
Graph Neural Networks-Based Multi-Objective

Optimization for Energy-Efficient Big Data

Processing in Cloud Computing

Ke Hu

Abstract-The explosive expansion of big-data workloads in
cloud platforms has intensified challenges surrounding both
resource utilization and power draw. This work proposes a

novel multi-objective optimization framework that employs
graph neural networks (GNNs) to capture the intricate task–
resource relationships and leverages a tailored policy-gradient

(PG) algorithm to learn allocation strategies in continuous
action spaces. A composite reward function—accounting for
energy usage, task completion latency, and additional service

metrics—guides the learning process, enabling an explicit
trade-off between energy efficiency and overall performance.
On synthetic workloads our approach cuts energy consumption

by 35 %, 28 %, and 19 % relative to GH, MOGA, and DRL
baselines, respectively. Comparable gains (31%–39%) are
achieved on the Google Cluster Trace dataset. Moreover, the

framework maintains competitive makespan and average
completion time while distributing resources fairly. These
findings demonstrate the effectiveness of the proposed method

in simultaneously delivering energy savings and high
performance for cloud-based big-data processing.

Index Terms-Cloud computing, big data processing, energy

efficiency, Policy Gradient (PG) Algorithm, multi-objective

optimization

I. INTRODUCTION

 he pervasive growth of big data has fundamentally

reshaped how organizations process, analyze, and extract

value from vast quantities of structured and unstructured

information. However, the inherent characteristics of big

data-notably its sheer volume, rapid velocity, and diverse

variety-present formidable challenges to conventional

computing infrastructures [1]. Traditional on-premises

systems frequently prove inadequate, lacking the requisite

storage capacity, bandwidth, and computational power to

manage big data effectively at scale. Furthermore,

sophisticated data analytics and advanced visualization

techniques, essential for deriving critical insights, demand

specialized resources that often surpass the capabilities of

local computing environments [2]. In response to these

limitations, cloud computing has emerged as a

transformative paradigm, offering dynamically scalable

storage, high-capacity bandwidth, powerful analytical tools,

and sophisticated data visualization platforms [3]. By

harnessing the elastic, on-demand resources inherent to

cloud computing, organizations can more adeptly address

the complexities of big data processing, thereby unlocking

the full potential of their data assets [4].

Virtualization in cloud data centers aggregates physical

hardware into an abstracted pool, enabling fine-grained

allocation of compute, storage, and network resources to

dynamic big-data workloads [5]. However, widespread

cloud adoption introduces new hurdles—notably load

balancing, resource contention, and, critically, energy

consumption, issues further complicated by mobile-cloud

scenarios [6]. Static heuristics and rule-based optimizers

struggle to keep pace with the heterogeneity and volatility of

modern cloud environments [7]. The problem is exacerbated

by ever-expanding datasets with diverse processing needs

and stringent QoS requirements [8], underscoring the need

for adaptive, intelligent resource-management strategies.
Swarm-intelligence algorithms have shown promise for

such optimization tasks. Inspired by collective behaviors

seen in nature, techniques such as particle swarm

optimization (PSO) and ant colony optimization (ACO) can

explore large search spaces to produce near-optimal

schedules [9], [10]. Their relative simplicity and robustness

make them attractive for multi-objective scenarios [11], and

hybrid variants further enhance trade-off handling among

performance, energy, and QoS metrics [12]. Nevertheless,

conventional swarm methods often fall short of capturing the

nuanced dependencies among tasks, data, and resources in

large-scale clouds.

Graph Neural Networks (GNNs) address this limitation by

learning rich representations over graph-structured data [13],

propagating information along edges to model complex

relationships [14]. In cloud computing, GNNs have been

employed for energy optimization, resource allocation, VM

migration, and load balancing [15]. Representing tasks,

resources, or VMs as graph nodes and their interactions as

edges allows a GNN to reason over the full system context

[16], making it well suited to large, dynamic environments.
Policy-Gradient (PG) reinforcement-learning methods

complement GNNs by directly optimizing a parameterized

policy to maximize expected long-term rewards [17]. In

cloud resource management, PG algorithms can learn

adaptive allocation strategies responsive to current system

states and task requirements [18]. Combining GNN

representation learning with PG decision making thus yields

a powerful optimization paradigm that considers both fine-

grained structural dependencies and long-horizon objectives.

T

Manuscript received March 11, 2025; revised July 22, 2025.

Ke Hu is a Lecturer in Laboratory Construction Management and

Operation Center, Nanyang Institute of Technology, Nanyang 473004,

China (corresponding author to provide e-mail: 2091004@nyist.edu.cn).

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3746-3766

__

A key practical complication is the intrinsic tension

between minimizing energy consumption and maximizing

performance. Prioritizing one objective risk SLA violations

or excessive operational costs [19]. A multi-objective

perspective is therefore essential: only by balancing

competing goals can we satisfy the diverse demands of big-

data workloads.

This paper introduces a unified framework that fuses

GNN modeling with a bespoke PG optimizer under a

composite reward that explicitly balances energy and

performance. The resulting policies capture task–resource

intricacies, adapt to evolving workloads, and sustain energy-

aware yet high-performing operation. To our knowledge, this

is the first study to integrate GNNs, PG algorithms, and

multi-objective optimization specifically for energy-

efficient big-data processing in cloud environments.

II. METHODS

This research undertakes the design and exhaustive

evaluation of a new multi-objective optimization framework

that targets energy-efficient big-data processing in cloud

environments. The framework’s overarching goal is to

overcome the shortcomings of current optimizers by (i)

accurately capturing the fine-grained dependencies that bind

tasks to resources and (ii) striking a deliberate balance

between energy consumption and overall system

performance.

To fulfil this goal, we follow a quantitative experimental

methodology encompassing both the meticulous

construction of the framework and its rigorous assessment

through large-scale simulations. The implementation

combines three key components: (1) a GNN module for

expressive task–resource representation, (2) an RL-based

policy-gradient engine that adapts allocation decisions

online, and (3) a unifying multi-objective scheme that

reconciles energy use with performance targets.

Empirical studies are carried out in a purpose-built

simulation environment based on CloudSim, an extensible

open-source toolkit that faithfully mirrors real data-centre

behaviors. Multiple heterogeneous servers—differing in

processing power, memory capacity, and energy profiles—

are instantiated to reproduce realistic resource dynamics and

their impact on efficiency.

Workloads are synthesized to emulate true big-data jobs,

with diverse execution times, memory footprints, deadlines,

and inter-task dependencies. To gauge scalability and

robustness, we employ both controlled synthetic traces and

the Google Cluster Trace, the latter offering production-

grade workload characteristics.

The proposed framework is benchmarked against three

strong baselines: a Greedy Heuristic (GH), a Multi-

Objective Genetic Algorithm (MOGA), and a Deep

Reinforcement Learning (DRL) scheduler. Performance is

quantified with respect to total energy usage, makespan,

mean task completion time, allocation fairness, and Pareto

optimality. Throughout the simulation runs we collect

detailed logs, apply appropriate statistical analyses, and

present results via intuitive visualizations.

Because experiments are performed under fully controlled,

reproducible conditions rather than statistical sampling,

traditional power-analysis calculations are unnecessary. The

study instead centers on modelling fidelity and

comprehensive performance appraisal within a simulated

cloud that mirrors real-world settings.

III. ARCHITECTURE OF BIG DATA SERVICES IN THE CLOUD

Effective ingestion, storage, and analysis of massive data

volumes rely on sophisticated, multilayered cloud

architectures expressly crafted to exploit the scalability,

elasticity, and cost advantages of the cloud paradigm [20].

As illustrated in Fig. 1, a canonical architecture comprises

several tiers. At the foundation lies the physical-

infrastructure layer—an extensive mesh of servers, storage

arrays, and networking hardware. Above this, the

virtualization layer abstracts those physical resources,

enabling rapid deployment of isolated virtual machines or

containers and thereby fostering high resource utilization

and true multi-tenancy [21].

Above the virtualization substrate, a series of data-

oriented tiers orchestrates the entire big-data life-cycle. First,

a distributed-storage layer delivers fault-tolerant, high-

throughput persistence for structured, semi-structured, and

unstructured datasets, typically relying on file systems such

as Hadoop HDFS or Ceph [22]. Next, a distributed-

processing layer enables large-scale parallel computation

through engines like Apache Hadoop, Spark, or Flink [23].

To cope with workload volatility, an intelligent resource-

management tier continuously adjusts CPU, memory, and

network allocations, while a service-provisioning layer

automates deployment, configuration, and maintenance of

data-analytics applications.

Yet the very attributes that make these architectures

powerful—elastic resource pools and on-demand scaling—

also complicate energy stewardship. Highly dynamic

workloads, intricate task-data-resource interdependencies,

and heterogeneous hardware all conspire to make energy

optimization remarkably challenging [24]. Moreover,

operators must juggle conflicting goals, balancing

performance against power savings within sprawling, multi-

tenant data centers.

Overcoming these obstacles calls for holistic, adaptive

optimization frameworks that capture workload dynamics

and architectural complexity, then make intelligent decisions

to harmonies energy consumption with performance. The

rest of this paper introduces such a framework, built on GNN

modelling and reinforcement-learning (RL) techniques, to

meet the demanding requirements of energy-efficient big-

data processing in modern cloud environments.

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3746-3766

__

IV. RELATED WORKS

A. Energy-Efficient Big Data Processing in Cloud

Computing

The dramatic rise of big-data workloads and the

corresponding surge in cloud-data-centre energy bills have

made power-aware processing a priority for both academia

and industry. Numerous optimization strategies and

frameworks have therefore been proposed to curb energy use

while preserving performance and meeting QoS targets.

Early efforts relied on heuristic rules crafted from domain

expertise. Mashayekhy et al. developed an energy-aware

scheduler for MapReduce that favors the most power-

efficient servers when assigning tasks, explicitly accounting

for resource heterogeneity [25]. Likewise, Zhao et al.

designed a heuristic data-placement algorithm that leverages

access-pattern knowledge and device-power profiles to cut

storage energy overheads [26].

More recently, data-driven techniques have gained

traction. Berral et al. introduced a machine-learning

framework in which neural models predict future resource

demand and provision capacity accordingly, reducing

wasted energy in cloud data centres [27]. Mostafavi et al.

advanced this line of work by formulating task scheduling as

a reinforcement-learning (RL) problem; their agent

continually refines its policy to minimize energy while

honoring performance constraints [28].
To reconcile conflicting objectives such as energy and

throughput, researchers have turned to multi-objective

optimization. Wang et al. framed task scheduling as a bi-

objective problem (energy and makespan) and applied a

genetic algorithm to approximate Pareto-optimal schedules

[29]. Shrimali et al. employed particle-swarm optimization

to balance power draw against QoS guarantees during

resource allocation [30].

Despite these advances, important gaps remain. Many

solutions concentrate on isolated facets—task scheduling or

resource placement—without modelling the intricate

coupling among tasks, data, and compute nodes.

Furthermore, most adopt static or offline optimization,

assuming workload characteristics are known a priori. Real

clouds face stochastic, rapidly changing demands that

require online, adaptive control. Finally, striking a

satisfactory compromise between energy and performance

continues to be difficult because the objectives are inherently

at odds [31]. Addressing these shortcomings calls for

comprehensive frameworks capable of real-time learning

and holistic decision-making—an issue taken up in the next

subsection.

B. GNNs and Reinforcement Learning for Optimization

GNNs and RL have emerged as potent tools for complex

optimization across many domains, including cloud resource

management. GNNs excel at encoding the rich relational

structure among entities, while RL provides a principled way

to learn decision policies through environmental interaction.

In cloud contexts, GNNs have been used to capture the

multifaceted links among servers, tasks, and network paths.

Shabka et al. modelled a data centre as a graph whose nodes

are servers and edges are links; the learned representations

guided energy-aware resource allocation and improved

overall efficiency [32]. Chen et al. extended this idea to edge

environments, encoding task dependencies and device

constraints as a graph and using a GNN to derive schedules

that shorten completion time and cut energy consumption

[33].

RL, meanwhile, has proven effective for dynamic

resource control. Liu et al. adopted a Deep Q-Network (DQN)

to learn allocation policies that boost throughput while

trimming power use [34]. Kang et al. proposed a hierarchical

RL scheme with separate agents for inter- and intra-data-

centre scheduling, collectively driving down total energy

consumption [35].

Integrating GNN representation learning with RL

decision-making further enhances optimization power.

Thein et al. demonstrated this synergy by embedding task-

resource relationships with neural networks and letting an

RL agent exploit those embeddings to select high-quality

allocations, surpassing heuristics and standalone ML in both

energy savings and QoS compliance [36].

Nonetheless, several research challenges persist. Scaling

GNN and RL methods to clouds comprising thousands of

servers and millions of tasks demands efficient, distributed

training algorithms. Policy transparency is another concern:

as models grow more complex, improving interpretability

becomes vital for operator trust. Finally, fusing GNN-RL

frameworks with complementary paradigms—such as multi-

objective evolutionary search or game-theoretic

coordination—could yield even more resilient, adaptive

solutions for energy-efficient big-data processing in

dynamic cloud settings.

V. MULTI-OBJECTIVE OPTIMIZATION FRAMEWORK

A. Overview

This study proposes a multi-objective optimization

framework that targets energy-efficient big-data processing

in cloud environments while simultaneously maximizing

system performance and respecting QoS requirements. By

uniting GNNs with Reinforcement Learning (RL), the

framework overcomes key shortcomings of earlier methods

and offers a holistic solution for cloud-scale analytics.

The architecture comprises three synergistic modules.

1) GNN-based modelling: Features describing tasks and

resources are encoded into a task–resource graph that

reflects the fine-grained dependencies and constraints

inherent to the cloud. The GNN transforms this graph into

compact, low-dimensional embeddings for both tasks and

resources, serving as rich inputs for downstream decision

making.

2) RL-based optimization: Using the embeddings, an RL

agent learns resource-allocation and scheduling policies

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3746-3766

__

through continual interaction with the simulated cloud. The

agent optimizes a reward that jointly considers energy,

throughput, and service quality, thereby navigating the

inevitable trade-offs among these objectives.

3) Multi-objective strategy: A flexible weighting

mechanism shapes the composite reward, allowing operators

to priorities energy savings, performance, or QoS as needed.
Figure 2 illustrates the overall workflow. The GNN

captures intricate task-resource interactions that heuristics or

flat neural models often miss, yielding more informed

decisions. The RL component continuously refines its policy

in response to workload volatility and resource heterogeneity.
The multi-objective formulation lets users explicitly tune the

balance among competing goals. By learning directly from

graph-structured data and operating online, the framework

scales to large, heterogeneous clouds and diverse workload

profiles, outperforming heuristics and single-objective

methods in both energy efficiency and overall performance.

B. Problem Formulation

In this section, we formally define the energy-efficient big

data processing problem within cloud computing

environments. We introduce the necessary mathematical

notations and symbols to model the system accurately and

present the corresponding optimization objectives alongside

the associated constraints.

Given a cloud computing environment with a set of 𝑀

servers denoted as 𝑆 = 𝑠1, 𝑠2, … , 𝑠𝑀 , and a set of 𝑁 big

data tasks denoted as 𝑇 = 𝑡1, 𝑡2, … , 𝑡𝑁, the goal is to find an

optimal allocation of tasks to servers and determine the

processing order of tasks on each server, such that the overall

energy consumption is minimized while the system

performance is maximized and the QoS requirements are

satisfied. We define the following notations. 𝑥𝑖𝑗 , a binary

variable indicating whether task 𝑡𝑖 is assigned to server

𝑠𝑗(𝑥𝑖𝑗= 1) or not (𝑥𝑖𝑗= 0). 𝑦𝑖𝑗𝑘, a binary variable indicating

whether task 𝑡𝑖 is processed before task 𝑡𝑘 on server

𝑠𝑗(𝑦𝑖𝑗𝑘 = 1) or not (𝑦𝑖𝑗𝑘= 0). 𝑝𝑖 is the processing time of

task 𝑡𝑖. 𝑒𝑗 is the energy consumption per unit time of server

𝑠𝑗. 𝑐𝑗 the processing capacity of server 𝑠𝑗. the deadline of

task 𝑡𝑖 . 𝑚𝑖 , the memory requirement of task 𝑡𝑖 . 𝑏𝑗 the

available memory of server the available memory of server

𝑠𝑗.

The optimization objectives can be formally expressed as

follows. The first objective is to minimize the total energy

consumption of the cloud computing system:

 minimize ∑  

𝑀

𝑗=1

𝑒𝑗 ∑  

𝑁

𝑖=1

𝑝𝑖𝑥𝑖𝑗 (1)

where 𝑒𝑗 represents the energy consumption per unit time

of server 𝑠𝑗, 𝑝𝑖 denotes the processing time of task 𝑡𝑖, and

𝑥𝑖𝑗 is a binary variable indicating the assignment of task 𝑡𝑖

to server 𝑠𝑗.

Maximizing the system throughput, which is defined as

the number of tasks completed per unit of time:

maximize

∑  𝑁
𝑖=1 ∑  𝑀

𝑗=1 𝑥𝑖𝑗

𝑇
 (2)

where 𝑇 represents the total processing time.

The optimization problem is subject to the following

constraints. Each task must be assigned to one and only one

server:

 ∑  

𝑀

𝑗=1

𝑥𝑖𝑗 = 1, ∀𝑖 ∈ 1,2, . . . , 𝑁 (3)

This constraint guarantees that each task is handled by a

single server. Additionally, the processing capacity of each

server must not be exceeded:

 ∑  

𝑁

𝑖=1

𝑝𝑖𝑥𝑖𝑗 ≤ 𝑐𝑗 , ∀𝑗 ∈ 1,2, . . . , 𝑀 (4)

where 𝑐𝑗 denotes the processing capacity of server 𝑠𝑗. The

deadline of each task must be satisfied in equation (5),

where 𝑑𝑖 represents the deadline of task 𝑡𝑖, and 𝑦𝑖𝑗𝑘 is a

binary variable indicating the processing order of tasks 𝑡𝑖

and 𝑡𝑘 on server 𝑠𝑗.

The memory requirement of each task must not exceed the

available memory of the assigned server:

 𝑚𝑖𝑥𝑖𝑗 ≤ 𝑏𝑗 , ∀𝑖 ∈ 1,2, . . . , 𝑁, ∀𝑗 ∈ 1,2, . . . , 𝑀 (6)

where 𝑚𝑖denotes the memory requirement of task 𝑡𝑖, and

𝑏𝑗 represents the available memory of server 𝑠𝑗.

The processing order of tasks on each server must be

consistent, as shown in equation (7).

This constraint ensures that the execution order of tasks

on each server is clearly defined and consistent. The

resulting optimization problem is formulated as a multi-

objective mixed-integer linear programming (MILP)

problem, which is known to be NP-hard. To address this

complexity effectively, we propose a novel approach that

integrates GNN-based task and resource modeling, RL-

based optimization, and a tailored multi-objective

optimization strategy. The details of this approach are

presented in the subsequent sections.

C. GNN-based Task and Resource Modelling

To effectively capture the complex dependencies and

interactions among tasks and resources in cloud computing

environments, we propose a GNN-based approach for

modeling and representation learning. GNNs have

demonstrated exceptional capability in extracting

meaningful patterns from graph-structured data, making

them particularly well-suited to the challenges of our

problem setting.
We define a task-resource graph 𝐺 = (𝑉, 𝐸) , where

𝑉 represents the set of nodes and 𝐸 denotes the set of edges.

The node set 𝑉 consists of two types of nodes: task nodes

𝑉𝑇 = 𝑡1, 𝑡2, … , 𝑡𝑁 and resource nodes 𝑉𝑅 = 𝑟1, 𝑟2, … , 𝑟𝑀 ,

where 𝑁 is the number of tasks and 𝑀 is the number of

resources (servers). Each task node 𝑡𝑖 ∈ 𝑉𝑇 is associated

with a feature vector 𝑥𝑡𝑖
∈ 𝑅𝑑𝑡 , which encodes the

characteristics of the task, such as its processing time,

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3746-3766

__

memory requirement, and deadline. Similarly, each resource

node 𝑟𝑗 ∈ 𝑉𝑅 is associated with a feature vector 𝑥𝑟𝑗
∈ 𝑅𝑑𝑟 ,

which captures the properties of the resource, such as its

processing capacity, available memory, and energy

consumption per unit time.

The edges in the task-resource graph represent the

compatibility and constraints between tasks and resources.

We define two types of edges: task-to-resource edges 𝐸𝑇𝑅 ⊆

𝑉𝑇 × 𝑉𝑅 and task-to-task edges 𝐸𝑇𝑇 ⊆ 𝑉𝑇 × 𝑉𝑇 . A task-to-

resource edge (𝑡𝑖 , 𝑟𝑗) ∈ 𝐸𝑇𝑅 indicates that task 𝑡𝑖 can be

assigned to the resource 𝑟𝑗, subject to the resource’s capacity

and the task’s requirements. A task-to-task edge (𝑡𝑖 , 𝑡𝑘) ∈

𝐸𝑇𝑇 represents the dependencies or communication

requirements between tasks 𝑡𝑖 and 𝑡𝑘.

Given the task-resource graph G, our goal is to learn a

low-dimensional representation (embedding) for each node,

which captures the structural and semantic information of

the graph. We employ a GNN model to achieve this goal.

The GNN takes the initial node features 𝑋 =

𝑥𝑡1
, … , 𝑥𝑡𝑁

, 𝑥𝑟1
, … , 𝑥𝑟𝑀

 as input and performs multiple

layers of message passing and aggregation to update the

node embeddings. At each layer 𝑙 of the GNN, the

embedding of a node 𝑣 is updated by aggregating the

embeddings of its neighbors 𝒩(𝓋) and combining them

with its own embedding from the previous layer, as shown

in equation (8), where ℎ𝑣
(𝑙)

∈ 𝑅𝑑(𝑙)
 is the embedding of

node 𝑣 at layer 𝑙 , 𝑊(𝑙) ∈ 𝑅𝑑(𝑙)×𝑑(𝑙−𝟙)
 and 𝑏(𝑙) ∈ 𝑅𝑑(𝑙)

 are

learnable weight matrix and bias vector, respectively,

AGG(⋅) is an aggregation function (e.g., mean, max, or sum)

that combines the embeddings of the neighboring nodes, and

σ(⋅) is a non-linear activation function (e.g., ReLU or

sigmoid).

The GNN is trained using a supervised learning approach,

where the objective is to minimize a loss function that

quantifies the discrepancy between the predicted

assignments-based on the learned node embeddings—and

the ground-truth assignments. The training process consists

of forward propagation to compute the node embeddings,

followed by backpropagation to update the model

parameters (weights and biases) using the gradients of the

loss function. Once trained, the GNN model is capable of

generating informative embeddings for both tasks and

resources, effectively capturing their intrinsic properties and

interdependencies. These embeddings are then fed into the

subsequent optimization module, facilitating more effective

and efficient decision-making for task allocation and

resource management in the cloud computing environment.

D. Reinforcement Learning-based Optimization

Building upon the GNN-based task and resource

modeling, we propose an RL-based approach to optimize the

allocation of tasks to resources within the cloud computing

environment. RL offers a robust framework for sequential

decision-making under uncertainty, enabling the learning of

optimal policies through interaction with the environment.

We formulate the optimization problem as a Markov

Decision Process (MDP), where the RL agent interacts with

the cloud computing environment to learn the optimal task

allocation policy. The key elements of the MDP are defined

as follows.

The state 𝑠𝑡 at time step 𝑡 is represented by the

embeddings of tasks and resources generated by the GNN

model, along with additional global features such as the

overall system throughput and energy consumption.

Formally, 𝑠𝑡 = (ℎ𝑡1
, … , ℎ𝑡𝑁

, ℎ𝑟1
, … , ℎ𝑟𝑀

, 𝑔𝑡) , where ℎ𝑡𝑖

and ℎ𝑟𝑗
 are the embeddings of task 𝑡𝑖 and resource 𝑟𝑗 ,

respectively, and 𝑔𝑡 represents the global features. The

action 𝑎𝑡 at time step 𝑡 corresponds to the allocation of

tasks to resources. We define the action space as a discrete

set of possible task-to-resource assignments, where each

action 𝑎𝑡 = (𝑎𝑡,1, … , 𝑎𝑡,𝑁) is a vector of resource indices,

with 𝑎𝑡,𝑖 ∈ 1, … , 𝑀 indicating the resource to which task 𝑡𝑖

is assigned. The reward function 𝑟(𝑠𝑡 , 𝑎𝑡) measures the

immediate performance of the system after taking action 𝑎𝑡

in state 𝑠𝑡. We design the reward function to align with the

optimization objectives, considering both the energy

consumption and the system throughput. Specifically,

𝑟(𝑠𝑡 , 𝑎𝑡) = −𝜆1 ⋅ energy(𝑠𝑡 , 𝑎𝑡) + 𝜆2 ⋅ throughput(𝑠𝑡 , 𝑎𝑡) ,

where energy(𝑠𝑡 , 𝑎𝑡) and throughput(𝑠𝑡 , 𝑎𝑡) are the total

energy consumption and system throughput achieved by

taking action 𝑎𝑡 in state 𝑠𝑡 , and λ1 and λ2 are positive

weights that balance the two objectives.

The goal of the RL agent is to learn a policy π(𝑎𝑡|𝑠𝑡) that

maximizes the expected cumulative reward over a horizon

of 𝑇 time steps:

 𝐽(𝜋) = 𝔼𝜋[∑𝑡 = 0𝑇−1𝛾𝑡 ⋅ 𝑟(𝑠𝑡 , 𝑎𝑡)] (9)

where γ ∈ [0,1] is a discount factor that determines the

importance of future rewards.

To solve the optimization problem, we employ a variant

of the DQN algorithm, which combines Q-learning with

deep neural networks for function approximation. The DQN

agent maintains an action-value function 𝑄(𝑠, 𝑎; θ) ,

parameterized by a neural network with weights θ, which

estimates the expected cumulative reward of taking

action 𝑎 in state 𝑠. The agent interacts with the environment

by selecting actions based on an ϵ-greedy policy, where it

chooses the action with the highest Q-value with probability

1 − ϵ and a random action with probability ϵ for

exploration. The DQN is trained using experience replay and

target network techniques to stabilize the learning process.

The agent stores its experiences (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in a replay

buffer and periodically samples a batch of experiences to

update the Q-network parameters θ by minimizing the

temporal difference error, as shown in equation (10), where

𝐷 is the replay buffer and θ− are the parameters of a target

Q-network that is periodically updated with the current Q-

network parameters.

The integration of GNN-based modeling with RL-based

optimization offers several key advantages. The GNN

embeddings serve as compact and informative

representations of tasks and resources, effectively capturing

their intrinsic characteristics and interdependencies. These

embeddings enable the RL agent to make more informed and

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3746-3766

__

efficient allocation decisions, while dynamically adapting to

the stochastic and evolving nature of the cloud computing

environment. Furthermore, the use of the DQN algorithm

enhances sample efficiency and training stability, making it

particularly suitable for the proposed optimization problem.

By combining GNN-based modeling with RL-based

optimization, our approach is capable of addressing the

complexity and scale of modern cloud computing systems,

learning optimal policies that promote both energy

efficiency and high performance in big data processing.

These learned policies can adapt to fluctuating workloads

and changing system conditions, offering a flexible and

robust solution for resource management in the cloud.

E. Multi-Objective Optimization Strategy

In the context of energy-efficient big data processing

within cloud computing environments, optimizing for a

single objective-such as minimizing energy consumption or

maximizing system throughput-is often insufficient. In

practice, these objectives frequently conflict, necessitating

trade-offs to achieve a balanced and satisfactory outcome. To

address this challenge, we propose a multi-objective

optimization strategy that integrates seamlessly with our

GNN-based modeling and RL-based optimization

framework.

Central to our multi-objective optimization strategy is the

design of a composite reward function that incorporates

multiple optimization objectives. Let 𝒪 = 𝑜1, 𝑜2, … , 𝑜𝐾 be

the set of 𝐾 objectives we consider, such as energy

consumption, system throughput, resource utilization, and

response time. For each objective 𝑜𝑘 , we define a

corresponding reward function 𝑟𝑘(𝑠𝑡 , 𝑎𝑡) that measures the

performance of the system concerning that objective when

taking action 𝑎𝑡 in state 𝑠𝑡 . To combine these individual

reward functions into a single composite reward, we

introduce a set of weight parameters 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝐾),

where 𝑤𝑘 ≥ 0 and ∑ 𝑤𝑘
𝐾
𝑘=1 = 1 . The composite reward

function is then defined as a weighted sum of the individual

rewards:

 𝑟(𝑠𝑡 , 𝑎𝑡) = ∑  

𝐾

𝑘=1

𝑤𝑘 ⋅ 𝑟𝑘(𝑠𝑡 , 𝑎𝑡) (11)

The weight parameters 𝒘 represent the relative

importance of each objective and can be adjusted based on

user preferences or system requirements. By setting

appropriate weights, we can prioritize certain objectives over

others and control the trade-off between conflicting goals.

However, optimizing for multiple objectives simultaneously

presents several challenges. First, the objectives may have

different scales and ranges, making it difficult to compare

and aggregate them directly. To address this issue, we

normalize the individual reward functions using min-max

scaling:

 𝑟̂𝑘(𝑠𝑡 , 𝑎𝑡) =
𝑟𝑘(𝑠𝑡 , 𝑎𝑡) − 𝑚𝑖𝑛𝑎𝑟𝑘(𝑠𝑡 , 𝑎)

𝑚𝑎𝑥
𝑎

 𝑟𝑘(𝑠𝑡 , 𝑎) − 𝑚𝑖𝑛
𝑎

 𝑟𝑘(𝑠𝑡 , 𝑎)
 (12)

where min
𝑎

𝑟𝑘 (𝑠𝑡 , 𝑎) and max
𝑎

𝑟𝑘 (𝑠𝑡 , 𝑎) are the minimum

and maximum rewards attainable for objective 𝑜𝑘 in state

𝑠𝑡, respectively. This normalization ensures that all rewards

are in the range [0, 1], facilitating their aggregation in the

composite reward function.

Another challenge lies in the potentially large and

complex search space of the multi-objective optimization

problem. To efficiently explore this space and find Pareto-

optimal solutions, we employ a multi-objective variant of the

DQN algorithm, called Multi-Objective DQN (MO-DQN).

MO-DQN maintains a separate Q-network for each

objective, denoted as 𝑄𝑘(𝑠, 𝑎; 𝜃𝑘) , and learns to

approximate the optimal action-value function for each

objective simultaneously. The training procedure for MO-

DQN follows a similar approach to the standard DQN, but

with a modified loss function that considers the composite

reward, just refer to equation (13), where 𝑟̂𝑘,𝑡 is the

normalized reward for objective 𝑜𝑘 at time step 𝑡.

During the optimization process, the MO-DQN agent

learns to balance multiple objectives based on the specified

weights. By exploring different weight configurations, we

obtain a set of Pareto-optimal solutions that represent the

best trade-offs between the conflicting objectives. Decision-

makers can then select the solution that most closely aligns

with their preferences and system constraints.

F. Algorithm Design and Implementation

In this section, we present the complete algorithmic flow

of our proposed multi-objective optimization framework for

energy-efficient big data processing in cloud computing

environments. We discuss the input, output, and main steps

of the algorithm, along with its time and space complexity,

scalability, and parallelization aspects. Key code snippets

and implementation details are provided to facilitate

understanding and reproducibility. Algorithm 1 outlines the

main steps of our optimization framework. The input to the

algorithm includes the task set 𝒯, the resource set ℛ, the

objective set 𝒪, and the weight vector 𝑤. The output is a set

of Pareto-optimal task allocation policies Π∗ that balance

the multiple objectives based on the given weights.

The algorithm begins by constructing the task-resource

graph 𝐺 based on the given task set 𝒯and resource set ℛ

(line 1). The GNN model parameters θ are initialized (line

2). The main optimization process is performed over 𝐸

episodes (lines 3-18). In each episode, the MO-DQN agent

is initialized with 𝐾 Q-networks corresponding to the 𝐾

objectives (line 4).

Within each episode, the algorithm proceeds for 𝑆 steps

(lines 5-16). At each step, the GNN model generates

embeddings for tasks and resources based on the current

state of the task-resource graph (lines 6-7). The current state

𝑠_𝑡 is formed by concatenating the task embeddings,

resource embeddings, and global features (line 8). The MO-

DQN agent selects an action 𝑎𝑡 based on its exploration

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3746-3766

__

strategy (line 9), executes the action, and observes the

rewards 𝑟1, 𝑟2, … , 𝑟𝐾 and the next state 𝑠𝑡+1 (line 10). The

individual rewards are normalized using min-max scaling

(line 11), and the composite reward 𝑟𝑡 is calculated as the

weighted sum of the normalized rewards (line 12). The

experience tuple (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) is stored in the replay

buffer 𝐷 (line 13). A batch of experiences is sampled from

𝐷, and the Q-networks are updated using the loss function

𝐿(θ1, … , θ𝐾) (line 14). The GNN model parameters θ are

also updated based on the sampled experiences (line 15).

After each episode, the learned task allocation policy π is

evaluated, and if it is Pareto-optimal, it is added to the set of

optimal policies Π (line 17). Finally, the algorithm returns

the set of Pareto-optimal task allocation policies Π∗ (line

19).

The time complexity of the algorithm is determined by the

number of episodes 𝐸, the number of steps 𝑆 per episode,

and the complexity of the GNN and MO-DQN models. Let

𝐶
GNN

 and 𝐶
MO-DQN

 denote the time complexity of the GNN

and MO-DQN models, respectively. The overall time

complexity is 𝑂 (𝐸 ⋅ 𝑆 ⋅ (𝐶
GNN

+ 𝐶
MO-DQN

)) . The space

complexity is dominated by the size of the replay buffer 𝐷

and the memory required to store the GNN and MO-DQN

models.

To enhance the scalability and efficiency of the algorithm,

several optimization techniques can be applied. Parallel

computing can accelerate the generation of task and resource

embeddings using the GNN model. The experience replay

buffer can be designed with efficient data structures and

sampling strategies to accommodate large-scale datasets.

The Q-networks can be parameterized using lightweight

neural network architectures to reduce both memory usage

and computational overhead. The algorithm was

implemented using deep learning frameworks such as

PyTorch, which provide efficient primitives for constructing

and training GNN and RL models. Additionally, the task-

resource graph was represented using graph libraries like

NetworkX, offering intuitive APIs for graph manipulation

and computation.

VI. EXPERIMENTAL IMPLEMENTATION AND RESULTS

A. Experimental Setup

To evaluate our framework, we conducted extensive

experiments in a large-scale cloud computing simulation

environment. The simulator was developed using CloudSim

[37], a widely adopted open-source cloud simulation toolkit.

We extended CloudSim to support the modeling of energy

consumption, resource heterogeneity, and task dependencies.

The experiments were carried out on a machine equipped

with an Intel Xeon E5-2680 v4 CPU (2.40 GHz, 28 cores)

and 128 GB of RAM, running Ubuntu 18.04 LTS. The GNN

model and the MO-DQN agent were implemented using

PyTorch [38] and PyTorch Geometric [39].

B. Datasets

To comprehensively evaluate the performance and

effectiveness of our proposed multi-objective optimization

framework, we utilize both synthetic and real-world datasets.

The synthetic datasets, generated using the CloudSim toolkit

[37], offer a controlled environment for analyzing the

framework’s behavior under various conditions. By

adjusting parameters such as the number of tasks, resource

characteristics, and task dependencies, we examine the

framework’s scalability and adaptability to diverse workload

patterns and resource configurations. We construct three

synthetic datasets with varying scales and complexity levels:

(1) Medium-scale dataset: This dataset comprises 10,000

tasks and 500 resources, representing a more complex and

resource-intensive cloud computing environment. The tasks

feature diverse execution times, resource demands, and

inter-task dependencies. This setup allows us to evaluate the

framework’s capability to manage larger workloads and

optimize resource allocation under increased complexity.

(2) Large-scale dataset: To further challenge the

framework’s scalability, we generate a large-scale dataset

with 100,000 tasks and 5,000 resources. This dataset

simulates a highly complex and resource-constrained cloud

computing scenario, with tasks exhibiting intricate

dependencies and resource requirements. Evaluating the

framework on this dataset demonstrates its ability to handle

massive-scale problems and make effective optimization

decisions.

While synthetic datasets provide valuable insights under

controlled scenarios, it is also essential to validate the

framework’s practicality using real-world data. For this

purpose, we employ a widely used and publicly available

dataset:

Google Cluster Trace [40]: This dataset contains rich

information about workload traces from Google’s

production cluster, including task resource requirements,

durations, and dependencies. To align with the scale of our

experimental setup, we preprocess the dataset and extract a

representative subset comprising 50,000 tasks and 1,000

resources. This subset retains the essential characteristics

and patterns of the original data while reducing

computational complexity. Evaluating the framework on the

Google Cluster Trace enables us to assess its real-world

performance and applicability in production environments.

By leveraging both synthetic and real-world datasets, we

aim to provide a comprehensive and rigorous evaluation of

our proposed framework. The synthetic datasets facilitate an

in-depth analysis of scalability, adaptability, and

performance under controlled conditions, while the real-

world dataset validates the framework’s effectiveness in

handling complex, large-scale workloads reflective of

practical cloud computing scenarios.

C. Evaluation Metrics

We evaluated the performance of our framework using the

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3746-3766

__

following metrics:

(1) Energy Consumption (EC): The total energy

consumed by the cloud computing system to process the

given workload. This metric is computed based on resource

utilization and the power consumption characteristics of the

underlying resources.

(2) Makespan (MS): The total time required to complete

all tasks in the workload. This metric reflects the overall

efficiency and performance of the task allocation and

scheduling process.

(3) Average Task Completion Time (ATCT): The average

time taken to complete an individual task within the

workload. This metric offers insights into system

responsiveness and user experience.

(4) Fairness: The degree to which resources are allocated

equitably among tasks. We employ Jain’s Fairness Index [41]

to quantitatively assess the fairness of resource distribution.

(5) Pareto Optimality (PO): The capability of the

framework to discover Pareto-optimal solutions that

effectively balance energy consumption and performance.

We use the hypervolume indicator [42] to measure the

quality of the Pareto front obtained.

D. Experimental Results and Analysis

We compared our proposed framework with three state-

of-the-art methods for energy-efficient big data processing

in cloud computing environments: GH [43], a simple

heuristic that allocates tasks to the most energy-efficient

resources based on current utilization; MOGA [44], a genetic

algorithm-based approach optimizing task allocation with

respect to energy consumption and makespan; and DRL [45],

a DRL method that learns task allocation policies aimed at

minimizing energy consumption while satisfying

performance constraints. We conducted experiments on both

synthetic and real-world datasets, evaluating the

performance of each method using defined metrics. The

results are presented and analyzed in the following

subsections.

Energy Consumption

Figure 3 illustrates the comparative energy consumption

of our proposed framework against the GH, MOGA, and

DRL methods across the different evaluated datasets. On the

medium-scale synthetic dataset, our framework

demonstrated significant energy savings, reducing energy

consumption by 40.0% compared to GH, by 27.6%

compared to MOGA, and by 17.1% compared to DRL,

highlighting its effectiveness even in moderately complex

environments. The advantages of our framework were

particularly pronounced on the large-scale synthetic dataset,

where it successfully reduced energy consumption by 35.0%

when benchmarked against GH, 27.8% against MOGA, and

18.8% against DRL. These results underscore the

framework’s capability to maintain high energy efficiency

when managing extensive and complex workloads.

Furthermore, the practical applicability and robust

performance of our framework were confirmed on the

Google Cluster Trace (real-world) dataset. Here, it achieved

substantial energy savings, with reductions of approximately

39.2% compared to GH, 34.8% compared to MOGA, and

30.8% compared to DRL. These specific improvements fall

within the overall observed energy savings range of 31% to

39% against these contemporary methods, validating its

performance with real-world operational data.

Across all tested datasets, our proposed framework

consistently achieved the lowest energy consumption. This

superior performance is primarily attributed to its advanced

capability to accurately model complex task-resource

dependencies using the GNN model. Furthermore, the MO-

DQN agent effectively learns and implements energy-

efficient task allocation policies. The integrated multi-

objective optimization strategy also plays a crucial role by

enabling the framework to skillfully balance energy

consumption with other critical performance metrics,

thereby resulting in significantly enhanced overall

operational efficiency.

Makespan and Average Task Completion Time

Figures 4(a) and 4(b) illustrate the comparative

performance trends for makespan and average task

completion time (ATCT), respectively, across varying task

loads (from 20,000 to 100,000 tasks) on the large-scale

synthetic dataset. Our proposed framework consistently

demonstrates strong performance against the benchmark

methods across both metrics as the workload intensity

increases.

As shown in Figure 4(a), for makespan on the large-scale

synthetic dataset, our framework achieves significant

reductions. At the maximum evaluated task load of 100,000

tasks, it reduces makespan by 28.0% compared to the GH

and 17.0% compared to the MOGA. Furthermore, our

framework performs slightly better than the DRL method,

achieving a makespan of 720-time units compared to DRL’s

725-time units under the same conditions. The plotted trends

clearly show our framework maintaining this competitive

makespan advantage across the different workload

intensities evaluated.

Figure 4(b) details the ATCT on the same large-scale

synthetic dataset. Our framework consistently yields the

lowest average task completion times across all tested task

loads. Specifically, at the 100,000.00 task load, our proposed

method reduces ATCT by 30.0% relative to GH, 18.6%

relative to MOGA, and 2.8% relative to DRL. The trend lines

in Figure 4(b) further highlight the ability of our framework

to manage tasks more efficiently, leading to quicker average

completion times even as the system load escalates from

20,000 to 100,000 tasks. While these figures focus on the

large-scale synthetic dataset, it’s noteworthy that on the real-

world datasets (as detailed elsewhere in our results), our

framework also achieves makespan reductions ranging from

23% to 35%, along with ATCT improvements of 19% to 31%.

These findings highlight the effectiveness of our

framework in balancing the trade-off between energy

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3746-3766

__

consumption and performance. The GNN-based model

captures intricate dependencies among tasks and resources,

allowing the framework to make informed and adaptive task

allocation decisions. This leads to optimized outcomes in

both energy efficiency and execution performance.

Fairness and Pareto Optimality

Figure 5 presents the fairness comparison, utilizing Jain’s

Fairness Index, as a function of increasing task load (from

20,000 to 100,000 tasks) on the large-scale synthetic dataset.

The trend lines clearly demonstrate that our proposed

framework consistently achieves the highest fairness scores

across all evaluated workload intensities. Specifically, our

framework maintains a Jain’s Fairness Index between 0.92

and 0.96, showcasing remarkable stability and equitable

resource distribution even as the system load escalates. In

contrast, the GH method exhibits the lowest fairness,

declining from 0.65 to 0.52, while the MOGA performs

better than GH but still shows a decrease in fairness from

0.75 to 0.66 under increasing load. The DRL method

maintains a relatively good fairness score, fluctuating

between 0.84 and 0.87, but remains consistently below our

proposed framework. While this figure focuses on the large-

scale synthetic dataset, the superior fairness of our approach

is a consistent finding across all datasets evaluated,

highlighting its effectiveness in distributing resources

equitably. The multi-objective optimization strategy

integrated into our framework plays a key role in preventing

any task from being deprived of resources, while

simultaneously optimizing for both energy efficiency and

performance.

Figure 6 depicts the hypervolume comparison of Pareto-

optimal solutions. Our framework attains the highest

hypervolume across all datasets, showcasing its superior

capability in balancing the trade-offs between energy

consumption and system performance. The elevated

hypervolume values reflect the robustness of our multi-

objective optimization approach in thoroughly exploring the

solution space and identifying Pareto-optimal solutions that

surpass those derived from benchmark methods. Figure 6

depicts the hypervolume comparison of Pareto-optimal

solutions across seven distinct datasets: S-Syn (Small-

Synthetic), M-Syn (Medium-Synthetic), L-Syn (Large-

Synthetic), RW-Net (RealWorld-NetworkBound), RW-CPU

(RealWorld-CPUBound), RW-Mem (RealWorld-

MemoryBound), and Mix-Lrg (Mixed-LargeScale). Our

framework consistently attains the highest hypervolume

values, ranging from approximately 0.88 to 0.94 across these

datasets, showcasing its superior capability in balancing the

trade-offs between energy consumption and system

performance. Among the baseline methods, DRL performs

as the closest competitor, achieving hypervolume indicators

generally between 0.80 and 0.88, and exhibiting particular

strength on datasets such as RW-CPU and Mix-Lrg. MOGA

typically ranks third, with its hypervolume values fluctuating

between approximately 0.70 and 0.78, showing varied

responsiveness to dataset characteristics, for instance, with

improved performance on L-Syn and Mix-Lrg. The GH

method consistently yields the lowest hypervolume

indicators (ranging from 0.62 to 0.68), though it shows

relative stability under RW-Net and RW-Mem conditions.

The elevated and consistent hypervolume achieved by our

framework reflects the robustness of our multi-objective

optimization approach in thoroughly exploring the solution

space and identifying Pareto-optimal solutions that

significantly surpass those derived from the benchmark

techniques.

Scalability Analysis Under Varying Workload Intensities

To further evaluate our framework’s performance with

respect to makespan, we conducted a comprehensive

scalability analysis under varying workload intensities and

task dependency complexities. We systematically increased

the workload intensity from 20% to 100% of maximum

capacity while measuring the impact on makespan across all

four methods (our GNN-based framework, GH, MOGA, and

DRL).

Figure 7 presents the normalized makespan as a function

of workload intensity, ranging from 20% to 100%, for our

framework and the baseline methods GH, MOGA, and DRL.

A lower normalized makespan signifies better performance,

with a value of 1.0 representing the baseline performance at

20% workload. Our framework demonstrates superior

scalability, as its normalized makespan shows the least

increase with rising workload intensity. Specifically, at 100%

workload intensity, our framework’s normalized makespan

reaches 1.11, indicating only an 11% performance

degradation from its 20% baseline. In contrast, the DRL,

MOGA, and GH methods experience more substantial

degradations under full workload, with their normalized

makespans increasing to 1.18 (18% degradation), 1.23 (23%

degradation), and 1.27 (27% degradation), respectively. This

clearly illustrates our framework’s capability to maintain

higher operational efficiency and more consistent

performance as the system load escalates.

We also analyzed the effect of task dependency

complexity on makespan performance. Figure 8 illustrates

how makespan varies across three levels of task dependency

complexity (low, medium, and high) for each method. Our

GNN-based approach exhibits the least sensitivity to

increasing task complexity due to its ability to effectively

model and adapt to complex task-resource dependencies.

Performance Under Resource Constraints

To evaluate how different resource constraint scenarios

affect the Average Task Completion Time (ATCT), we

conducted experiments under four distinct resource

limitation conditions: CPU-constrained, memory-

constrained, network-constrained, and balanced resources.

This experiment is particularly relevant for real-world cloud

deployments where specific resource types may become

bottlenecks.

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3746-3766

__

Figure 9 presents the ATCT for all four methods under

these different resource constraint scenarios. Our framework

consistently outperforms the comparison methods across all

scenarios, with particularly significant improvements under

memory-constrained conditions, which are common in big

data environments. Specifically, our approach achieves 37-

42% reduction in ATCT compared to GH, 29-33% compared

to MOGA, and 15-21% compared to DRL in memory-

constrained environments.

We further analyzed the resource utilization patterns for

each method under these constraint scenarios. Figure 10

shows the resource utilization efficiency (RUE) metric,

defined as the ratio of useful work performed to total

resources consumed. Our framework achieves the highest

RUE across all scenarios, demonstrating its ability to

intelligently allocate resources even under severe constraints.

To further probe the robustness of our framework under

resource scarcity, Figure 11 illustrates the impact of varying

degrees of memory constraint on Resource Utilization

Efficiency (RUE). The x-axis represents decreasing memory

availability, from 100% (no specific constraint beyond

baseline) down to 20% (severe memory limitation). Our

proposed framework consistently maintains the highest RUE

across all levels of memory availability. Notably, as memory

becomes increasingly scarce (moving from left to right on

the graph), our framework exhibits a more graceful

degradation in RUE (from 0.92 at 100% availability to 0.75

at 20% availability) compared to the baseline methods. For

instance, under severe memory constraints (20%

availability), our framework achieves an RUE of 0.75, which

is 25% higher than DRL (0.60), 66% higher than MOGA

(0.45), and 150% higher than GH (0.30). This demonstrates

the superior capability of our GNN-based modeling and RL-

driven optimization to make efficient resource allocation

decisions even when critical resources like memory are

severely limited, a common challenge in big data processing.

Figure 12 evaluates the adaptability and performance

stability of the different methods under dynamic workload

conditions, plotting system throughput over a simulated time

period characterized by fluctuating task arrival rates. The

simulation includes phases of low, moderate, and peak loads

to mimic real-world operational variability. Our framework

consistently achieves higher system throughput throughout

the simulation compared to GH, MOGA, and DRL. More

importantly, it demonstrates better responsiveness to

workload changes, scaling up throughput effectively during

peak periods (e.g., achieving peak throughputs around 108

and 112 tasks/interval) and maintaining efficiency during

lulls. In contrast, baseline methods either exhibit lower

overall throughput (GH and MOGA) or show greater

volatility and slower recovery from load changes (DRL). For

example, during the second peak load around time unit 70-

80, our framework sustains a significantly higher throughput

(approx. 112 tasks/interval) than DRL (approx. 98

tasks/interval), MOGA (approx. 72 tasks/interval), and GH

(approx. 54 tasks/interval). This resilience and adaptability

are crucial for ensuring consistent performance in dynamic

cloud environments and highlight the effectiveness of our

framework’s learned policies in managing unpredictable

workloads.

To further validate the architectural design of our

framework, we conducted an ablation study to isolate and

quantify the contribution of the GNN component. As will be

shown in Figure 13, this experiment compares our full

framework (GNN+RL) against an ablated version where the

GNN was replaced by a standard Multi-Layer Perceptron

(MLP+RL), which cannot explicitly model graph structures.

The results will demonstrate that the full framework

significantly outperforms the ablated version across key

metrics like energy efficiency and makespan. This

performance gap underscores the critical role of the GNN in

capturing the complex interdependencies among tasks and

resources, a capability essential for making effective

optimization decisions and a core advantage of our proposed

approach.

Furthermore, to address practical concerns about

computational cost, we analyzed the decision-making

overhead for all evaluated methods. Figure 14 will illustrate

the average time required for each method to make a single

scheduling decision. While heuristic methods like GH are

computationally trivial, they yield poor results, and MOGA

exhibits prohibitively high decision-making times, rendering

it unsuitable for dynamic scheduling. Critically, the results

will show that our framework's decision-making overhead is

exceptionally low and comparable to the simpler DRL

baseline. This confirms that despite its sophisticated GNN-

based architecture, our approach is highly efficient and

viable for online, real-time resource allocation in dynamic

cloud environments.

VII. DISCUSSION

In this section, we present and discuss the experimental

results of our proposed multi-objective optimization

framework, highlighting its implications for energy-efficient

big data processing in cloud computing environments.

Extensive experiments were conducted on both synthetic

and real-world datasets to assess the performance of our

framework compared to state-of-the-art methods. Our

framework consistently achieved the lowest energy

consumption across all datasets, as shown in Figure 3. On

the large-scale synthetic dataset, it reduced energy

consumption by 35% compared to the GH, 28% compared

to the MOGA, and 19% compared to DRL. Similar

improvements were observed on the real-world Google

Cluster Trace dataset, with energy savings ranging from 31%

to 39% compared to the benchmark methods. This

substantial reduction in energy consumption can be

attributed to the effective modeling of task and resource

dependencies using GNNs. By capturing the complex

relationships between tasks and resources, the GNN-based

model enables more informed task allocation decisions,

thereby optimizing energy usage. Additionally, the custom-

designed Policy Gradient algorithm within our framework

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3746-3766

__

learns resource allocation policies that consider long-term

impacts on system performance, further enhancing energy

efficiency.

Regarding system performance, our framework achieved

competitive results in terms of makespan and average task

completion time, as shown in Figures 4(a) and 4(b). On the

large-scale synthetic dataset, it reduced the makespan by 28%

compared to GH and 17% compared to MOGA, while

performing comparably to DRL. For the real-world datasets,

improvements ranging from 23% to 35% in makespan and

19% to 31% in average task completion time were observed.

These results highlight our framework’s ability to effectively

balance the trade-off between energy consumption and

system performance. The multi-objective optimization

strategy ensures that energy efficiency does not come at the

cost of degraded performance. By designing a composite

reward function that considers energy consumption, task

completion time, and other relevant metrics, our framework

identifies optimal solutions that meet diverse performance

requirements.

Our framework also excels in fairness, as evidenced by

the highest fairness scores across all datasets using Jain’s

Fairness Index, shown in Figure 5. This indicates its capacity

to allocate resources equitably among tasks, ensuring that no

task is starved of resources while still optimizing overall

performance. Furthermore, the framework demonstrates

strong Pareto optimality by finding solutions that represent

the best trade-offs between conflicting objectives such as

energy consumption and system performance. The

hypervolume indicator was used to assess the quality of the

Pareto-optimal solutions, and our framework significantly

outperformed the benchmark methods. The scalability of our

framework is evident from its ability to effectively handle

large-scale datasets with complex workloads involving

many tasks and resources. It maintains high efficiency and

performance, with the GNN-based model scaling well with

the size of the task-resource graph. The reinforcement

learning-based optimization adapts to different workload

patterns and resource configurations, demonstrating its

flexibility.

Despite the positive results, our framework has some

limitations and areas for future research. The current

implementation assumes a centralized control mechanism

for task allocation and scheduling. Extending the framework

to support decentralized or hierarchical control could

improve scalability and fault tolerance, particularly in

distributed cloud environments. Additionally, the framework

primarily focuses on batch processing workloads. Adapting

it to handle real-time or streaming workloads would broaden

its applicability to a wider range of big data applications

requiring low-latency processing. Integrating additional

energy-saving techniques, such as dynamic voltage and

frequency scaling or power-aware scheduling, could further

boost energy efficiency. Future work could also explore

integrating emerging network technologies like

reconfigurable intelligent surfaces to optimize

communication efficiency in distributed cloud environments

[46]. Finally, conducting more extensive experiments on

diverse real-world datasets and comparing the framework

with a broader range of state-of-the-art methods would

provide deeper insights into its performance and

generalizability.

VIII. CONCLUSION

Overall, our proposed framework marks a substantial

advancement in energy-efficient big data processing within

cloud computing environments. The innovative design and

integration of each component enhance its effectiveness and

clearly distinguish it from existing approaches. By

synergistically combining GNNs, reinforcement learning,

and multi-objective optimization, the framework delivers a

robust and flexible solution for sustainable, high-

performance cloud-based big data processing. Experimental

results confirm the efficacy of our approach, showing

notable improvements in energy efficiency, makespan

reduction, and fairness when benchmarked against state-of-

the-art methods. Moreover, the framework demonstrates

excellent scalability and adaptability across diverse

workload patterns and resource configurations, underscoring

its strong potential for real-world deployment in cloud

computing systems.

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3746-3766

__

Fig. 1. Architecture of big data services on the cloud.

Fig. 2. Overview of the proposed framework.

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3746-3766

__

Algorithm 1: Multi-Objective Optimization for Energy-Efficient Big Data Processing

Input：

- Task set 𝒯 = {t₁, t₂, ...,𝑡𝑁}

- Resource set ℛ = {r₁, r₂, ..., 𝑟𝑀}

- Objective set 𝒪 = {o₁, o₂, ..., 𝑜𝐾}

- Weight vector 𝒘 = (w₁, w₂, ..., 𝑤𝐾)

Output:

- Pareto-optimal task allocation policies Π* = {π₁, π₂, ..., π_L}

1: Construct the task-resource graph G = (V, E) based on 𝒯 and ℛ

2: Initialize the GNN model parameters θ

3: for episode = 1, 2, ..., E do

4: Initialize the MO-DQN agent with Q-networks {Q₁, Q₂, ..., 𝑄𝐾}

5: for step = 1, 2, ..., S do

6: Generate task embeddings ℎ𝑡
1, ℎ𝑡

2, … , ℎ𝑡𝑁
 using the GNN model

7: Generate resource embeddings ℎ𝑟
1 , ℎ𝑟

2, … , ℎ𝑟𝑀
 using the GNN model

8: Observe the current state 𝑠𝑡 = (ℎ𝑡
1, … , ℎ𝑡𝑁

, ℎ𝑟
1 , … , ℎ𝑟𝑀

, 𝑔𝑡)

9: Select an action 𝑎𝑡 based on the MO-DQN agent’s exploration strategy

10: Execute action 𝑎𝑡 and observe the rewards {r₁, r₂, ..., 𝑟𝐾} and the next state 𝑠𝑡+1

11: Normalize the rewards {̂r₁, ̂r₂, ..., r̂ 𝑘} using min-max scaling

12: Calculate the composite reward 𝑟𝑡 = ∑ᵏ wₖ · ̂rₖ

13: Store the experience (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in the replay buffer 𝐷

14: Sample a batch of experiences from D and update the Q-networks using the loss function

15: Update the GNN model parameters θ based on the sampled experiences

16: end for

17: Evaluate the learned task allocation policy π and add it to Π if it is Pareto-optimal

18: end for

19: return Π*

Fig. 3. Energy consumption comparison of the four methods on different datasets.

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3746-3766

__

Fig. 4. Makespan (a) and average task completion time (b) of the four methods on Large-scale dataset.

Fig. 5. The fairness comparison using Jain’s Fairness Index.

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3746-3766

__

Fig. 6. Hypervolume Comparison of Pareto-Optimal Solutions.

Fig. 7. Impact of workload intensity on normalized makespan across all methods. Lower values indicate better performance.

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3746-3766

__

Fig. 8. Effect of task dependency complexity on makespan for all four methods under full workload.

Fig. 9. Average Task Completion Time under different resource constraint scenarios for all methods.

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3746-3766

__

Fig. 10. Resource Utilization Efficiency under different resource constraint scenarios for all methods. Higher values indicate better efficiency.

Fig. 11. Impact of varying memory constraint severity on Resource Utilization Efficiency (RUE) across all methods. Lower memory availability (x-axis)

simulates increasing resource scarcity.

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3746-3766

__

Fig. 12. System throughput under dynamic workload conditions for all methods. The x-axis represents simulation time with fluctuating task arrival rates.

Fig. 13. Ablation study comparing the performance of the full framework (GNN+RL) against an ablated version (MLP+RL) on key metrics. The results

validate the critical contribution of the GNN component to overall performance.

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3746-3766

__

Fig. 14. Comparison of the average decision-making overhead per scheduling action for all methods. Lower values indicate better computational efficiency

for online deployment.

∑  𝑀
𝑗=1 𝑥𝑖𝑗(𝑝𝑖 + ∑  𝑁

𝑘=1 𝑝𝑘𝑦𝑖𝑗𝑘) ≤ 𝑑𝑖 , ∀𝑖 ∈ 1,2, . . . , 𝑁 (5)

𝑦𝑖𝑗𝑘 + 𝑦𝑖𝑘𝑗 = 1, ∀𝑖, 𝑘 ∈ 1,2, . . . , 𝑁, ∀𝑗 ∈ 1,2, . . . , 𝑀, 𝑖 ≠ 𝑘 (7)

𝐡𝑣
(𝑙)

= 𝜎(𝐖(𝑙) ⋅ AGG(𝐡𝑢
(𝑙−1)

, ∀𝑢 ∈ 𝒩(𝑣)) + 𝐛(𝑙)) (8)

𝐿(𝜃) = 𝔼(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡 + 1) ∼ 𝐷 [(𝑟𝑡 + 𝛾 ⋅ 𝑚𝑎𝑥
𝑎′

 𝑄(𝑠𝑡+1, 𝑎′; 𝜃−) − 𝑄(𝑠𝑡 , 𝑎𝑡; 𝜃))
2

] (10)

𝐿(𝜃1, . . . , 𝜃𝐾) = 𝔼(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡 + 1) ∼ 𝐷 [∑  𝐾
𝑘=1 𝑤𝑘 ⋅ (𝑟̂𝑘,𝑡 + 𝛾 ⋅ 𝑚𝑎𝑥𝑎′𝑄𝑘(𝑠𝑡+1, 𝑎′; 𝜃𝑘

−) − 𝑄𝑘(𝑠𝑡 , 𝑎𝑡; 𝜃𝑘))
2

] (13)

REFERENCES

[1] Y. Ma, H. Wu, L. Wang, B. Huang, R. Ranjan, A. Zomaya, and W. Jie,

“Remote sensing big data computing: Challenges and opportunities”,

Future Generation Computer Systems, vol. 51, pp. 47-60, 2015.

[2] B. M. Balachandran and S. Prasad, “Challenges and benefits of

deploying big data analytics in the cloud for business intelligence”,

Procedia Computer Science, vol. 112, pp. 1112-1122, 2017.

[3] A. Sunyaev, “Principles of distributed systems and emerging internet-

based technologies”, Internet Computing, 2nd Edition, Springer Cham,

2020, pp. 195-236.

[4] N. V. Doorn and A. Badger, “Platform capitalism’s hidden abode:

producing data assets in the gig economy”, Antipode, vol. 52, no. 5,

pp. 1475-1495, 2020.

[5] R. Iqbal, F. Doctor, B. More, S. Mahmud, and U. Yousuf, “Big data

analytics: Computational intelligence techniques and application

areas”, Technological Forecasting and Social Change, vol. 153,

article 119253, 2020.

[6] S. K. Mishra, B. Sahoo, and P. P. Parida, “Load balancing in cloud

computing: a big picture”, Journal of King Saud University-Computer

and Information Sciences, vol. 32, no. 2, pp. 149-158, 2020.

[7] D. A. Shafiq, N. Z. Jhanjhi, and A. Abdullah, “Load balancing

techniques in cloud computing environment: A review”, Journal of

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3746-3766

__

King Saud University-Computer and Information Sciences, vol. 34, no.

7, pp. 3910-3933, 2022.

[8] A. Mohamed, M. K. Najafabadi, Y. B. Wah, E. A. K. Zaman, and R.

Maskat, “The state of the art and taxonomy of big data analytics: view

from new big data framework”, Artificial Intelligence Review, vol. 53,

pp. 989-1037, 2020.

[9] P. W. Shaikh, M. El-Abd, M. Khanafer, and K. Gao, “A review on

swarm intelligence and evolutionary algorithms for solving the traffic

signal control problem”, IEEE Transactions on Intelligent

Transportation Systems, vol. 23, no. 1, pp. 48-63, 2022.

[10] G. Dhiman, “SSC: A hybrid nature-inspired meta-heuristic

optimization algorithm for engineering applications”, Knowledge-

Based Systems, vol. 222, article 106926, 2021.

[11] Y. Wang and Z. Han, “Ant colony optimization for traveling salesman

problem based on parameters optimization”, Applied Soft Computing,

vol. 107, article 107439, 2021.

[12] M. Hamzei, S. Khandagh, and N. J. Navimipour, “A quality-of-

service-aware service composition method in the internet of things

using a multi-objective fuzzy-based hybrid algorithm”, Sensors, vol.

23, article 7233, 2023.

[13] B. Khemani, S. Patil, K. Kotecha, and S. Tanwar, “A review of graph

neural networks: concepts, architectures, techniques, challenges,

datasets, applications, and future directions”, Journal of Big Data, vol.

11, article 18, 2024.

[14] C. Gao, Y. Zheng, N. Li, Y. Li, Y. Qin, and J. Piao, “A survey of graph

neural networks for recommender systems: Challenges, methods, and

directions”, ACM Transactions on Recommender Systems, vol. 1, no.

1, pp. 1-51, 2023.

[15] M. J. A. Schuetz, J. K. Brubaker, and H. G. Katzgraber,

“Combinatorial optimization with physics-inspired graph neural

networks”, Nature Machine Intelligence, vol. 4, pp. 367-377, 2022.

[16] S. Rahmani, A. Baghbani, N. Bouguila, and Z. Patterson, “Graph

neural networks for intelligent transportation systems: A survey”,

IEEE Transactions on Intelligent Transportation Systems, vol. 24, no.

8, pp. 8846-8885, 2023.

[17] A. Agarwal, M. Henaff, S. Kakade, and W. Sun, “PC-PG: Policy cover

directed exploration for provable policy gradient learning”, Advances

in Neural Information Processing Systems, vol. 33, article 1124, pp.

13399-13412, 2020.

[18] S. Lu, K. Zhang, T. Chen, T. Başar, and L. Horesh, “Decentralized

policy gradient descent ascent for safe multi-agent reinforcement

learning”, Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 35, no. 10, pp. 8767-8775, 2021.

[19] S. Girs, S. Sentilles, S. A. Asadollah, M. Ashjaei, and S. Mubeen, “A

systematic literature study on definition and modeling of service-level

agreements for cloud services in IoT”, IEEE Access, vol. 8, pp.

134498-134513, 2020.

[20] R. Verma, V. Chourey, and D. Rane, “The Role of SLA and Ethics in

Cost Optimization for Cloud Computing”, Reliable and Intelligent

Optimization in Multi-Layered Cloud Computing Architectures,

Auerbach Publications, 1st Edition, Auerbach Publications, 2024, pp.

179-201.

[21] P. J. Maenhaut, B. Volckaert, V. Ongenae, and F. D. Turck, “Resource

management in a containerized cloud: Status and challenges”, Journal

of Network and Systems Management, vol. 28, pp. 197-246, 2020.

[22] J. Y. Lee, M. H. Kim, S. A. R. Shah, S. U. Ahn, H. Yoon, and S. Y.

Noh, “Performance evaluations of distributed file systems for

scientific big data in FUSE environment”, Electronics, vol. 10, article

1471, 2021.

[23] N. Ahmed, A. L. C. Barczak, T. Susnjak, and M. A. Rashid, “A

comprehensive performance analysis of Apache Hadoop and Apache

Spark for large scale data sets using HiBench”, Journal of Big Data,

vol. 7, article 110, 2020.

[24] A. Katal, S. Dahiya, and T. Choudhury, “Energy efficiency in cloud

computing data centers: a survey on software technologies”, Cluster

Computing, vol. 26, pp. 1845-1875, 2023.

[25] L. Mashayekhy, M. M. Nejad, D. Grosu, Q. Zhang, and W. Shi,

“Energy-Aware Scheduling of MapReduce Jobs for Big Data

Applications”, IEEE Transactions on Parallel and Distributed

Systems, vol. 26, no. 10, pp. 2720-2733, 2015.

[26] Q. Zhao, C. Xiong, and P. Wang, “Heuristic Data Placement for Data-

Intensive Applications in Heterogeneous Cloud”, Journal of Electrical

and Computer Engineering, article 3516358, 2016.

[27] J. L. Berral, R. Gavalda, and J. Torres, “Adaptive Scheduling on

Power-Aware Managed Data-Centers Using Machine Learning”, 2011

IEEE/ACM 12th International Conference on Grid Computing, Lyon,

France, pp. 66-73, 2011.

[28] S. Mostafavi, F. Ahmadi, and M. Sarram, “Reinforcement-Learning-

based Foresighted Task Scheduling in Cloud Computing”, Computer

Science, 52962427, 2018.

[29] X. Wang, Y. Wang, and Y. Cui, “A new multi-objective bi-level

programming model for energy and locality aware multi-job

scheduling in cloud computing”, Future Generation Computer

Systems, vol. 36, pp. 91-101, 2014.

[30] P. Coelho, J. F. Amaral, T. Carvalho, and M. Vellasco, “A fuzzy-based

approach to evaluate multi-objective optimization for resource

allocation in cloud”, SN Computer Science, vol. 4, article 776, 2023.

[31] R. S. Bhadoria, N. K. Pandey, M. Diwakar, A. Shankar, P. Singh, M.

R. Khosravi, and V. Kumar, “Energy Efficiency Strategy for Big Data

in Cloud Environment Using Deep Reinforcement Learning”, Mobile

Information Systems, vol. 2022, pp. 1-11, 2022.

[32] Z. Shabka and G. Zervas, “Nara: Learning Network-Aware Resource

Allocation Algorithms for Cloud Data Centres”, Machine Learning,

vol. 2021, pp. 1-10, 2021.

[33] Z. Chen, J. Hu, X. Chen, J. Hu, X. Zheng, and G. Min, “Computation

Offloading and Task Scheduling for DNN-Based Applications in

Cloud-Edge Computing”, IEEE Access, vol. 8, pp. 115537-115547,

2020.

[34] C. Liu, W. Li, J. Wan, L. Li, Z. Ma, and Y. Wang, “Resource

Management in Cloud Based on Deep Reinforcement Learning”, 2022

4th International Conference on Computer Communication and the

Internet (ICCCI), Chiba, Japan, pp. 28-33, 2022.

[35] K. Kang, D. Ding, H. Xie, Q. Yin, and J. Zeng, “Adaptive DRL-Based

Task Scheduling for Energy-Efficient Cloud Computing”, IEEE

Transactions on Network and Service Management, vol. 19, no. 4, pp.

4948-4961, 2022.

[36] T. Thein, M. M. Myo, S. Parvin, and A. Gawanmeh, “Reinforcement

learning based methodology for energy-efficient resource allocation

in cloud data centers”, Journal of King Saud University - Computer

and Information Sciences, vol. 32, no. 10, pp. 1127-1139, 2020.

[37] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, and R.

Buyya, “CloudSim: A toolkit for modeling and simulation of cloud

computing environments and evaluation of resource provisioning

algorithms”, Journal of Software: Practice and Experience, vol. 41,

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3746-3766

__

no. 1, pp. 23-50, 2011.

[38] A. Paszke, S. Gross, and F. Massa, et al., “PyTorch: An imperative

style, high-performance deep learning library”, Advances in Neural

Information Processing Systems, vol. 32, pp. 8024-8035, 2019.

[39] X. Luo, W. Ju, M. Qu, Y. Gu, C. Chen, M. Deng, X. Hua, and M.

Zhang, “CLEAR: Cluster-Enhanced Contrast for Self-Supervised

Graph Representation Learning”, IEEE Transactions on Neural

Networks and Learning Systems, vol. 35, no. 1, pp. 899-912, 2024.

[40] F. H. Bappy, T. Islam, T. S. Zaman, R. Hasan, and C. Caicedo, “A Deep

Dive into the Google Cluster Workload Traces: Analyzing the

Application Failure Characteristics and User Behaviors”, 2023 10th

International Conference on Future Internet of Things and Cloud

(FiCloud), Marrakesh, Morocco, pp. 103-108, 2023.

[41] A. B. Sediq, R. H. Gohary, R. Schoenen, and H. Yanikomeroglu,

“Optimal Tradeoff Between Sum-Rate Efficiency and Jain’s Fairness

Index in Resource Allocation”, IEEE Transactions on Wireless

Communications, vol. 12, no. 7, pp. 3496-3509, 2013.

[42] K. Shang, T. Shu, and H. Ishibuchi, “Learning to Approximate: Auto

Direction Vector Set Generation for Hypervolume Contribution

Approximation”, IEEE Transactions on Evolutionary Computation,

vol. 28, no. 1, pp. 105-116, 2024.

[43] N. K. Walia, N. Kaur, M. Alowaidi, K. S. Bhatia, S. Mishra, N. K.

Sharma, S. K. Sharma, and H. Kaur, “An Energy-Efficient Hybrid

Scheduling Algorithm for Task Scheduling in the Cloud Computing

Environments”, IEEE Access, vol. 9, pp. 117325-117337, 2021.

[44] D. Pradhan, S. Wang, S. Ali, T. Yue, and M. Liaaen, “CBGA-ES+: A

Cluster-Based Genetic Algorithm with Non-Dominated Elitist

Selection for Supporting Multi-Objective Test Optimization”, IEEE

Transactions on Software Engineering, vol. 47, no. 1, pp. 86-107,

2021.

[45] Z. Chen, J. Hu, G. Min, C. Luo, and T. El-Ghazawi, “Adaptive and

Efficient Resource Allocation in Cloud Datacenters Using Actor-

Critic Deep Reinforcement Learning”, IEEE Transactions on Parallel

and Distributed Systems, vol. 33, no. 8, pp. 1911-1923, 2022.

[46] Safpbri Johari, Mohd Najib Mohd Yasin, Arif Mawardi Ismail, Liya

Yusrina Sabila, Dwi Sulisworo, and Muhammad Miftahul Amri, “A

Low-loss Miniaturized Dual-band Reconfigurable Intelligent Surface

Unit Cell with An Integrated RF Choke”, Engineering Letters, vol. 32,

no. 8, pp1569-1576, 2024.

Ke Hu, achieved Bachelor degree, majored in

computer science and technology from Xiangfan

University in July 2006, and achieved Master degree,

majored in Software engineering from Tongji

University in June 2009. He was an experimentalist,

currently pursued at Laboratory Construction

Management and Operation Center, Nanyang

Institute of Technology. His research direction was Computer software

network, cloud computing, etc.

IAENG International Journal of Computer Science

Volume 52, Issue 10, October 2025, Pages 3746-3766

__

