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Abstract—Biomarker selection for microarray-based cancer 

classification is a recent alternative in cancer diagnosis and 

prognosis. Though existing approaches have yielded competing 

performance in terms of classification accuracy and produce 

smaller gene subsets, a generalized classifier that can operate 

on various cancer microarray datasets is yet to be reported. 

Recently, metaheuristic algorithms have demonstrated 

momentous performance in cancer classification. Nevertheless, 

the performance of a metaheuristic algorithm is influenced by 

the fitness value, convergence, exploration, and exploitation 

capabilities. Thus, this study proposes a new variant of Salp 

Swarm Algorithm (SSA) which is later integrated with 

Correlation-based Feature Selection (CFS) filter for gene 

selection in cancer classification. The slow convergence issue in 

SSA is solved by introducing dynamic size solutions that are 

generated using a composite position update function. Further, 

the local optima issue is overcome by the population 

reinitialization method. Adding to that, exploitation of best 

solution search space is enhanced by multi-leaders which are 

termed as dual leaders. The proposed hybrid algorithm, named 

the CFS-Multi-Leader Dynamic Composite Salp Swarm 

Algorithm (CFS-MDCSSA), is evaluated using two metrics, 

namely classification accuracy and gene subset size, using 

Support Vector Machine (SVM) classifier. The proposed CFS-

MDCSSA-SVM achieved 100% accuracy with only a few 

biomarkers for all six cancer microarray datasets, reflecting the 

competitive performance of the proposed algorithm in gene 

selection for cancer classification. 

 
Index Terms—Biomarker Selection, Cancer Classification, 

Microarray, Salp Swarm Algorithm 

 

I. INTRODUCTION 

HE International Agency for Research on Cancer 

(IARC) has represented the cancer as a growing burden 

[1]. Cancer has caused for 9.7 million deaths in 2022 [1]. 

The highly spreading nature of cancer would lead to the 

worst stage in a short period of time. Nevertheless, early 

diagnosis and treatment can reduce the mortality rate heavily 

[2]. However, detecting cancer in its early stage is not a 

trivial task. Besides, cancer-related informative genes known 

as cancer biomarkers assist in cancer diagnosis, prognosis, 

 
Manuscript received March 19, 2025; revised August 14, 2025.   

Mohamed Nisper Fathima Fajila is a lecturer (probationary) at the 

Department of Computer Science, Faculty of Applied Sciences, South 

Eastern University of Sri Lanka, Sri Lanka (Corresponding author to 

provide phone: +94768509396; e-mail: fajila@seu.ac.lk).  

Yuhanis Yusof is an Associate Professor at the School of Computing, 

Universiti Utara Malaysia, Malaysia (e-mail: yuhanis@uum.edu.my). 

 

early detection, and treatment [3]. Hence, automated 

biomarker selection using DNA microarrays has become a 

popular trend currently. However, since the number of genes 

resulting from a microarray experiment is very large 

compared to the number of samples [4], gene selection is a 

challenging task. 

Existing gene selection algorithms such as filters [5], [6] 

and wrappers [7]-[9] fall off into the two significant issues of 

gene selection: low classification performance and large 

gene subset size. Hence, hybrid methods [10], [11] which 

deploy filter and wrapper algorithms are suggested to have 

enhanced performance in cancer classification. Beyond that, 

swarm-based hybrid gene selection algorithms [12]-[15] are 

better than normal hybrid methods [16], [17]. Swarm-based 

optimization algorithms focus on searching for the optimal 

solution instead of the exact solution, which is challenging to 

be achieved over a large feature space such as a DNA cancer 

microarray. Swarm intelligence metaheuristics such as Ant 

Colony Optimization (ACO) algorithm [18], Ant Lion 

Optimization (ALO) algorithm [19], Artificial Bee Colony 

(ABC) algorithm [20], Firefly Algorithm (FA) [21], and 

Salp Swarm Algorithm (SSA) [22] are being exploited in 

various cancer classification studies. However, the success 

of a model always depends on the influencing factors such as 

fitness, convergence, exploration, and exploitation 

capabilities of the swarm algorithm. 

SSA is a recently developed swarm-based optimization 

algorithm that mimics the swarming nature of salps in a salp 

chain. Though SSA is characterized by simplicity, it suffers 

due to slow convergence, premature convergence, and local 

optimum [23], [24]. However, sufficient amount of 

diversification (i.e. exploration or global search) together 

with intensification (i.e. exploitation or local search) would 

address the issues in the conventional SSA. Existing studies 

have proposed various population reinitialization strategies 

such as partial reinitialization [25]-[27], reinitialization 

while preserving best individuals [28], [29], and start 

reinitialization with a threshold [30] to enrich the diversity 

of the population and exploration of search space. This 

research adapts the population reinitialization method that 

was suggested in recent work [12], [31] to address the local 

optima issues in conventional SSA [22]. 

It is noteworthy that existing studies iterate the initial 

population throughout the generations [23], [32], [33], 

which may lead to the stagnation in locally optimal 

solutions. Further, the fixed size solutions used in existing 

works [23], [32]-[34] would slow down the convergence. In 
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other words, defining a large threshold for the size of the 

solution not only increases the feature subset size but also 

allows the algorithm to search exhaustively throughout the 

feature space, leading to slow converge. Hence, non-fixed 

size solutions [12], [31], termed dynamic size solutions, are 

utilized to handle the slow convergence in standard SSA. 

On top of all suggested enhancements, in contrast to the 

conventional SSA [22] that defines a single leader, this study 

proposes multi-leader concept where two leaders, termed as 

dual leaders, lead the salp chain. It is noteworthy that multi-

leaders are suggested in literature with different techniques 

such as assigning half of the population as leaders [34] and 

dynamically changing the number of leaders over the 

iteration [23], [32] to address the slow convergence issue 

and ensure the balance between exploration and exploitation. 

Hence, this study proposes a dual leader concept where two 

leaders are utilized to guide the follower salps. The leaders 

are preserved and exploited during the population 

reinitialization to maintain a balance between exploration 

and exploitation. 

Apart from that, the proposed algorithm uses a composite 

position update function for the dynamic size salps. The 

position update in the standard SSA [22] is applicable only 

for fixed-size solutions thus, a new position update equation 

is required for dynamic-size solutions. Furthermore, the 

position update equation in the conventional SSA is related 

to the initial position of the salp; thus, it is not appropriate 

for gene selection, which should concern the interactions 

among the genes. 

Therefore, a hybrid swarm-based gene selection algorithm 

is proposed for this study. The proposed algorithm is termed 

CFS-MDCSSA-SVM as it integrates a Correlation-based 

Feature Selection (CFS) filter [35], a Multi-leader Dynamic 

Composite Salp Swarm Algorithm (MDCSSA), and a 

Support Vector Machine (SVM) classifier [36]. The 

contributions of this research are summarized below: 

First, the proposed study designs a hybrid gene selection 

algorithm that combines a CFS filter for data preprocessing 

and MDCSSA for biomarker selection. Second, the multi-

leader (i.e. dual leader) concept is integrated to balance 

between exploration and exploitation. Third, a composite 

position update function is adapted for the dynamic size 

solutions concerning the interactions among the genes. 

Fourth, the population reinitialization method is modified to 

address the local optima issues in conventional SSA. Finally, 

as the fifth contribution, the performance of the algorithm is 

evaluated on six cancer microarray datasets using SVM and 

the results are compared with existing work. 

The rest of the paper is organized as follows: Section 2 

provides a brief background of related studies, whereas 

Section 3 illustrates the proposed research methodology. 

The experimental results and discussion are presented in 

Section 4. Finally, the conclusion is provided in Section 5. 

II. RELATED WORK 

This section discusses the basic knowledge of the CFS 

filter [35], the SVM classifier [36], and the SSA [22]. This 

section also presents details on feature selection and its 

application.  

A. Correlation-based Feature Selection Filter 

Filter-based preprocessing is typically proposed in 

existing work [14], [15], [37] as a preliminary extraction 

technique for selecting the relevant genes. The large-

dimensional microarrays often comprise a massive collection 

of relevant, irrelevant, and redundant genes. Hence, 

removing irrelevant and redundant genes is crucial for gene 

selection. The two types of filters namely, the univariate 

filters such as F-score filter [38] and minimum Redundancy 

Maximum Relevance (mRMR) filter [39] that evaluates the 

individual features, and the multivariate filters such as CFS 

filter [35] and Markov blanket filter [40] that evaluate the 

feature subsets, are utilized in existing work.  

The evaluation criteria of the CFS filter are based on the 

correlations among the genes and the corresponding class, 

where the preference is provided to the genes with a higher 

correlation towards the class and a lower correlation within 

the genes. A gene subset is assigned a score according to (1). 
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where Scores is the score of a gene subset s with N 

number of genes, 
gcr  is the average gene-class correlation, 

and ggr  is the average gene-gene correlation. Apart from 

that, the Best First Search (BFS) [41] strategy is applied for 

searching due to its excellent performance over large feature 

space [42]. CFS filter has been utilized in many 

classification tasks [43], [44] along with cancer 

classification [12], [31], [45] giving appreciable output. 

Hence, the proposed study employs a CFS filter for data 

preprocessing. 

 

B. Support Vector Machine 

SVM is a supervised classification algorithm introduced 

by Vapnik [36]. Many existing applications have exploited 

the SVM classifier for different purposes, especially in 

medical domain, such as for X-ray analysis [46], diabetes 

prediction [47], Alzheimer’s disease classification [48], 

[49], and also for gene selection [7], [14], [50] to produce 

competing results. In SVM-based classification, the samples 

in a dataset are separated by a hyperplane that is drawn with 

respect to the class. SVM classifier possesses the ability to 

detect the optimal hyperplane boundary which can separate 

the different classes with a larger margin [51]. Also, SVM 

can manage both linear and non-linear separations [52]. In 

concern to the SVM properties, this study utilizes the SVM 

classifier to assess the performance of the produced feature 

set. 

 

C. Salp Swarm Algorithm 

Swarm algorithms are an alternative source for solving 

computationally intensive applications for which obtaining 

the exact solution is an NP-hard optimization problem. 

Swarm algorithms provide optimal or near-optimal 

solutions, thus an appropriate technique for high-
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dimensional feature selection. SSA is a recently developed 

swarm optimization algorithm proposed by Mirjalili et al. 

[22]. The swarming behaviour of salps in a marine 

environment, as a salp chain, which helps for foraging and 

movement, is simulated in SSA [53]. The salp swarm is 

initially divided into two groups, consisting of a leader and 

the rest as followers. The leader salp acts as the front salp of 

the salp chain while the followers represent the other salps in 

the population. The SSA population is initialized randomly 

in a similar fashion to many of the other swarm-based 

algorithms. Further, the positions of each salp are 

determined in an n dimensional feature space, where n 

denotes the number of variables in a given problem. Besides, 

the positions of the leader and the followers are updated 

according to (2) and (4), respectively [22]  
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where 
1

jx  is the position of the leader salp in jth 

dimension, Fj is the food source, c2 and c3 are random 

numbers within the range [0,1], and lbj and ubj are the lower 

and upper bounds, respectively. In addition, the coefficient 

c1 to balance between exploration and exploitation is 

calculated using (3) [22] 
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where t and tmax represent the current and maximum 

iterations, respectively. 
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where 
i

jx  is the position of follower i (i≥2) in dimension 

j. The basic steps of SSA are given in Algorithm 1. 

Various applications have utilized SSA. For instance, 

SSA has been used for sentiment analysis [54], crude oil 

price forecasting [55], wind power prediction [56], unrelated 

parallel machine scheduling [57], digital mammogram 

classification [58], [59], and for cancer classification [14], 

[60]. The conventional SSA has been adapted in many ways 

to produce SSA variants [23], [24], [32], [61] that address 

its setbacks. For example, the binary SSA [62], multi-leader 

binary SSA with sub-chains [34], time-varying binary SSA 

with dynamically changing leaders and followers [23], and 

multi-objective binary SSA with dynamic time-varying 

strategy [32] are few versions of SSA proposed in existing 

studies for feature selection. Similarly, this study also 

introduces a new variant of SSA, but it is for gene selection 

in cancer classification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D. Feature Selection 

Feature selection determines a set of relevant features 

from a huge feature space. Similarly, gene or biomarker 

selection produces a set of informative biomarkers out of a 

large gene expression profile, such as a DNA microarray. 

DNA microarray datasets contain a massive collection of 

genes: relevant, irrelevant, and redundant genes. Besides, 

DNA microarrays have emerged into the current cancer 

research field with amazing benefits such as classification, 

early detection, fast and non-invasive cancer diagnosis, and 

prognosis [63]. Thus, even though the process of biomarker 

selection is not a trivial task, it has become a popular field of 

research. Typically, there are three types of gene selection 

methods: filter-based, wrapper-based, and hybrid methods 

that are later described along with corresponding cancer 

classification studies. 

Typically, filter-based gene selection methods [5], [64], 

[65] produce low classification accuracy and large subset 

size, as filters are popular for preprocessing rather than gene 

selection, thus rarely utilized alone for gene selection. 

Existing studies have evaluated various filters, such as the 

mRMR filter [65], Naïve Bayes (NB) [65], CFS filter [5], 

and mutual information filter [64], for gene selection. 

However, the produced results show that these filter-based 

approaches still require improvement. For instance, Ghosh et 

al. [64] evaluated the performance of ten different filter 

methods with three classifiers, using ten datasets, where the 

mutual information filter outperformed the others, yielding 

100% accuracy on three out of ten datasets. Similarly, the 

wrapper-based gene selection algorithms also suffer the 

same drawbacks: low classification accuracy and a large 

gene subset [7], [8], [66]. For instance, the wrapper 

approach suggested by Al-Baity and Al-Mutlaq [66] did not 

produce 100% accuracy on any datasets and thus, the 

researchers [66] proposed hybrid method for future analysis. 

Overall, the single methods, filter-based methods and 

wrapper-based methods, can be substituted with hybrid 

methods that aim for significant classification performance. 

Algorithm 1: Salp Swarm Algorithm 

Step 1: Define population size n,  

             maximum number of iteration maxGeneration  

Step 2: Generate the initial population of salps randomly: xi, 

             i=1,2,3,…,n 

Step 3: while (t < maxGeneration) 

Step 4: Evaluate the fitness of each salp xi  using the fitness 

             function: f(x) 

Step 5: Determine the best salp and save as food source F. 

Step 6: Update c1 using (3). 

Step 7: for i=1 to n 

Step 8: if (i==1) 

Step 9: Update the position of leader using (2). 

Step 10: else 

Step 11: Update the position of follower using (4). 

Step 12: end if 

Step 13: end for i 

Step 14: Reposition the salps which go out of bounds. 

Step 15: end while 

Step 16: Return the best solution F. 
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Swarm-based hybrid algorithms are a good option for 

optimization and thus for gene selection. Existing swarm-

based hybrid approaches [13]-[15], [67] have shown 

superior performance in gene selection compared to other 

methods. Specifically, the ABC algorithm [42], BA [37], FA 

[12], [15], [31], [33], Horse herd Optimisation Algorithm 

(HOA) [13], and SSA [14], [67] have been utilized in 

various studies for gene selection. For instance, an improved 

binary SSA was suggested by Qin et al. [14] in which it 

produces 100% accuracy on seven cancer datasets out of ten. 

Further, an improved multilayer binary FA was suggested by 

Xie et al. [15]. Nevertheless, only one dataset obtained 

100% accuracy. Besides, a binary HOA was proposed by 

Mehrabi et al. [13], which provided 100% accuracy on six 

datasets out of ten. On the other hand, Panda et al. [67] 

presented a hybrid approach with SSA; unfortunately, none 

of the datasets obtained 100% accuracy. Nonetheless, 

existing results reported in the literature [13]-[15], [33], 

[37], [67] reflect the potential for growth in classification 

task.  

III. METHODOLOGY 

The proposed methodology is composed of three phases: 

data preprocessing, gene selection, and classification, as in 

Fig. 1. The proposed CFS-MDCSSA-SVM, combines CFS 

with MDCSSA and then classifies using SVM. 

 

A. Data Preprocessing  

Prior to moving the standard microarray datasets into the 

gene selection phase, the data preprocessing is performed 

through normalization and filtering. The original value v of 

each feature is normalized into v', which is in between 0 and 

1, obtained by (5), using min-max normalization [68]. Then, 

the normalized datasets are filtered by the CFS filter [35] to 

remove the unnecessary features (i.e. irrelevant and 

redundant features) and reduce the size as given in Table 1 

where the gene count is denoted within the parentheses. 

 

B. Gene Selection  

The normalized CFS-filtered datasets are further 

processed through the gene selection phase to produce the 

biomarkers for classification. The proposed MDCSSA is 

utilized for biomarker selection which is achieved through 

four steps: dynamic size salp population initialization, multi-

leader identification, composite position update, and 

population reinitialization as described below. 

 

Dynamic Size Salp Population Initialization 

The dynamic size salp population in MDCSSA varies 

from the standard population generation in SSA as, 

MDCSSA changes the solution size rather than specifying a 

threshold for fixing the solution size, similar to the strategy 

used in standard SSA. The salp population is initialized with 

dynamic size (i.e. non-fixed size) salps to resolve the slow 

convergence issue in the standard SSA. Specifically, it is 

believed that the slow convergence issue is worsened upon 

fixing the solution size to a large threshold, which may often 

be defined in a high-dimensional feature space. Hence, the 

proposed MDCSSA generates the dynamic size salps that 

would consist of s number of genes where s=1,2,3,…,D in a 

D-dimensional space. A sample dynamic size salp 

population with n number of salps could be illustrated as in 

Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Flowchart of CFS-MDCSSA-SVM 

 
TABLE I 

NORMALIZED CFS-FILTERED MICROARRAY DATASETS 

Dataset (No. of genes) Filtered Dataset (No. of genes) 

Colon (2000) Colon (26) 

Leukemia2 (7129) Leukemia2 (81) 

Leukemia3 (7129) Leukemia3 (104) 

MLL (12582) MLL (149) 

Leukemia4 (7129) Leukemia4 (119) 

SRBCT (2308) SRBCT (111) 
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Fig. 2. Dynamic size salp population initialization in MDCSSA 

 

Multi-leader Identification 

In contrast to the standard SSA [22], which specifies a 

single leader, the proposed MDCSSA defines two leaders 

termed dual leaders, who are followed by the follower salps. 

The dual leader concept is embedded in the proposed 

algorithm to balance exploration and exploitation. In other 

words, the leaders are preserved and exploited during the 

population reinitialization to balance exploration and 

exploitation.  

 

Composite Position Update 

A composite position update function is suggested for the 

dynamic size salps in the proposed MDCSSA because the 

position update in the standard SSA [22] is not applicable 

for non-fixed size solutions, and at the same time, it 

concerns the initial positions of the salps, hence, 

inapplicable for gene selection. Therefore, the proposed 

algorithm employs a composite position update with two 

functions: an integrative and a discriminative position 

update, considering the gene interconnections. Especially, 

the integrative position update function represented in (6) is 

designed for leaders. In contrast, the discriminative position 

update is employed on both the leaders (as in (7)) and the 

follower salps (as represented in (8)). 

 

Position Update in Leaders 

The integrative function combines the genes in both 

leaders (i.e. xleader_1(t) and xleader_2(t)) to create a new leader 

salp (i.e. xlnew_1(t+1)) whereas the discriminative function 

(refer (7)) extracts the discriminant genes in the second 

leader (i.e. xleader_2(t)) to create a new leader salp (i.e. 

xlnew_2(t+1)).   
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where xlnew_1(t+1) and xlnew_2(t+1) are the new positions of 

the leaders according to integrative and discriminative 

functions, respectively in iteration (t+1) while xleader_1(t) and 

xleader_2(t) are the positions of the first and the second leaders 

in iteration (t), respectively in (6) and (7). 

Further, during the position update, priority is given to the 

first leader than the second leader. More precisely, if the 

fitness of the new leader salp (i.e. xlnew_1(t+1)), produced 

from the integrative position update is higher than that of the 

discriminative position update (i.e. xlnew_2(t+1)), then, the 

particular new leader salp is utilized for the position update 

in the first leader. In contrast, the second-fit new leader salp 

is used for the position update in the second leader. 

Nevertheless, it is noteworthy that the current positions of 

leaders would be updated if and only if the new positions 

enhance the fitness of the leaders; otherwise, the current 

positions will remain the same as before. Besides, the 

discriminant genes in the second leader is utilized in the 

discriminative function since the first leader salp is more 

likely to be selected for the next population than the second 

leader salp, thus, would be exploited more than the second 

leader.   

 

Position Update in Followers 

The discriminative function, as represented in (8), extracts 

the discriminant genes in the follower salp compared to the 

leaders. The discriminative function reduces the gene subset 

size more, compared to the integrative function, and is thus 

employed for position update in the followers. Together with 

classification accuracy, the gene subset size is also important 

for performance evaluation. 

 

      cleadersfollowerfnew txtxtx 1                           (8) 

 

where xfnew(t+1) is the new position of the follower salp in 

iteration (t+1) while xfollower(t) and xleaders(t) are the positions 

of the follower salp and the leader salps in iteration (t), 

respectively in (8). 

 

Population Reinitialization 

Generally, a swarm-based optimization algorithm, 

including the standard SSA, undergoes several iterations on 

the same population, regardless of the fact that this would 

reduce the population diversity, result in a local optimum. 

To overcome this issue, the proposed MDCSSA employs the 

population reinitialization method which initializes the 

population for the next iteration while conserving the 

leaders. The proposed algorithm intends to improve the 

population diversity through reinitializing the followers. At 

the same time, the proposed MDCSSA also intensifies the 

leaders to maintain a balance between exploration and 

exploitation.  

 

C. Classification  

The proposed MDCSSA uses the SVM classifier to train 

and test (70:30) the samples. The algorithm’s performance is 

assessed by its classification accuracy, as represented in (9). 

The steps in the proposed MDCSSA are also presented in 

Algorithm 2. 
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where, TP, TN, FP, and FN represent true positive, true 

negative, false positive, and false negative, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

This section presents the experimental results produced by 

the proposed algorithm and subsequently a comparative 

discussion on the performance of the proposed CFS-

MDCSSA-SVM. The execution was conducted using 

WEKA and MATLAB software on a PC with an Intel Core 

i3 processor, 4.00 GB RAM, and a Windows 10 operating 

system. 

 

A. Experimental Results 

A brief description of the microarray datasets used in this 

study, parameter setting applied to the proposed algorithm, 

and the results produced on the different cancer datasets are 

described in this section. 

 

Dataset Description 

Six publicly available cancer microarray datasets were 

applied in this study. Among the six datasets, two datasets: 

Colon [69] and Leukemia2 [70] are of binary class while the 

rest: Leukemia3 [71], MLL [72], Leukemia4 [72], and Small 

Round Blue Cell Tumor (SRBCT) [73] are of multiclass 

datasets. The number of classes, number of genes, and 

number of samples along with a description of the datasets 

are given in Table 2. 

 
TABLE II 

DETAILS OF CANCER MICROARRAY DATASETS 

Dataset 
No. of 

classes 

No. of 

genes 

No. of 

samples 
Description 

Colon 2 2000 62 Tumor: 40 and 

Healthy: 22 

Leukemia2 2 7129 72 ALL: 47 and AML: 25 

Leukemia3 3 7129 72 B-cell: 38, T-cell: 9, 

and AML: 25 

MLL 3 12582 72 ALL: 24, MLL: 20, and 

AML: 28 

Leukemia4 4 7129 72 BM: 21, PB: 4,  

B-cell: 38, and T-cell: 9 

SRBCT 4 2308 83 EWS: 29, BL: 11,  

NB: 18, and RMS: 25 

Note - ALL: Acute Lymphoblastic Leukemia, AML: Acute Myeloid Leukemia, 

BL: Burkitt’s Lymphoma, BM: Bone Marrow, EWS: Ewing’s Sarcoma, MLL: 

Mixed Lineage Leukemia, NB: Neuroblastoma, PB: Peripheral Blood, and 

RMS: Rhabdomyosarcoma 

 

Parameter Settings 

The parameters of an algorithm should be practically 

employable and as well as optimal. Hence, the proposed 

CFS-MDCSSA-SVM uses the parameter settings as given in 

Table 3. The salp population consists of 80 salps with 

dynamic size where the maximum size would be equal to the 

feature dimension. Further, there are 100 iterations in a 

given execution, and the algorithm was executed for 30 

independent runs to validate the proposed algorithm’s 

robustness and performance. 

 
TABLE III 

PARAMETER SETTINGS FOR CFS-MDCSSA-SVM 

Parameter Value 

Population size 80 

Dimension Number of genes 

Number of iterations 100 

Number of runs 30 

 

Results 

The performance of CFS-MDCSSA-SVM was evaluated 

for gene selection on six high-dimensional cancer 

microarray datasets. This study considered the classification 

accuracy and the gene subset size as evaluation metrics. The 

best, average, and worst results produced by the proposed 

algorithm are tabulated in Table 4. Further, the informative 

genes generated by CFS-MDCSSA-SVM are presented in 

Table 5. The values mentioned in the parentheses in Table 4-

6 denote the number of genes in each dataset. 

The proposed CFS-MDCSSA-SVM has provided 

significant results as shown in Tables 4 and 5. Explicitly, all 

six cancer datasets were classified ideally with 100% 

accuracy with very small gene subsets. The Leukemia2 

Algorithm 2:  

Multi-leader Dynamic Composite Salp Swarm Algorithm  

Step 1: Define parameters - population size n, dimension D, and 

             maximum iteration: maxGeneration 

Step 2: Randomly generate salp population with dynamic size  

             solutions: xi, i=1,2,3,…,n; 

Step 3: Evaluate the fitness of each salp using fitness function: f(x) 

Step 4: Determine the best two salps and save as the dual leaders. 

Step 5: while (t < maxGeneration) 

Step 6: for i=1 to n 

Step 7: if (i==1 || i==2) 

Step 8: Calculate the new position_1 xlnew_1 using (6) 

Step 9: Calculate the new position_2 xlnew_2 using (7)  

Step 10: Calculate the fitness of xlnew_1 using (9) 

Step 11: Calculate the fitness of xlnew_2 using (9) 

Step 12: if fitness of xlnew_1 is greater than the fitness of xlnew_2  

Step 13: if fitness of xlnew_1 is greater than the fitness of Leader_1 

Step 14: Update the position of Leader_1 using (6)  

Step 15: Update the fitness of Leader_1 using (9) 

Step 16: if fitness of xlnew_2 is greater than the fitness of Leader_2 

Step 17: Update the position of Leader_2 using (7)  

Step 18: Update the fitness of Leader_2 using (9) 

Step 19: end if 

Step 20: end if 

Step 21: else 

Step 22: if fitness of xlnew_2 is greater than the fitness of Leader_1 

Step 23: Update the position of Leader_1 using (7)  

Step 24: Update the fitness of Leader_1 using (9) 

Step 25: if fitness of xlnew_1 is greater than the fitness of Leader_2 

Step 26: Update the position of Leader_2 using (6)  

Step 27: Update the fitness of Leader_2 using (9) 

Step 28: end if 

Step 29: end if 

Step 30: end if 

Step 31: else 

Step 32: Calculate the new position xfnew of the follower using (8) 

Step 33: Update the position of follower xfollower using (8)  

Step 34: Update the fitness of follower using (9) 

Step 35: end if 

Step 36: end for i 

Step 37: Determine the new leaders and return Leader_1  

Step 38: Reinitialize the salp population 

Step 39: end while 
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dataset was classified with one gene while Leukemia4 and 

SRBCT were classified with four and five genes, 

respectively. Further, gene subsets produced for Colon, 

Leukemia3, and MLL were equal in size of three. Gene 

selection aims to produce a few biomarkers that would 

exactly classify the cancer samples, just as achieved in the 

proposed algorithm. Hence, it is comprehensible that CFS-

MDCSSA-SVM is robust and efficient for biomarker 

selection. Furthermore, the comparative discussion 

presented in the next section would clarify the significance 

and the contribution of the results produced by the proposed 

algorithm for gene selection.  

 
TABLE IV 

CLASSIFICATION PERFORMANCE OF CFS-MDCSSA-SVM 

Dataset Run 
Accuracy (%) 

Best Average Worst 

Colon (2000) 5 100(3) 99(8) 94.74(4) 

10 100(3) 97(7) 89.47(8) 

15 100(3) 97(7) 89.47(8) 

20 100(3) 97(7) 89.47(8) 

25 100(3) 96(7) 84.21(6) 

30 100(3) 96(8) 84.21(6) 

Leukemia2 (7129) 5 100(2) 100(3) 100(4) 

10 100(2) 100(3) 100(4) 

15 100(2) 100(3) 100(4) 

20 100(2) 100(3) 100(4) 

25 100(1) 100(3) 100(4) 

30 100(1) 100(3) 100(5) 

Leukemia3 (7129) 5 100(5) 100(7) 100(10) 

10 100(5) 100(8) 100(12) 

15 100(5) 100(8) 100(12) 

20 100(5) 100(8) 100(12) 

25 100(3) 100(8) 100(12) 

30 100(3) 100(8) 100(12) 

MLL (12582) 5 100(5) 100(5) 100(6) 

10 100(4) 100(5) 100(9) 

15 100(3) 100(5) 100(9) 

20 100(3) 100(5) 100(9) 

25 100(3) 100(6) 100(9) 

30 100(3) 100(6) 100(9) 

Leukemia4 (7129) 5 100(16) 100(20) 100(22) 

10 100(14) 100(19) 100(22) 

15 100(14) 100(19) 100(22) 

20 100(4) 100(18) 100(22) 

25 100(4) 100(18) 100(22) 

30 100(4) 100(18) 100(22) 

SRBCT (2308) 5 100(6) 100(9) 100(10) 

10 100(6) 100(8) 100(10) 

15 100(5) 100(8) 100(10) 

20 100(5) 100(8) 100(11) 

25 100(5) 100(9) 100(11) 

30 100(5) 100(9) 100(11) 

 
TABLE V 

BIOMARKERS GENERATED BY CFS-MDCSSA-SVM 

Dataset Genes 

Colon (3) A377, A1042, A1423 OR A682, A765, A1560 

Leukemia2 (1) attribute3252 

Leukemia3 (3) D88270_at, X60992_at, Z49194_at 

MLL (3) x38097_at, x40191_s_at, x480_at 

Leukemia4 (4) M13792_at, M89957_at, X61587_at, U90546_at 

SRBCT (5) gene251, gene742, gene774, gene1327, gene1924 

    

 

B. Discussion 

Surprisingly, the proposed CFS-MDCSSA-SVM has 

classified all six datasets perfectly with 100% accuracy using 

small gene subsets, as presented in Tables 4 and 5. Table 6 

compares the results produced in this study with those of 

recent related studies. Further, a detailed discussion is also 

provided in this section. Besides, the comparative evaluation 

is based on the classification accuracy and the gene subset 

size as is popular in existing work. 

Regarding the Colon cancer classification, the proposed 

algorithm has produced 100% accuracy with a gene subset 

consisting of three genes while the same accuracy has been 

reported by Fajila and Yusof [31] and Fajila and Yusof [12] 

using five and one gene, respectively. Other related studies 

[13]-[15], [17], [33], [37], [42], [45], [74]-[76] compared in 

Table 6 have provided low classification accuracy which is 

below 100%. Hence, the perfect result for the Colon cancer 

dataset was the one presented in Fajila and Yusof [12] 

compared with other studies.  

In concern to the Leukemia2 dataset, all the algorithms in 

Table 6, except Mazumder and Veilumuthu [17], have 

offered 100% accuracy. However, the ideal output: 100% 

accuracy with a single gene, has been yielded in the 

proposed algorithm and as well as by Fajila and Yusof [12], 

[31] while the other existing works have produced gene 

subsets with more than one gene.  

Similarly, all the algorithms except Mazumder and 

Veilumuthu [17], Almugren and Alshamlan [33], and Panda 

et al. [67] have provided 100% accuracy on Leukemia3 

dataset. However, the best result, as highlighted in Table 6, 

has been reported by Fajila and Yusof [12], [31]. 

Meanwhile, the proposed algorithm provided 100% 

accuracy with a gene subset consisting of three genes, which 

is slightly bigger with only one more gene compared to the 

best result. Besides, the gene subset sizes reported in other 

existing studies [14], [37], [42], [45], [74]-[76] are bigger 

than that of the proposed approach. 

Regarding the classification of MLL, all the algorithms 

except Panda et al. [67] have provided 100% accuracy. 

Nevertheless, the best result: 100% accuracy with three 

genes, is achieved by the proposed algorithm. In contrast, 

the gene subset size in other related studies is bigger than 

that of CFS-MDCSSA-SVM.  

Likewise, all the algorithms except Jain et al. [45] have 

provided 100% accuracy on Leukemia4 dataset, but the 

proposed algorithm produces a smaller gene subset. 

Specifically, the proposed algorithm has produced 100% 

accuracy with only four genes highlighting the best result for 

Leukemia4 classification compared to the existing works 

[14], [17], [37], [74]. 

Furthermore, all the algorithms except Panda et al. [67] 

have produced 100% accuracy on SRBCT dataset. 

Nevertheless, the best result: 100% accuracy with four 

genes, is presented in Fajila and Yusof [12] and Alshamlan 

[42]. Besides, the proposed algorithm provided 100% 

accuracy with a gene subset consisting of five genes, which 

is larger than just a single gene compared to the best result.  
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TABLE VI 

PERFORMANCE COMPARISON BETWEEN CFS-MDCSSA-SVM AND RELATED WORKS 

 

Accordingly, the results highlight the proposed 

algorithm’s competency compared to the existing related 

studies. The overall achievement of CFS-MDCSSA-SVM is 

better than the existing competitor studies on all the datasets 

despite the fact that Fajila and Yusof [12] also have shown 

identical achievement. Moreover, the significant steps in the 

proposed algorithm would have facilitated the production of 

the optimal solutions and as well as enhanced the 

performance through resolving the issues in the standard 

SSA. 

V. CONCLUSION 

A hybrid gene selection algorithm namely CFS-

MDCSSA-SVM is presented in this study for high 

dimensional gene selection in cancer classification. The 

proposed algorithm applies a CFS filter-based preprocessing 

and a new variant of SSA: MDCSSA for gene selection. The 

SVM classifier is used for evaluation. The algorithm’s 

convergence is enhanced through the dynamic size solutions 

while the population reinitialization method avoids the local 

optima issue. Further, the balance between the exploration 

and exploitation is maintained using the multi-leader concept 

and the composite position update functions. Especially, the 

best solutions (i.e. dual leaders) are exploited by the 

composite functions, and also preserved during the 

reinitialization, to be exploited further in the next generation. 

This strategy enhances the exploitation property together 

with the exploration capabilities come from the 

reinitialization; thus, maintaining the balance between 

exploration and exploitation. 

The contribution of the significant steps suggested in the 

proposed algorithm is strengthened via the superiority of the 

experimental results, which show that 100% accuracy is 

given just by a few biomarker genes for all the six cancer 

datasets. In addition, comparing the results with that of the 

existing related algorithms emphasizes the substantial 

performance of the proposed algorithm. Furthermore, as a 

theoretical contribution, a hybrid swarm-based algorithm 

CFS-MDCSSA was developed in this study. At the same 

time, the findings would be beneficial practically in real-

world clinical applications such as cancer classification, 

prognosis, diagnosis, and therapy. Even though there are 

many contributions from this study, there are few limitations  

 

as well. Firstly, the proposed algorithm was evaluated on 

microarray data, thus, it needs to be tested on other data in 

future, to validate the effectiveness and robustness of the 

proposed algorithm in feature selection. Further, the 

algorithm was evaluated using the percentage splitting 

technique; hence, other techniques such as cross-validation 

are required to be applied to ensure the generalizability of 

the approach. Besides, it is also intended to explore and 

embed the properties of other swarm-based algorithms to 

enhance the potentials of the proposed algorithm.   
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