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Abstract—In hyperspectral image denoising, the integration
of a hypergraph convolutional neural network and a 3D
convolutional neural network has demonstrated superior
denoising performance. However, this hybrid approach suffers
from high computational costs, which restricts its practical
deployment in resource-constrained scenarios. To address
this challenge, we propose a lightweight version of the
hyperspectral image denoising network based on a hypergraph
convolutional network (HGCDN) named Light-HGCDN, which
maintains competitive denoising performance while significantly
reducing computational complexity. The core innovation
of Light-HGCDN lies in replacing the computationally
expensive 3D module with an efficient multi-scale local
feature extraction module based on depthwise separable
convolution. Furthermore, to mitigate potential performance
degradation resulting from model simplification, we introduce
a multi-stage teacher-student framework, where the pre-trained
HGCDN serves as the teacher model to guide Light-HGCDN
through hierarchical knowledge distillation. Experimental results
demonstrate that Light-HGCDN achieves a balance between
denoising performance and computational efficiency, making it
suitable for real-world applications. Additionally, we develop
a web-based hyperspectral image denoising system, integrating
Light-HGCDN into a Flask backend with an interactive frontend,
further illustrating its practical applicability.

Index Terms—Hyperspectral image denoising, Lightweight
network, Depthwise separable convolution, Knowledge
distillation, Teacher-student framework.

I. INTRODUCTION

HYPERSPECTRAL imaging has emerged as a pivotal
technology in various fields, including remote sensing,

environmental monitoring, agriculture, and defense, owing
to its ability to capture rich spectral-spatial information.
Unlike conventional RGB images, hyperspectral images
(HSIs) enable fine-grained material discrimination due to
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their contiguous spectral bands, making them indispensable
for applications such as classification [1]–[3], and target
recognition [4]–[6]. However, inherent limitations in imaging
sensors and environmental interference often introduce
complex noise patterns (e.g., Gaussian, stripe, and impulse
noise) into acquired HSIs. Consequently, HSI denoising
has become a critical preprocessing step to ensure reliable
interpretation.

Traditional HSI denoising methods typically formulate
the task as an optimization problem constrained by
handcrafted priors that exploit intrinsic data properties. Widely
adopted priors include total variation (TV) [7]–[9] for edge
preservation, low-rank assumptions [10]–[12] for spectral
correlation modeling, and sparse representations [13]–[15]
for noise separation. Although these model-based approaches
have achieved notable success, their performance is heavily
dependent on manually designed priors that align with
specific noise characteristics, requiring substantial domain
expertise. Furthermore, the iterative optimization procedures
employed in such methods incur high computational costs,
and their specialization to particular noise types limits their
adaptability to real-world scenarios with mixed or unknown
noise distributions.

The advent of deep learning has revolutionized HSI
denoising by enabling data-driven feature learning. Pioneering
work by Chang et al. [16] introduced a multichannel 2D
convolutional neural network (CNN) to leverage spatial
correlations in HSIs. Subsequently, Yuan et al. [17]
proposed HSID-CNN, which integrates multi-scale 2D-3D
convolutional blocks to jointly capture spatial-spectral features.
Despite these advances, early CNN-based methods struggled
to model long-range dependencies, which are critical for
suppressing structural noise. This limitation spurred interest
in recurrent neural networks (RNNs). For instance, Wei et
al. [18] developed QRNN3D, a quasi-recurrent architecture
that enhances global spectral correlation modeling through
3D convolutions. Further innovations addressed spatial
non-locality: Pang et al. [19] combined a Uformer block [20]
with QRNN3D via bidirectional fusion, while Shi et al. [21]
incorporated self-attention mechanisms to model inter-channel
and inter-pixel relationships. In [22], Pan et al. incorporated
the spectral attention calculation into QRNN to propose the
spatial-spectral quasi-attention recurrent network (SQAD).

Recent advances in deep learning have demonstrated
the superiority of transformer-based models in capturing
long-range dependencies for HSI processing. Notably, Lai et
al. [23] introduced a hybrid architecture integrating depthwise
separable convolution with 3D self-attention to simultaneously
model both local and global spectral-spatial relationships.
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In a parallel development, Li et al. [24] developed a
transformer-based framework employing non-local spatial
self-attention and global spectral self-attention to effectively
exploit HSI’s inherent similarities. While 3D-CNNs
demonstrate strong local feature extraction capabilities [25]
and transformers excel at modeling long-range dependencies,
researchers have increasingly focused on hybrid architectures
that combine these complementary strengths. Dixit et
al. [26] proposed an integrated framework merging both
paradigms to achieve enhanced denoising performance.
Li et al. [27] introduced a spectral-enhanced rectangle
transformer (SERT), which employs rectangular self-attention
for improved modeling of non-local similarities. A notable
advancement in SERT is its incorporation of a memory unit
that stores low-rank priors, effectively bridging model-based
and learning-based denoising methodologies.

Recent advances in deep learning, particularly through
the integration of three-dimensional convolutional neural
networks (3D-CNNs) with Transformer architectures [28],
have demonstrated remarkable success in HSI denoising while
effectively preserving spectral fidelity. Nevertheless, current
state-of-the-art models typically employ computationally
intensive architectures that hinder their deployment in
resource-constrained edge computing environments, such as
unmanned aerial vehicles (UAVs) and embedded systems [29].
A representative example is the Hypergraph Convolutional
Denoising Network (HGCDN) [30], which combines 3D
convolution with hypergraph convolution [31] to achieve
superior denoising performance through group correlation
analysis [32]. Although HGCDN demonstrates exceptional
denoising capabilities, its high computational complexity
poses a critical challenge for real-world applications.

To reconcile the competing demands of denoising
performance and computational efficiency, we propose
Light-HGCDN, a computationally efficient variant of HGCDN
optimized for practical deployment. The complexity analysis
in [30] identifies the 3D Local Feature Module (3D-LFM) as
the primary computational bottleneck in the original HGCDN
architecture. To address this, we redesign the 3D-LFM using
depthwise separable convolution, a technique well-established
for its ability to significantly reduce both parameter count and
computational costs (measured in GFLOPs) while preserving
multi-scale feature extraction capabilities. However, such
architectural simplification typically compromises the model’s
representational capacity. To mitigate this, we introduce a
Multi-stage Teacher-Student Framework (MTSF), leveraging
hierarchical knowledge distillation to transfer high-order
features from the pre-trained HGCDN (the teacher model) to
Light-HGCDN (the student model). This strategy ensures that
the lightweight model inherits the teacher’s robust feature
learning capacity while maintaining computational efficiency,
effectively addressing the performance degradation inherent
in model compression.

Experimental results on benchmark datasets demonstrate
that Light-HGCDN achieves an optimal balance between
denoising performance and computational efficiency. For
example, the proposed model incurs only a marginal
0.19 dB PSNR reduction compared to HGCDN, while
reducing computational costs by 44.4% in terms of GFLOPs.
These results highlight Light-HGCDN’s suitability for
resource-constrained environments while maintaining the

stringent requirements of hyperspectral data analysis. To
further validate Light-HGCDN’s practical utility, we develop a
web-based hyperspectral image denoising system. The system
architecture consists of an interactive frontend built with
standard web technologies (HTML, CSS, and JavaScript)
and a lightweight Flask backend hosting Light-HGCDN for
server-side inference. This integrated framework demonstrates
the model’s real-time processing capabilities and provides an
accessible interface for real-world applications, bridging the
gap between theoretical research and practical implementation.
In summary, the principal contributions of this work are
threefold.

• Lightweight Architecture: We propose a novel
multi-scale feature extraction module based on
depthwise separable convolution, reducing HGCDN’s
computational cost by 44.4% in terms of GFLOPs
while maintaining competitive denoising performance
(in mixed noise case).

• Hierarchical Knowledge Distillation: We propose a
MTSF that enables progressive knowledge transfer from
the teacher model (HGCDN) to the student model
(Light-HGCDN) model, thereby preserving crucial
spectral-spatial features in the lightweight architecture.

• Practical Deployment: We demonstrate Light-HGCDN’s
edge computing readiness via a web-based
implementation, confirming its efficacy in real-world
scenarios.

The remainder of this paper is organized as follows.
Section II presents the proposed method in detail. Section
III encompasses some experiments aimed at showcasing the
superiority of our method through quantitative and visual
result comparisons. Section IV analyzes and discusses the
complexity of the proposed approach. Finally, we conclude
the paper in Section V.

II. THE PROPOSED APPROACH

HGCDN adopts a U-shape architecture inspired by U-Net
[33], comprising two 3D convolutional feature extraction
layers, seven blocks for extracting local and high-order
features (ELHF), and a reconstruction layer. Each ELHF
block consists of three key components: Local Feature
Extraction Module (LFM), Dimensional Transformation
Module (DTM), and High-Order Feature Extraction Module
(HOFM). Through comprehensive complexity analysis, the
computational bottleneck of ELHF stems primarily from its
3D-LFM. To address this, we develop a lightweight version of
3D-LFM (Light-LFM) using depthwise separable convolution,
resulting in the proposed Light-HGCDN architecture, as
shown in Fig. 1. However, such architectural simplification
may compromise the network’s feature-learning capacity.
To ensure optimal knowledge transfer from HGCDN to
Light-HGCDN, we design a multi-stage teacher-student
framework (MTSF) for the training phase. In addition, to
avoid gradient explosion during the training process, we
implement a hybrid distillation loss function that combines
smooth loss functions L1 and L2. In summary, depthwise
separable convolution improves the computational efficiency
of the model, and knowledge distillation technology retains
the higher-order feature learning ability of the teacher model,
thus achieving a balance between noise reduction performance
and efficiency.
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Fig. 1. Overall architecture of HGDCN.

A. Lightweight local feature extraction module

In HGCDN, the 3D-LFM was designed to extract
local features from HSI, inspired by DenseNet [34] (Fig.
2). Although experimental results confirmed its superior
feature extraction capabilities, its substantial computational
complexity limited practical deployment in real-world
applications. To address this issue, we propose an optimization
scheme using depthwise separable convolution, which
decomposes the 3D convolution into sequential 1D and 2D
convolutional operations. We further incorporate a multi-scale
convolutional mechanism to enhance feature representation.
The optimized module structure is shown in Fig. 3.

Light-LFM employs efficient 1 × 1 × 1 3D convolution
kernels at both ends for feature map transitions, while
two intermediate convolutional layers handle core feature
extraction. Although this dimensional reduction may
weaken feature extraction capacity, our multi-scale strategy
compensates by expanding the receptive field.

Through systematic evaluation, we identify that combining
3 × 3 and 5 × 5 convolution kernels achieves the best
performance-efficiency trade-off, whereas 7 × 7 kernels
incur impractical overhead. The optimized Light-LFM
achieves remarkable parameter reduction. For single-channel
operations, the parameter count decreases from 108 (3 ×
3 × 3 × 4) in 3D-LFM to 44 (1 + (3 × 3 + 3) + (5 ×
5 + 5) + 1), a 60% reduction. This design preserves
strong representation power while dramatically improving
computational efficiency, enhancing practical utility without
compromising performance.

B. Multi-stage teacher-student framework based on feature
transfer

Given that network simplification significantly increases
training difficulty, we employ the knowledge distillation
technique to ensure that Light-HGCDN effectively preserves
complex features. The traditional knowledge distillation
technique [35] utilizes temperature parameters and soft
labels to formulate distillation loss functions, facilitating
knowledge transfer from complex teacher models to compact
student models via a teacher-student framework. However, this
approach is primarily limited to Softmax-based classification
models, restricting its broader applicability. Recent advances
have diversified distillation methodologies through various
strategies, including feature transfer [36], and relationship

transfer [37], though most applications focus on image
classification. Recently, knowledge distillation techniques
have been applied to image restoration. For example,
Hong et al. [38] proposed an image dehazing method
using knowledge distillation, while Li et al. designed a
heterogeneous knowledge distillation strategy for image
denoising [39].

Inspired by prior research, we propose a multi-stage
high-order feature knowledge distillation strategy, allowing
Light-HGCDN to acquire more comprehensive and precise
high-order representations. As illustrated in Fig. 4, our
approach leverages the pre-trained HGCDN as the teacher
model and its robust high-order feature learning capabilities
to progressively transfer knowledge to the student model
(Light-HGCDN) through hierarchical feature distillation. The
distillation adopts a three-stage progressive strategy:

• Stage 1: The knowledge distillation is performed using
features from layers 3-5 in the teacher model’s EHLF
modules.

• Stage 2: The distillation scope expands to layers 3-7,
promoting deeper knowledge transfer, which helps the
student model learn complex high-order features.

• Stage 3: we optimize feature representation by distilling
the input and output HOFM layers (i.e., 1, 2, 8, and 9).

This multi-stage progressive approach effectively mitigates
training challenges from model compression, gradually
increasing task complexity to overcome training bottlenecks
while enriching feature representations.

For the loss function design, we propose a composite loss
function to optimize model training. Specifically, Knowledge
Distillation Loss (KDL), defined by the Smooth L1 norm,
prevents gradient explosion during the distillation process.
Mathematically, KDL is expressed as

LossKDL =
n∑

i=1

SmoothL1(Teacheri − Studenti), (1)

where

SmoothL1
(x) =

{
0.5x2, |x| < 1,

|x| − 0.5, |x| ≥ 1.
(2)

Here, Teacheri and Studenti represent the output feature
maps from the i-th layer of the teacher and student models,
respectively.
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Fig. 2. 3D-LFM.

Fig. 3. Light-LFM.

Fig. 4. MTSF.

To assess reconstruction quality, we employ an
L2-norm-based Reconstruction Loss (RL) to measure the
discrepancy between the student model’s denoised output and
the ground truth image. The RL is defined as follows:

LossRL =
1

2
∥X− Studentoutput∥22, (3)

where Studentoutput indicates the denoised image from the
student model, and X stands for the ground truth.

The total loss function is formulated as

Losstotal = LossRL + ωLossKDL. (4)

Here, ω serves as a balancing factor to harmonize the two loss
items. During the first two training stages, we set ω = 0.2
and reduce it to 0.1 in the final stage. This composite loss
function enables Light-HGCDN to simultaneously maintain
fundamental image reconstruction quality while effectively
acquiring high-order feature representations. By balancing
these objectives, we achieve significantly improved denoising
performance.

In summary, Light-LFM employs the depthwise separable
convolution to decompose 3D convolution into sequential
1D and 2D operations, achieving a 60% reduction in
parameters compared to the original 3D-LFM while
substantially decreasing the computational complexity. This
is combined with a multi-stage progressive training strategy
that gradually increases task complexity, addressing the
training challenges inherent to lightweight models and
enabling Light-HGCDN to acquire more comprehensive
high-order feature representations. The training uses a
composite loss function with RL and KDL terms. The RL
term maintains output fidelity by minimizing pixel-wise
errors between denoised and clean images, while the KDL
term facilitates the transfer of high-order features from
the teacher model, enabling the student model to retain
both high-order features and local details. Through these
coordinated designs, Light-HGCDN balances efficiency and
performance, maintaining competitive denoising quality with
significant computational savings.
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III. NUMERICAL EXPERIMENTS

In this section, we present experiments designed to validate
the proposed method, including simulated HSI denoising tests
and ablation studies.

A. Experimental settings

1) Datasets: For synthetic HSI denoising evaluation, we
use the ICVL dataset, which serves as a benchmark standard
in hyperspectral imaging research. This dataset contains 201
high-quality HSIs, each with dimensions of 1392×1300 pixels
across 31 spectral bands covering the 400-700 nm wavelength
range. Following [18], we divide the dataset into three subsets:
100 images for model training, with the remainder allocated
for validation and testing. To optimize neural network training,
we implement comprehensive preprocessing procedures. For
synthetic data generation, each training image is cropped into
1024× 1024-pixel spatial patches. We further enhance data
diversity through random rotational augmentation. During
evaluation, we extract the central 512× 512 region from all
test images to ensure standardized assessment.

2) Comparison methods: To evaluate Gaussian noise
removal performance, we compare our method with five
state-of-the-art denoising approaches: LLRT [40], NGmeet
[41], QRNN3D [18], Trq3d [19], and MAN [42]. In the
complex noise case, the comparison methods are LRTDTV
[8], LRTV [9], QRNN3D, Trq3d, and SERT [27].

3) Evaluation metrics: Four standard metrics are employed
to assess model performance in our experiments, including
peak signal-to-noise ratio (PSNR), structural similarity index
(SSIM) [43], spectral angle mapper (SAM) [44], and erreur
relative globale adimensionnelle de synthse (ERGAS) [45].

4) Experimental scenarios: To comprehensively evaluate
the denoising capability of Light-HGCDN, we conduct two
synthetic noise experiments: (1) Gaussian noise (σ = 50)
and (2) complex noise (comprising non-i.i.d. Gaussian, stripe,
deadline, and impulse noise). Additionally, to validate the
effectiveness of MTSF, we perform ablation experiments.
By comparing model performance across training stages, we
quantitatively analyze the contribution of the progressive
training strategy.

5) Implementation details: All experiments are
implemented using the PyTorch framework, with neural
network model training and testing carried out on two
NVIDIA GeForce RTX 3080 GPUs. For practical deployment,
Light-HGCDN runs on a computer equipped with an Intel
Core i5 processor and 32GB RAM. The web-based application
utilizes a Flask backend and features an interactive frontend
developed with HTML, CSS, and JavaScript.

B. Synthetic experiments

To demonstrate the superior denoising capability of
Light-HGCDN, we conduct experiments under two noise
scenarios: Gaussian noise scenario and complex noise
scenario. Quantitative results are presented in Tables I and II.
And visual comparisons are shown in Figs. 5 and 6, which
consist of bands 15, 27 and 31. In the Gaussian noise scenario,
Light-HGCDN without knowledge distillation achieves best
PSNR and SSIM, as well as second-best SAM. Although
NGmeet shows superiority on SAM and ERGAS, its results
exhibit noticeable oversmoothing artifacts. These findings

(a) LLRT (b) NGmeet (c) QRNN3D

(d) Trq3d (e) MAN (f) Our

Fig. 5. Visual comparison of the Gaussian noise case.

demonstrate that our lightweight architecture alone retains
excellent denoising capability. In the complex noise scenario,
the Light-HGCDN optimized by knowledge distillation
shows significant denoising advantages, outperforming all
comparison methods in all evaluation metrics. This confirms
Light-HGCDN’s practical utility for real-world applications.

TABLE I Quantitative comparison of Light-HGCDN (not distilled)
and competing methods in Gaussian noise scenario (σ = 50).

Metric LLRT NGmeet QRNN3D Trq3d MAN Light-
HGCDN

PSNR 38.83 40.35 40.30 40.21 40.51 40.67
SSIM 0.942 0.954 0.955 0.957 0.956 0.957
SAM 0.0735 0.0587 0.0711 0.0636 0.0607 0.0607
ERGAS 70.61 45.25 49.90 56.46 46.21 55.13

TABLE II Quantitative comparison of Light-HGCDN (distilled)
and competing methods in complex noise case.

Metric LRTDTV LRTV QRNN3D Trq3d SERT Light-
HGCDN

PSNR 34.46 31.31 39.33 40.16 39.34 40.34
SSIM 0.906 0.862 0.945 0.958 0.950 0.962
SAM 0.1058 0.2213 0.0841 0.0654 0.0649 0.0599
ERGAS 109.13 178.40 50.77 43.73 48.59 42.79

C. Ablation studies

To verify the effectiveness of MTSF, we conduct
comprehensive testing of each training stage under mixed
noise conditions, with results presented in Table III. Compared
with the model without knowledge distillation (None-KD),
single-stage distillation yields significant improvements across
all metrics (PSNR, SSIM, and ERGAS), confirming KD’s
ability to enhance Light-HGCDN’s capacity for complex
noise modeling. Compared with single-stage KD, MTSF
obtains better denoising performance in the second stage
and significantly improves the model performance after three
stages of KD. During the experiments, empirical observations
reveal performance degradation beyond epoch 230, indicating
overfitting. Therefore, we implement early stopping, selecting
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(a) LRTDTV (b) LRTV (c) QRNN3D

(d) Trq3d (e) SERT (f) Our

Fig. 6. Visual comparison of the complex noise case.

the epoch 230 model as final. These findings collectively
demonstrate that our multi-stage high-order feature transfer
strategy enables richer feature representation learning while
mitigating training instability.

TABLE III Ablation experiments about MTSF in mixed noise
scenario.

Metric HGCDN
(baseline) None-KD Single

Stage
MTSF-
Stage 1

MTSF-
Stage 2

MTSF-
Stage 3

PSNR 40.53 38.74 39.97 39.76 40.15 40.34
(∆)↓ - (1.79) (0.56) (0.77) (0.38) (0.19)
SSIM 0.964 0.957 0.958 0.957 0.960 0.962
(∆)↓ - (0.007) (0.006) (0.007) (0.004) (0.002)
SAM 0.0562 0.0574 0.0631 0.0663 0.0646 0.0599
(∆)↓ - (0.0012) (0.0069) (0.0101) (0.0084) (0.0037)
ERGAS 41.20 57.71 44.26 45.87 44.47 42.79
(∆)↓ - (16.51) (3.06) (4.67) (3.27) (1.59)

D. Application example
We present a web-based implementation of Light-HGCDN

to validate its real-world applicability. The backend utilizes
Python’s lightweight Flask framework to integrate our
pre-trained model via RESTful APIs for efficient denoising.
The frontend, implemented with standard web technologies
(HTML, CSS, and JavaScript), employs a hierarchical design
that optimizes usability while ensuring system maintainability
and scalability.

The system architecture consists of three tiers. The first
tier contains the authentication interface for login verification.
The second tier hosts the home page with navigation controls,
serving as the primary gateway to system functionalities. The
third tier provides specialized functional modules accessible
via the navigation menu. As shown in Fig. 7, the core image
processing module enables HSI uploading, backend denoising
algorithm interaction, and intuitive result visualization. This
implementation demonstrates Light-HGCDN’s deployment
feasibility in production environments while proving its
practical value for HSI denoising applications.

IV. ANALYSIS AND DISCUSSION

Table IV presents the computational requirements
of all deep learning-based denoising methods in our

synthetic experiments, evaluating both parameter count
and computational complexity. Compared with the original
HGCDN, Light-HGCDN reduces the number of parameters
by 0.53 M and computational complexity by 25.4
GFLOPs, representing an approximately 50% reduction in
computational requirements. Although the lightweight model
exhibits a slight denoising performance decline, the substantial
complexity reduction demonstrates the efficacy of our
proposed Light-HGCDN and knowledge distillation strategy.
Moreover, Light-HGCDN maintains superior denoising
performance relative to both Trq3d and QRNN3D while
requiring lower computational complexity. This result further
validates the importance of high-order correlation in HSI
denoising, indicating Light-HGCDN’s ability to efficiently
leverage high-order features with minimal overhead.

TABLE IV Complexity comparison of Light-HGCDN and other
deep learning methods.

Metric QRNN3D Trq3d MAN SERT HGCDN Light-
HGCDN

Params (M) 0.86 0.68 0.50 1.91 2.59 2.06
GFLOPs 39.30 33.38 19.06 15.16 57.18 31.78
MACs 19.65 16.69 9.53 7.58 28.59 15.89

V. CONCLUSION

To address the high computational complexity of
HGCDN, we proposed a lightweight multi-scale local feature
extraction module via depthwise separable convolution,
which achieved significant model compression. This
design reduced parameters by 20.5% and computational
costs by 44.4% (in FLOPs) compared to the original
HGCDN. To preserve denoising performance, we designed a
multi-stage teacher-student architecture leveraging knowledge
distillation. This hierarchical training strategy enabled
progressive knowledge transfer, which helped the lightweight
model overcome optimization bottlenecks while maximizing
the feature representation capacity of the lightweight
3D-LFM. Particularly, we utilized a hybrid distillation loss
function to stabilize training by mitigating abrupt loss
fluctuations. Experimental results in synthetic noise tests and
ablation studies demonstrated that our approach maintains
competitive denoising performance while substantially
reducing computational costs. Additionally, we developed
a web-based application to validate Light-HGCDN’s
practicality in real-world scenarios. The system features an
interactive interface for HSI uploads, with backend denoising
and visualization, confirming Light-HGCDN’s operational
feasibility for real-world HSI processing.
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