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Abstract—In the ever-evolving landscape of automotive safety
and technology, driver assistance systems are pivotal in im-
proving road safety and enhancing the driving experience.
This paper explores the application of clustering techniques
to driving sequences to gain insights into driver behavior and
optimize driver assistance systems. The research delves into
various clustering algorithms, including K-Means, DBSCAN,
and hierarchical clustering, and discusses their applicability in
identifying patterns within driving sequences. Features such
as speed, acceleration, lane changes, and braking patterns are
extracted to create a rich dataset for analysis. This study
aims to categorize these patterns to facilitate the identification
of prevalent errors during the act of driving. Furthermore,
the study investigates the potential benefits of temporal clus-
tering to capture dynamic driving behaviors over time. This
research provides valuable insights into the clustering of driv-
ing sequences, enabling the development of more responsive
and context-aware driver assistance systems. By recognizing
common driving styles, anomalies, and critical safety scenarios,
these systems can better adapt to the unique needs of individual
drivers and contribute to overall road safety. The findings
presented shows the importance of leveraging clustering tech-
niques as a powerful tool in advancing driver assistance systems,
ultimately leading to safer efficient journeys.

Index Terms—Clustering techniques, Driving sequence, As-
sistance system, Silhouette Coefficient.

I. INTRODUCTION

ACH year, over 1.35 million lives are lost globally

due to road traffic deaths, with driver behavior be-
ing the primary causative cause in nearly 90% of these
incidents. Driving behavior [6] refers to the choices made
by drivers when operating automobiles in different driving
circumstances. The decision-making behavior demonstrated
by drivers is contingent upon a multitude of circumstances,
including driving conditions and individual driver character-
istics. Hence, drivers exhibit distinct patterns in executing
different maneuvers, commonly referred to as driving styles.
In the past thirty years, numerous investigations have en-
deavored to categorize driving styles by the utilization of
various methodologies, such as self-reports or the observation
of kinematic behaviors.

In the realm of automotive technology, the pursuit of safer
and more efficient driving experiences has led to significant
advancements in Driver Assistance Systems (DAS). These
systems, ranging from adaptive cruise control to lane-keeping
assist, are designed to augment the driver’s capabilities and
improve overall road safety. In recent years, the proliferation
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of sensors, cameras, and data-driven technologies has pre-
sented a unique opportunity to further enhance these systems
by gaining deeper insights into driver behavior.

The current body of literature predominantly focuses
on driving patterns among individuals operating cars, with
a noticeable absence of research pertaining to drivers of
heavy passenger vehicles, such as buses. Heavy vehicles
for passengers (HVP) refer to buses that are utilized for
public or private transportation services and are designed
to carry passengers. These vehicles have a gross vehicle
weight that exceeds 12,000 kg. HVPs contribute to around
6.6% of road traffic accidents in India, leading to a total
of 43,000 individuals sustaining injuries. Furthermore, it is
worth noting that non-collision injuries, namely those result-
ing from occupants stumbling or falling while standing in
moving buses, hold considerable significance in terms of both
quantity and importance, comparable to injuries sustained in
actual wrecks. The abrupt increase or decrease in velocity
may lead to pain among individuals who are standing, hence
increasing the potential for harm, even in the absence of a
vehicular collision. The driving behavior exhibited by bus
operators is a crucial determinant that impacts the likelihood
of balance loss or injury for passengers who are standing. In
the present setting, the primary objective of this study was to
examine the acceleration and braking patterns exhibited by
drivers of high-performance vehicles and gain insights into
the driving behaviors exhibited by individuals about these
patterns.

This paper explores the application of clustering tech-
niques [1], [2] to driving sequences as a means of unraveling
the intricate tapestry of driver behavior patterns. Understand-
ing these patterns is not only crucial for improving the accu-
racy and responsiveness of DAS but also for advancing our
understanding of the diverse behaviors exhibited by drivers
in various contexts. By segmenting driving sequences into
meaningful clusters, we can unveil hidden trends, identify
common driving styles, and detect potential safety hazards
more effectively.

The motivation behind this research stems from the recog-
nition that drivers exhibit a wide spectrum of behaviors, influ-
enced by factors such as road conditions, traffic, weather, and
individual preferences. To harness this wealth of information,
we delve into a range of clustering algorithms [4], [23],
each with its unique strengths and applications. Through
feature extraction and dimensionality reduction, we create
a comprehensive dataset that encapsulates crucial driving
characteristics, such as speed profiles, acceleration patterns,
lane-changing behaviors, and braking tendencies.

Furthermore, we explore the temporal aspect of driving
behavior by considering the dynamic nature of sequences
over time. By incorporating techniques like Hidden Markov
Models (HMMs) and Dynamic Time Warping (DTW), we
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aim to capture evolving driver behaviors, transitions between
driving states, and potential abrupt deviations from typical
patterns.

The objectives of this research are twofold: firstly, to shed
light on the practical implementation of clustering techniques
for driving sequences, and secondly, to highlight the tangible
benefits of Driver Assistance Systems. By understanding the
nuances of driver behavior at a granular level, DAS can adapt
more intelligently to individual drivers, offer personalized
recommendations, and respond proactively to critical safety
situations.

In the subsequent sections of this paper, we will delve
into the methodologies employed, present the results of
our clustering analyses, and discuss the implications for
the future of driver assistance technology. Ultimately, this
research underscores the significance of leveraging clustering
techniques [18], [22] as a powerful tool in shaping the future
of road safety and driver experience enhancement.

A. Major Contribution

e The use of a Driver Assistance System (DAS) aims
to provide support to both truck drivers and traffic
managers. Several functionalities are included.

o This work aims to elucidate driver behaviors in align-
ment with the Hours of Service (HOS) rule.

« The task involves the identification of infringements and
the underlying causes that contribute to their occurrence.

« Proposing novel legal modes of transportation to meet
delivery demands in accordance with driver preferences.

e The clustering and summarizing of driving sequences
enables simplified monitoring of driver behavior.

II. RELATED WORKS

The classification of driving styles was initially devel-
oped using self-report instruments, which involve the use
of questionnaires that assess several dimensions of driver
behavior [5], [15]. The driver behavior survey, style of
driving questionnaire, and multi-dimensional driving pat-
tern inventories are often employed self-report measures
designed to categorize drivers or driving styles. Several
studies have also examined the correlation between self-
reported activities and the likelihood of being involved in a
car crash. Nevertheless, the subjective evaluation was found
to be susceptible to reporting bias due to the tendency of
drivers to gradually forget earlier experiences. Furthermore,
persons who had previous knowledge regarding the goal
of the survey have a tendency to behave in a manner that
aligns with the desired responses of the experiment being
conducted. This might potentially introduce bias into the
data obtained. Furthermore, it is crucial to note that the self-
reports exhibit a deficiency in real-time driver information
on performance, hence strengthening the development of
continuous monitoring methodologies [9], [19], [24].

Traditional driver assistance systems often rely on rule-
based approaches. These systems follow predefined rules and
thresholds for actions like collision avoidance, lane-keeping,
and adaptive cruise control. While effective, they may lack
adaptability to complex real-world scenarios. Machine learn-
ing techniques, such as supervised learning and regression,
have been used to predict driver behavior based on historical

data. These models can provide valuable insights but might
struggle with capturing nuanced behaviors. Deep learning
models [29], [30], incorporating convolutional neural net-
works (CNNSs) and recurrent neural networks (RNNs) [31],
have shown promising results in analyzing driving sequences
behaviors. CNNs can process visual data from cameras, while
RNNs can model sequential behaviors. Advanced Driver
Assistance Systems platforms integrate multiple sensors like
radar, lidar, cameras, and ultrasonic sensors [13]. They use
sensor fusion techniques to enhance situational awareness
and make decisions based on the combined sensor data. In
autonomous driving [7] research, behavioral cloning involves
training a neural network to mimic the behavior of a human
driver using a dataset of human driving actions. This ap-
proach enables autonomous vehicles to learn from human
drivers.

Reinforcement learning algorithms can optimize driving
policies by learning through trial and error. They receive
rewards or penalties based on driving actions and adapt their
behavior [16], [17] accordingly. Naturalistic Driving Studies
states that researchers conduct naturalistic driving studies
by equipping vehicles with data-recording instruments and
studying real-world driving behaviors. This approach pro-
vides valuable insights into how drivers behave in uncon-
trolled environments.

Fleet Telematics management systems often incorporate
driver behavior analysis to improve safety and efficiency.
They track parameters like speeding, harsh braking, and
sharp turns to encourage safe driving habits. Many modern
Sensor Fusion and Perception systems use sensor fusion
techniques to combine data from various sensors, such as
cameras, radar, and lidar, to create a more comprehensive
perception of the driving environment.

Driver Monitoring Systems utilize cameras and sensors
to monitor the driver’s attention and alertness. They can
detect drowsiness, distraction, and fatigue, providing warn-
ings or interventions as needed. These existing approaches
span a spectrum from rule-based systems to sophisticated
Al and machine learning methods. The choice of approach
often depends on the specific goals of the driver assistance
system, available sensor data, and computational resources.
Researchers and engineers continue to innovate in this field
to improve road safety and enhance the driving experience.

The dataset used in this study comprises a collection of
acceleration and braking maneuvers, which are defined by a
set of multi-dimensional kinematic properties. As evidenced
by past research, the process of clustering multivariate data
often leads to the formation of groups that are challenging to
analyze and assign a distinct driving trend. The clusters are
characterized by a composite of all the attributes, with each
feature exhibiting a range of values throughout the clusters.
Furthermore, the absence of predetermined references or
thresholds for feature levels distinguishes driving behav-
iors [3], [20], [21]. Hence, principal component analysis
(PCA) was employed in order to decrease the dataset’s
dimensionality before clustering, resulting in more easily
understandable outcomes. Principal Component Analysis
(PCA) was conducted at two distinct stages. a) Initially,
the task involves identifying the collection of features that
significantly distinguish one cluster from another. Therefore,
Principal Component Analysis (PCA) was conducted prior to
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clustering in order to decrease the dimensionality. Secondly,
the driving performance is classified based on the levels of
characteristics. This classification is conducted after cluster-
ing in order to interpret the results.

Principal Component Analysis (PCA) is a widely used
technique in the field of data analysis and machine learning.
It serves as a strategy for reducing the dimensionality of
a dataset while simultaneously retaining the highest pos-
sible amount of variation. The initial characteristics inside
the dataset undergo a linear transformation to generate a
collection of new variables known as principle components
(PCs), which are uncorrelated with each other. Principal
Component Analysis (PCA) was conducted on both the
datasets pertaining to acceleration and braking. Based on
the study conducted by Constantinescu et al. [26], we have
selected four principal components (PCs) for each dataset,
ensuring a minimum variance of 80%. These selected PCs
account for 86% and 85% of the variance in the respective
datasets. The relationship between the modified variables or
principal components (PCs) and the original characteristics
is determined by the PC loading.

III. METHODOLOGY

This section outlines the systematic approach adopted to
analyze driving behavior using clustering techniques. The
objective of this study is to identify distinct patterns of
acceleration and deceleration exhibited by drivers of human-
powered vehicles (HPVs). The methodology consists of data
acquisition, preprocessing, feature extraction, dimensionality
reduction, and the application of unsupervised learning algo-
rithms to identify patterns in driving sequences. The weekly
driving pattern of HPVs drivers is depicted in Figure 1.
Driving behaviors were recorded for a broad group of drivers,
and instances of significant acceleration and braking were
isolated. Due to the absence of labeled data, unsupervised
learning techniques [10] were employed to group similar be-
havior patterns. Each event was characterized using multiple
kinematic features including speed, acceleration/deceleration
rate, heading, and duration.

The developed system features a user-friendly graphical
interface, accessible via a local web application built using
Streamlit. The application continuously receives data from a
tachograph and provides real-time metrics such as:

e Current driving sequence compliance with Hours of
Service (HOS) regulations

o Detected violations and their possible causes

« Recommended next activities based on driving history

« Remaining allowable driving time before an infringe-
ment occurs

Additionally, the Traffic Manager module [12], [25] an-
alyzes historical tachograph data to identify risky or non-
compliant driving patterns. The clustering results and their
distribution across drivers are further discussed in the results
section.

A. Data Collection and Preprocessing

Driving data was collected from tachograph logs and on-
board diagnostics (OBD) systems installed in heavy pas-
senger vehicles (HPVs). The dataset includes timestamped

TABLE I
NOTATIONS USED

Notations Description
CDD Continuous Driving day
NDD Normal Driving Day (< hr)
EDD Extended Driving Day (%hr to 10hr)
BT1 Uninterrupted Break Typel (>45m)
BT2 First Split of Break(;15m)
BT3 Second split of Break (;30m)
DRI Daily Rest
DR2 Reduced Daily Rest [9hr, 11 hr]
DR3 First split of Daily Rest(;3hr)
DR4 Second split of Daily Rest (;9hr)
WRI1 Normal Weekly Rest (;45hr)
WR2 Reduced Weekly Rest [24hr, 45hr]

records of key kinematic features such as Vehicle speed, Ac-
celeration and deceleration values, Braking instances, Lane
changes, Engine status and rest periods. The raw data was
cleaned by removing incomplete entries, filtering out noise,
and standardizing time intervals. Non-numeric categorical
features such as activity labels and day types were encoded
using ordinal encoding. Time series sequences were aligned
and segmented by driving days to ensure consistency in
sequence length and activity context.

B. Feature Engineering

Each driving sequence was transformed into a numerical
representation by computing statistical features such as Mean
and variance of speed and acceleration, Number of lane
changes, Duration and frequency of rest periods, and Compli-
ance flags with Hours of Service (HOS) rules. Additionally,
semantic features such as break types (full break, split break)
and legality status (compliant, non-compliant) were included
to contextualize driving behavior.

1) Hours of Service (HOS) Compliance: According to
Regulation (EC) No 561/2006, a driver may not drive for
more than 4.5 hours without taking a break of at least 45
minutes. This break can be split into two parts: a minimum
of 15 minutes followed by at least 30 minutes. Following 9
hours of cumulative driving, an uninterrupted rest of 11 hours
is mandated. This rest can also be split into two parts: the
first for at least 3 hours and the second for at least 9 hours.
Drivers may reduce rest periods to 9 hours three times per
week, and extend daily driving time to 10 hours twice per
week. The regulation imposes the following constraints:

o Weekly driving limit: 56 hours

Weekly working limit: 60 hours

o Minimum weekly rest: 45 hours (or reduced to 24 hours
with compensation in a future week)

« Biweekly driving limit: 90 hours

« Four-month average working time: < 48 hours/week

Figure 2 visualizes different driving and break patterns. Table
I outlines the notations used for clustering analysis. Notably,
some sequences lacked a second split-break (BT3), which
rendered the entire driving sequence invalid due to non-
compliance.
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C. Sequence Embedding

Two approaches were used to convert variable-length
driving sequences into fixed-length feature vectors of daily
driving activity:

« Bag-of-Words (BoW): Applied to encoded categorical

sequences for a frequency-based representation.

e Doc2Vec: Captured semantic structure and temporal

order in the sequences by training a distributed memory
model with vector size = 300 and epochs = 70.

Each sequence includes six attributes: activity, day type,
sequence number, break type, token, and legality (e.g., [2,

Extended
Daily Driving

Driving Driving Driving

Sequence Sequence Sequence

Weekly
Rest

0, 1, 0, 1]). Duration and normalization were debated for
inclusion. Redundancy due to token retention was also as-
sessed. Categorical representations includes,

o Enumerated daily actions

« Single activity per time unit

« Single consolidated sequence per day
The resulting embeddings provided a rich feature space for
clustering while preserving the underlying structure of driver
behavior.

D. Dimensionality Reduction

To enhance cluster separability and visualization, dimen-
sionality reduction techniques were applied. Principal Com-
ponent Analysis (PCA) is used to reduce high-dimensional
vectors to 2D and 3D for cluster visualization. t-Distributed
Stochastic Neighbor Embedding (t-SNE) is used to empha-
size local structure and evaluate cluster compactness.

E. Clustering Pipeline

The embedded and normalized feature vectors were input

into the following clustering algorithms:

o K-Means: For its efficiency in partitioning data into
spherical clusters.

« DBSCAN: To detect arbitrarily shaped clusters and
outliers based on density.

« Hierarchical Density-Based Spatial Clustering of Appli-
cations with Noise (HDBSCAN): For uncovering nested
behavioral patterns in data with variable density.

Each algorithm was configured with hyperparameters tuned
through grid search. For instance, K-Means was iteratively
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run with different values of k (number of clusters), and
DBSCAN parameters eps and minPts were adjusted based
on nearest-neighbor distance plots.

F. Evaluation Metrics

Clustering performance was evaluated using three internal
validation metrics:

o Silhouette Coefficient (SC): Measures how similar an
object is to its own cluster compared to others. Higher
values indicate better-defined clusters.

o Calinski-Harabasz Index (CHI): Evaluates between-
cluster dispersion versus within-cluster dispersion.
Higher scores indicate well-separated clusters.

o Davies-Bouldin Index (DBI): Quantifies average simi-
larity between clusters; lower values imply better clus-
tering

The clustering analysis and corresponding metric evaluations
are presented in the subsequent section, allowing a compar-
ative understanding of algorithm effectiveness in modeling
driver behavior patterns. The distance function was adapted
for categorical variables and modified to consider legality
weightings. Redundant features and rarely occurring activity
patterns were excluded to optimize clustering relevance. The
analysis strategy followed these key steps:

« Activities encoded as “words” and grouped by day

o Clustering applied using unsupervised methods

« Distinct attention to non-deterministic and deterministic
breaks

IV. IMPLEMENTATION

During the pre-processing phase, it is advisable to remove
commonly occurring words before transforming the text
into either a Bag-of-Words (BoW) or a Document-to-Vector
(Doc2Vec) representation. The inclusion of activities that are
highly probable and commonly seen across multiple clusters
does not provide valuable information in the context of
clustering analysis. There should be a distinction between
non-deterministic deadlines (NDD) and exact deterministic
deadlines (EDD). It is likely that more favourable outcomes
can be achieved by directing our attention towards breaks
and periods of rest.

Additionally, it is advisable to exclude words that are
rarely used, as they are likely referring to suggestions.

o Load and preprocess the CSV log file, converting times-
tamps and cleaning columns.
« Encode categorical columns (activity, sequence, break
type, token, legality) into ordinal values.
« Apply lambda functions to group and format sequences
as strings.
o Aggregate sequences by driver and day, forming a list
of daily encoded activities.
o Compute unique daily activity sequences (152 found).
o Visualize high-dimensional embeddings using t-SNE,
PCA, and 3D PCA
The Terminology used are word and dictionary. Word repre-
sents the encoded driving activity. Document represents the
full sequence of encoded activities for one day.
Figures 3 and 4 demonstrate the encoded dataset and its
graphical representation, illustrating the workflow from raw
sequence data to clustered driving patterns.

Driver Activity Day DayType Sequence  BreakType Token Legal
0 driver1 Break 1.0 ndd first split_1  B_TO 1
1 drivert1  Driving 1.0 ndd first split_1 1
2 driver1 Other 1.0 ndd first split_1 A 1
3 driver!  Drniving 1.0 ndd first split_1 A 1
4 driveri Other 1.0 ndd first split_1 A 1
27163 driver188 Break 11.0 ndd unique uninterrupted DR_T3 1
27164 driver188 Idle 120 ndd unique uninterrupted | 1
27165 driver188 Break 12.0 ndd unique uninterrupted B_TO 1
27166 driver188 Idle 120 ndd unique uninterrupted | 1
27167 driver188 Break 12.0 ndd unique uninterrupted DR_T4 1
Fig. 3. Dataframe of log file
Driver Day Encoding

0 driverl I 0-1-0-1-1-1

1 driverl 1 1-1-0-1-0-1

2  driverl 1 3.1-0-1-0-1

3 driverl 1 1-1-0-1-0-1

4  driverl 1 3-1-0-1-0-1

27163 driver188 11 0-1-4-3-7-1

27164 driver188 12 2-1-4-3-9-1

27165 driver188 12 0-1-4-3-1-1

27166 driver188 12 2-1-4-3-9-1

27167 driver188 12 0-1-4-3-8-1

Fig. 4. Encoding

This enhanced methodology provides a robust, data-driven
foundation for analyzing and predicting driver compliance
with HOS regulations, improving both road safety and reg-
ulatory adherence.

V. ENHANCED CLUSTERING METHODOLOGY AND
EVALUATION

A. Algorithm for Clustering Prerequisite

The clustering pipeline begins with text preprocessing
and vector representation for unsupervised learning. The
complete algorithm is as follows:

1) Extract a dictionary from the corpus.

2) Remove words that appear in fewer than 20

3) Convert the filtered corpus into a bag-of-words repre-

sentation.

Apply term frequency-inverse document frequency con-

version.

Convert the TF-IDF into a dense matrix using cor-

pus2dense function.

Tag documents for downstream training.

Initialize the Doc2Vec model with a vector size of 300,

epoch count of 70, and length equal to the corpus.

Train the model, compute similarity scores, and evaluate

ranks.

9) Generate and normalize document embeddings using
cosine distance.

4)
5)

6)
7)

8)
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The document plotting is shown in Fig. 5 for BoW and
Doc2Vec models.

B. K-Means Clustering

K-Means assumes convex, equally sized clusters [28].
Initial centroids are randomly selected and iteratively refined
using mean distance. Figure 6 demonstrates clusters derived
from K-Means. The steps involved in this algorithm are:

o Define a function to tune k.

o Apply clustering.

o Store model and labels.

Aggregate results for performance scoring.

« Plot silhouette values.

o Construct a 1x2 subplot layout for visualization.

« Store scores in a dataframe indexed by n — clusters.

C. Silhouette Coefficient

The Silhouette Coefficient is a metric used to evaluate the
quality of clusters in a clustering analysis [27]. It provides a
measure of how well-separated the clusters are and helps in
determining the optimal number of clusters. The Silhouette
Coefficient ranges from -1 to 1, with higher values indicat-
ing better-defined and more distinct clusters. The formula
(numberofclusters(n) + 1) x 10 is utilized to incorporate
empty space among silhouette plots of distinct clusters,
hence facilitating obvious demarcation. The silhouette-score
provides the mean value across all samples. This provides an
understanding of the density and spatial distribution of the
clusters that have been generated.

In cases where the ground truth labels are unavailable, the
evaluation process necessitates the utilization of the model
itself. The Silhouette Coefficient serves as an illustration of
such an assessment, wherein a greater Silhouette Coefficient
score corresponds to a model that exhibits more distinct clus-
ters. The Silhouette Coefficient(sc) is calculated individually
for each sample and consists of two distinct scores (c,n):

sc¢ = (n — ¢)/ max(c,n) ()

Here, the variable ¢ represents the average distance be-
tween a given sample and all other points within the same
class. The variable "n” represents the average distance be-
tween a given sample and all other points inside the closest
neighboring cluster.

1) Silhouette Analysis Algorithm: The Silhouette is cal-
culated and interpreted as follows.

1) Compute the silhouette scores for each sample.

2) The silhouette values for instances assigned to cluster i
are aggregated and subsequently sorted.

3) The silhouette plots should be labeled with their respec-
tive cluster numbers positioned at the center.

4) Calculate the updated lower bound for the y-axis in the
subsequent plot.

5) The vertical line represents the average silhouette score
for all the variables.

6) Generate a plot of the silhouette graph for the KMeans
algorithm, utilizing the supplied number of clusters
(clusters(n)).

7) Construct a subplot with a layout consisting of a single
row and 2 columns.

8) The cluster is initialized with a specified value for
clusters(n) and a random generator.

The score is constrained within the range of -1 for er-
roneous clustering and +1 for clustering with high density.
Scores in close proximity to zero suggest the presence of
clusters that overlap with one another. Higher silhouette
scores indicate more distinct, dense clusters. The score
exhibits an upward trend in instances when clusters demon-
strate high density and clear separation, aligning with the
conventional notion of a cluster. Convex clusters tend to
have a greater Silhouette Coefficient compared to alternative
cluster concepts, such as density-based clusters formed by
DBSCAN.

D. Calinski-Harabasz Index

The Calinski-Harabasz Index (CHI), also known as the
Variance Ratio Criterion (VRC), is a metric used to evaluate
the quality of clusters in a clustering analysis. It measures
the ratio of between-cluster variance to within-cluster vari-
ance and can help in determining the optimal number of
clusters. The higher the Calinski-Harabasz Index, the better
the clustering result. A higher Calinski-Harabasz score is
indicative of a model that exhibits more distinct and well-
defined clusters.

The index can be defined as the ratio between the sum
of inter-clusters dispersion and the sum of within-cluster
dispersion for all clusters. In this context, dispersion refers
to the sum of squared distances. The steps to calculate CHI
are as follows:

o Calculate the total variance of the dataset, which is the
sum of squared distances between all data points and
the dataset’s mean.

o Calculate the between-cluster variance, which is the sum
of squared distances between cluster centroids and the
dataset’s mean, weighted by the number of data points
in each cluster.

o Calculate the within-cluster variance, which is the sum
of squared distances between data points and their
respective cluster centroids.

o Calculate the Calinski-Harabasz Index (CHI) using the
formula:

N-K

variatianbetweencluster] o ]
vartationwithincluster K—-1

CHI = | )

Where, N is the total number of data points and K is
number of clusters.

1) Merits: The score exhibits an increase when clusters
demonstrate high density and clear separation, aligning with
the conventional notion of a cluster. The computation of the
score is rapid.

2) Demerits: Convex clusters tend to yield larger values
of the Calinski-Harabasz index compared to alternative clus-
ter concepts, such as density-based clusters exemplified by
those generated by the DBSCAN algorithm.

E. Davies-Bouldin Index

In cases where the ground truth (true) labels of the data
are unknown, the Davies-Bouldin index can serve as a
suitable metric for assessing the performance of a model. A
lower value of the Davies-Bouldin index indicates a higher
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degree of separation between the clusters, hence indicating

a superior model.

The index represents the mean ”similarity” among clusters,
where similarity is a metric that evaluates the distance
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3D PCA
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3DPCA

complex in comparison to that of the Silhouette scores.

o The calculation of the index relies exclusively on the

between clusters relative to their respective sizes (Glassen 2) Demerits:

et al.,2018). The numerical value of zero represents the
minimum attainable score. Partitions with values closer to

0 are indicative of higher quality.
1) Merits:

e The calculation of the Davies-Bouldin index is less

numbers and characteristics intrinsic to the dataset, as
it is computed solely using point-wise distances.

e Convex clusters tend to exhibit greater values on the
Davies-Boulding index compared to alternative cluster

concepts, such as density-based clusters derived using

DBSCAN.

o The utilization of centroid distance restricts the applica-
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TABLE II
SILHOUETTE ANALYSIS

No of Silhouette Calinski- Davies-
clusters score Harabasz Bouldin
(n) score Score
20 0.1419 85.591 2212
21 0.1458 85.247 2.051
22 0.1448 83.042 2.014
23 0.1384 81.349 2.028
24 0.1422 78.985 1.974
25 0.1520 77.363 1.986
26 0.1478 76.254 1.983
27 0.1539 75.392 1.959
28 0.1481 74.231 1.941
29 0.1479 72.840 1.967

bility of the distance metric solely to Euclidean space.

Table II illustrates the score analysis. Silhouette and Davies
scores start to increase at 24 but past 30 could be an excessive
quantity. Fig.7 and Fig.8 illustrate the clusters formed using
K-Means clustering.

F. Density-Based Spatial Clustering of Applications with
Noise (DBSCAN)

The DBSCAN is a density-based clustering algorithm
used for grouping data points into clusters. A data point is
considered as a core point if it has atleast minimum data
points (minpts) within a distance of epsilon (EPS) from itself.
A data point can be classified as a border point if it satisfies
two conditions: first, it must be located within a specified
distance, denoted as EPS, from a core point; second, it must
not have enough neighboring points to qualify as a core point.

Noise points refer to data points that do not fall within
the categories of core points or border points. DBSCAN
selects an arbitrary unvisited data point and if it is core
point, it forms a new cluster. It then identifies all data
points in the EPS neighborhood of the core point and adds
them to the cluster. This process is continued recursively.
It considers clusters as regions characterized by a signif-
icant concentration of entities, delineated by regions with
comparatively lower entity density. As a consequence of this
broad perspective, the clusters identified by DBSCAN exhibit
the potential to adopt many shapes, in contrast to k-means
clustering which presupposes that clusters possess a convex
shape. The performance analysis is shown in Table III.

G. Hierarchical Density-Based Spatial Clustering of Appli-
cations with Noise (HDBSCAN)

HDBSCAN is an extension of traditional DBSCAN offers
advantages in handling varying cluster desnsities and provid-
ing a comprehensive hierarchical cluster structure. It groups
the data points together based on proximity in feature space ,
regions of high data point density separated by areas of lower
density. It determines the appropriate density threshold based
on the data. Here the minimum cluster size chosen is 5. It
is often more stable and robust than DBSCAN.

The hierarchical structure of clusters is visualized in Fig.
The leaf size is set as 40, minimum sample size is 1 and
Euclidean distance metric is chosen to perform HDBSCAN

TABLE III
PERFORMANCE OF DBSCAN CLUSTERING

EPS No of Silhouette Calinski- Davies-
clusters score Harabasz Bouldin
(n) score Score
0.1 1 0 0 0
0.2 4 -0.1061 21.4831 1.6314
0.3 3 -0.0795 59.9756 1.9035
0.4 5 -0.0413 64.8754 1.9688
0.5 5 0.0201 72.9785 2.6031
0.6 3 0.0910 95.2415 3.2289
0.7 2 0.1571 83.9764 3.6987
0.8 2 0.1678 44.6218 3.2197
0.9 2 0.2269 22.0147 1.7958
1.0 2 0.3124 3.2031 0.5498
TABLE IV
CLUSTERING PERFORMANCE RESULTS
Clustering Method Performance Metric Result
Silhouette (BoW) 0.152
Silhouette (Doc2Vec) 0.349
K-Means
Adjusted Rand Index 0.4299
Adjusted Mutual Info 0.6462
Silhouette (BoW) 0.099
DBSCAN . Cluster Labels [-1,0...6]
Silhouette (Doc2Vec) 0.148
Cluster Labels [-1,0]
HDBSCAN Silhouette (Doc2Vec) -0.036
Cluster Labels [0...43]

clustering. The hierarchical structure of HDBSCAN is illus-
trated in Fig.9. Fig.10 illustrates the clusters visualized.

VI. DISCUSSION

The clustering performance results are shown in Table
IV. It is plausible for the value of K to exceed 20 while
maintaining coherence. It is crucial to acknowledge that
while there are only a limited number of non-delivery
days (NDD), estimated delivery days (EDD), or no specific
delivery days (NONE), there exists a significant distinction
in the concluding letters, namely those ending in WR and
DR. The findings obtained from the Doc2Vec model indicate
that using a vector-size smaller or larger than 200 leads to
suboptimal performance. However, after applying Principal
Component Analysis (PCA), the data appears to be better
separated when using a vector space of size 200. It is
worth noting that this improvement is observed only after
normalizing the data, but the reason behind this phenomenon
is not yet clear. The duration of time from a specific starting
point to the age of 70.

Achieving improved outcomes in KMeans clustering can
be accomplished by utilizing the cosine distance metric
in conjunction with normalization techniques. The Latent
Dirichlet Allocation (LDA) algorithm also demonstrates
promising outcomes; however, the interpretation of topics is
more challenging due to the absence of ordering and the
probabilistic nature of the results.

This comprehensive evaluation and visualization demon-
strate the efficacy and trade-offs of multiple clustering ap-
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Fig. 9. Hierarchical structure of HDBSCAN Clustering

proaches, aiding in the selection of suitable models for text-
based activity pattern recognition.

VII. CONCLUSION

To minimize the development effort of advanced driver
assistance systems, it is necessary to have a comprehensive
set of test scenarios that effectively cover a wide range of sce-
narios in the database. This paper presents a comprehensive
discussion of multiple clustering algorithms. DBSACAN and

it is recommended to revise the calculation technique for the
average silhouette width. Currently, this value is determined
by taking the mean of all silhouette values in the dataset.
However, it is important to exclude outliers, specifically rare
scenarios, from being merged with the nearby cluster.
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