposed multi-objective optimization 

framework, highlighting its implications for energy-efficient 

big data processing in cloud computing environments. 

Extensive experiments were conducted on both synthetic 

and real-world datasets to assess the performance of our 

framework compared to state-of-the-art methods. Our 

framework consistently achieved the lowest energy 

consumption across all datasets, as shown in Figure 3. On 

the large-scale synthetic dataset, it reduced energy 

consumption by 35% compared to the GH, 28% compared 

to the MOGA, and 19% compared to DRL. Similar 

improvements were observed on the real-world Google 

Cluster Trace dataset, with energy savings ranging from 31% 

to 39% compared to the benchmark methods. This 

substantial reduction in energy consumption can be 

attributed to the effective modeling of task and resource 

dependencies using GNNs. By capturing the complex 

relationships between tasks and resources, the GNN-based 

model enables more informed task allocation decisions, 

thereby optimizing energy usage. Additionally, the custom-

designed Policy Gradient algorithm within our framework 
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learns resource allocation policies that consider long-term 

impacts on system performance, further enhancing energy 

efficiency. 

Regarding system performance, our framework achieved 

competitive results in terms of makespan and average task 

completion time, as shown in Figures 4(a) and 4(b). On the 

large-scale synthetic dataset, it reduced the makespan by 28% 

compared to GH and 17% compared to MOGA, while 

performing comparably to DRL. For the real-world datasets, 

improvements ranging from 23% to 35% in makespan and 

19% to 31% in average task completion time were observed. 

These results highlight our framework’s ability to effectively 

balance the trade-off between energy consumption and 

system performance. The multi-objective optimization 

strategy ensures that energy efficiency does not come at the 

cost of degraded performance. By designing a composite 

reward function that considers energy consumption, task 

completion time, and other relevant metrics, our framework 

identifies optimal solutions that meet diverse performance 

requirements. 

Our framework also excels in fairness, as evidenced by 

the highest fairness scores across all datasets using Jain’s 

Fairness Index, shown in Figure 5. This indicates its capacity 

to allocate resources equitably among tasks, ensuring that no 

task is starved of resources while still optimizing overall 

performance. Furthermore, the framework demonstrates 

strong Pareto optimality by finding solutions that represent 

the best trade-offs between conflicting objectives such as 

energy consumption and system performance. The 

hypervolume indicator was used to assess the quality of the 

Pareto-optimal solutions, and our framework significantly 

outperformed the benchmark methods. The scalability of our 

framework is evident from its ability to effectively handle 

large-scale datasets with complex workloads involving 

many tasks and resources. It maintains high efficiency and 

performance, with the GNN-based model scaling well with 

the size of the task-resource graph. The reinforcement 

learning-based optimization adapts to different workload 

patterns and resource configurations, demonstrating its 

flexibility. 

Despite the positive results, our framework has some 

limitations and areas for future research. The current 

implementation assumes a centralized control mechanism 

for task allocation and scheduling. Extending the framework 

to support decentralized or hierarchical control could 

improve scalability and fault tolerance, particularly in 

distributed cloud environments. Additionally, the framework 

primarily focuses on batch processing workloads. Adapting 

it to handle real-time or streaming workloads would broaden 

its applicability to a wider range of big data applications 

requiring low-latency processing. Integrating additional 

energy-saving techniques, such as dynamic voltage and 

frequency scaling or power-aware scheduling, could further 

boost energy efficiency. Future work could also explore 

integrating emerging network technologies like 

reconfigurable intelligent surfaces to optimize 

communication efficiency in distributed cloud environments 

[46]. Finally, conducting more extensive experiments on 

diverse real-world datasets and comparing the framework 

with a broader range of state-of-the-art methods would 

provide deeper insights into its performance and 

generalizability. 

VIII. CONCLUSION 

Overall, our proposed framework marks a substantial 

advancement in energy-efficient big data processing within 

cloud computing environments. The innovative design and 

integration of each component enhance its effectiveness and 

clearly distinguish it from existing approaches. By 

synergistically combining GNNs, reinforcement learning, 

and multi-objective optimization, the framework delivers a 

robust and flexible solution for sustainable, high-

performance cloud-based big data processing. Experimental 

results confirm the efficacy of our approach, showing 

notable improvements in energy efficiency, makespan 

reduction, and fairness when benchmarked against state-of-

the-art methods. Moreover, the framework demonstrates 

excellent scalability and adaptability across diverse 

workload patterns and resource configurations, underscoring 

its strong potential for real-world deployment in cloud 

computing systems.
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Fig. 1. Architecture of big data services on the cloud. 

 

 

 

Fig. 2. Overview of the proposed framework. 
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Algorithm 1: Multi-Objective Optimization for Energy-Efficient Big Data Processing 

Input： 

- Task set 𝒯 = {t₁, t₂, ...,𝑡𝑁} 

- Resource set ℛ = {r₁, r₂, ..., 𝑟𝑀} 

- Objective set 𝒪 = {o₁, o₂, ..., 𝑜𝐾} 

- Weight vector 𝒘 = (w₁, w₂, ..., 𝑤𝐾) 

Output: 

- Pareto-optimal task allocation policies Π* = {π₁, π₂, ..., π_L} 

1: Construct the task-resource graph G = (V, E) based on 𝒯 and ℛ 

2: Initialize the GNN model parameters θ 

3: for episode = 1, 2, ..., E do 

4:    Initialize the MO-DQN agent with Q-networks {Q₁, Q₂, ..., 𝑄𝐾} 

5:     for step = 1, 2, ..., S do 

6:         Generate task embeddings ℎ𝑡
1, ℎ𝑡

2, … , ℎ𝑡𝑁
 using the GNN model 

7:       Generate resource embeddings ℎ𝑟
1 , ℎ𝑟

2, … , ℎ𝑟𝑀
 using the GNN model 

8:       Observe the current state 𝑠𝑡 = (ℎ𝑡
1, … , ℎ𝑡𝑁

, ℎ𝑟
1 , … , ℎ𝑟𝑀

, 𝑔𝑡) 

9:       Select an action 𝑎𝑡 based on the MO-DQN agent’s exploration strategy 

10:      Execute action 𝑎𝑡 and observe the rewards {r₁, r₂, ..., 𝑟𝐾} and the next state 𝑠𝑡+1 

11:      Normalize the rewards {̂r₁, ̂r₂, ..., r̂ 𝑘} using min-max scaling 

12:      Calculate the composite reward 𝑟𝑡 = ∑ᵏ wₖ · ̂rₖ 

13:      Store the experience (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in the replay buffer 𝐷 

14:      Sample a batch of experiences from D and update the Q-networks using the loss function         

15:      Update the GNN model parameters θ based on the sampled experiences 

16:    end for 

17:    Evaluate the learned task allocation policy π and add it to Π if it is Pareto-optimal 

18: end for 

19: return Π* 

 

 

Fig. 3. Energy consumption comparison of the four methods on different datasets. 
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Fig. 4. Makespan (a) and average task completion time (b) of the four methods on Large-scale dataset. 

 

Fig. 5. The fairness comparison using Jain’s Fairness Index. 
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Fig. 6. Hypervolume Comparison of Pareto-Optimal Solutions. 

 

Fig. 7. Impact of workload intensity on normalized makespan across all methods. Lower values indicate better performance. 
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Fig. 8. Effect of task dependency complexity on makespan for all four methods under full workload. 

 

 

Fig. 9. Average Task Completion Time under different resource constraint scenarios for all methods. 
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Fig. 10. Resource Utilization Efficiency under different resource constraint scenarios for all methods. Higher values indicate better efficiency. 

 

 

Fig. 11. Impact of varying memory constraint severity on Resource Utilization Efficiency (RUE) across all methods. Lower memory availability (x-axis) 

simulates increasing resource scarcity. 
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Fig. 12. System throughput under dynamic workload conditions for all methods. The x-axis represents simulation time with fluctuating task arrival rates. 

 

 

Fig. 13. Ablation study comparing the performance of the full framework (GNN+RL) against an ablated version (MLP+RL) on key metrics. The results 

validate the critical contribution of the GNN component to overall performance. 
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Fig. 14. Comparison of the average decision-making overhead per scheduling action for all methods. Lower values indicate better computational efficiency 

for online deployment. 

∑  𝑀
𝑗=1 𝑥𝑖𝑗(𝑝𝑖 + ∑  𝑁

𝑘=1 𝑝𝑘𝑦𝑖𝑗𝑘) ≤ 𝑑𝑖 , ∀𝑖 ∈ 1,2, . . . , 𝑁                        (5) 

 

𝑦𝑖𝑗𝑘 + 𝑦𝑖𝑘𝑗 = 1, ∀𝑖, 𝑘 ∈ 1,2, . . . , 𝑁, ∀𝑗 ∈ 1,2, . . . , 𝑀, 𝑖 ≠ 𝑘                     (7) 

 

𝐡𝑣
(𝑙)

= 𝜎(𝐖(𝑙) ⋅ AGG(𝐡𝑢
(𝑙−1)

, ∀𝑢 ∈ 𝒩(𝑣)) + 𝐛(𝑙))                       (8) 

 

𝐿(𝜃) = 𝔼(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡 + 1) ∼ 𝐷 [(𝑟𝑡 + 𝛾 ⋅ 𝑚𝑎𝑥
𝑎′

 𝑄(𝑠𝑡+1, 𝑎′; 𝜃−) − 𝑄(𝑠𝑡 , 𝑎𝑡; 𝜃))
2

]              (10) 

 

𝐿(𝜃1, . . . , 𝜃𝐾) = 𝔼(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡 + 1) ∼ 𝐷 [∑  𝐾
𝑘=1 𝑤𝑘 ⋅ (𝑟̂𝑘,𝑡 + 𝛾 ⋅ 𝑚𝑎𝑥𝑎′𝑄𝑘(𝑠𝑡+1, 𝑎′; 𝜃𝑘

−) − 𝑄𝑘(𝑠𝑡 , 𝑎𝑡; 𝜃𝑘))
2

]     (13) 
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