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Abstract—Chronic Kidney Disease (CKD) is a substantial
health issue worldwide. It is important to have accurate and
efficient ways to detect CKD. This can help improve outcomes.
For this, we collected CKD and non-CKD patients’ clinical data
in different clinical centres from the north-coastal Districts of
AP, India. The study introduces a novel method for detecting
CKD using optimized multi-layer perceptron (MLP) models and
advanced feature selection techniques. It highlights correlations
between key biomarkers and CKD progression. Particle Swarm
Optimization (PSO) and Genetic Algorithm (GA) were utilized
to reduce feature space by 43.33% (selected 17 features out of
30) and 46.67% (selected 16 features of 30), respectively. The
study assesses the Classification Accuracy (CA) of Multi-Layer
Perceptron (MLP)-based ML models for CKD detection using
Genetic Algorithm (GA) and Particle Swarm Optimization
(PSO) for feature selection. Results show that PSO-selected
features are more informative for MLP classification tasks,
with the MLP model achieving a CA of 97.79%. The
MLP+PSO model achieved the highest accuracy of 99.01%,
outperforming. The PSO optimization strategy proved more
effective in fine-tuning MLP weights. The study uses machine
learning to detect CKD early, enhancing feature selection
and optimizing Multi-Layer Perceptron models, providing
region-specific insights for tailored healthcare interventions and
personalized medicine.

Index Terms—Chronic Kidney Disease, Optimized
Multi-Layer Perceptron, Feature Selection Techniques,
Particle Swarm Optimization, Firefly Algorithms, Genetic
Algorithm, Andhra Pradesh CKD Data.

I. INTRODUCTION

AS per WHO reports, kidney disease affects 850 million
people around the world and causes millions of deaths

each year because treatment is often too expensive. Most
of those affected live in low- and lower-middle-income
countries, with diabetes and high blood pressure being the
leading causes. CKD also puts a heavy financial burden
on healthcare systems, and better data is needed. CKD
affects 9-10% of the world’s population [11], [12]. It is
the eleventh leading cause of mortality worldwide. Diabetes,
hypertension, lifestyle choices, and environmental exposure
are all risk factors. CKD causes about 1.2 million deaths per
year and is indirectly related to cardiovascular disease [13],
[14]. The prevalence of CKD in Uddanam ranges from 18.3%
to 32.2%, with estimates suggesting that it could be as high
as 60% among agricultural workers. In Andhra Pradesh, the
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overall prevalence is around 32.2%, with 17.2% in general
populations outside of Uddanam. CKD is a significant health
problem in AP [15], [16], [17]. Healthcare costs, poverty,
and disparities in access to treatment are all components
of the financial impact. By 2040, CKD is expected to
be the fifth leading cause of death worldwide. WHO
activities promote awareness, early detection, and prevention
methods. At the same time, groups like the Society for CKD
and Nephrology: Improving Worldwide Outcomes works to
improve worldwide CKD care standards. Table I provides
a detailed overview of the stages of CKD according to
GFR, describing symptoms, diagnostic methods, treatment
approaches, and preventive measures [18]. It emphasizes
early detection and management strategies, guiding the
understanding of the progression of CKD and the importance
of proactive healthcare interventions.

Machine learning (ML) enhances healthcare by enabling
intelligent systems for diagnosing illnesses, predicting
outcomes, and planning treatments. However, CKD
detection requires thorough optimization to provide high
accuracy, resilience, and generalizability. Particle Swarm
Optimization, Genetic Algorithm, and Firefly Algorithm
successfully solved these difficulties. PSO, GA, and FF
are problem-solving techniques. PSO is based on how
swarms behave. GA uses principles from natural evolution
to improve solutions. FF imitates how fireflies glow to help
find solutions. These methods help select important features
and tune model parameters. They remove unnecessary
features and optimize performance. This study aims to
improve the performance of MLP models in detecting
CKD using the clinical AP-CKD dataset, ensuring reliable
and interpretable results for healthcare professionals using
advanced optimization techniques.

II. LITERATURE REVIEW

Chronic Kidney Disease (CKD) is a global health
issue. Early detection and treatment are important.
Machine learning (ML) models help in diagnosis and
prognosis. Common models include Logistic Regression
(LR), Decision (DT) Trees, and Random (RF) Forests.
High-quality data is necessary for training these models. Data
preprocessing techniques are important. These techniques
include normalization and feature selection. ML can improve
diagnostics [Dutta et al. (2024)[19]. Swain et al. (2023)
[20] present a robust approach to CKD classification
using machine learning models, including SVM and RF
models. RF achieves 98.67% accuracy, outperforming.
SMOTE addresses class imbalance, and the chi-squared
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TABLE I
OVERVIEW OF CHRONIC KIDNEY DISEASE (CKD) STAGES WITH SYMPTOMS, DIAGNOSIS, TREATMENT, AND PREVENTIVE MEASURES

Stages of CKD
(GFR)

Symptoms Diagnosis Treatment Precautions and
Preventions

Stage 1 (GFR ≥
90)

Often asymptomatic, mild
proteinuria

Blood tests, urine tests,
blood pressure monitoring

Control BP, manage
diabetes

Healthy diet, regular
exercise, avoid smoking,
control hypertension [1]

Stage 2 (GFR
60–89)

Mild fatigue, slight
swelling, proteinuria

Blood and urine tests,
imaging tests

Monitor kidney function,
manage comorbidities

Maintain healthy weight,
reduce salt intake, stay
hydrated

Stage 3 (GFR
30–59)

Fatigue, swelling in
hands/feet, back pain,
urination changes

Blood tests, creatinine
levels, electrolyte tests

Medications to manage
symptoms, avoid
nephrotoxic drugs

Avoid NSAIDs, manage
diabetes and hypertension

Stage 4 (GFR
15–29)

Severe fatigue, swelling,
nausea, loss of appetite

Blood tests, kidney
biopsy, advanced imaging

Kidney transplant, dialysis
preparation or manage
complications

Follow dietary
restrictions, potassium
monitoring, regular
checkups

Stage 5(GFR <
15)

Severe symptoms:
vomiting, confusion,
shortness of breath

Blood tests, dialysis
evaluation, imaging

Kidney transplant,
dialysis, supportive
care

Early detection in
previous stages, adherence
to medical advice [2], [3]

TABLE II
EXISTING RESEARCH ON CKD PREDICTION MODELS AND RESULT ANALYSIS

Ref.
No.

Author(s)
(Year)

Description and Models Result Analysis

[4] Chittora et
al. (2021)

Models utilized include ANN, C5.0, CHAID, Logistic
Regression, LSVM with L1 and L2 penalties, and
Random Tree.

Highest Accuracy: 98.86% with LSVM (L2) and SMOTE
with Full Features. Second-best: LSVM (L2) with
LASSO and SMOTE.

[5] Debal et al.
(2022)

The study evaluated LR, DTs, and RFs for early
CKD detection, focusing on categorical predictions and
ensemble methods.

LR outperformed with an F1 score of 0.87, precision of
91.49%, and recall of 83.49%, while RF achieved an F1
score of 0.71, precision of 64.29%, and recall of 78.64%.

[6] Islam et al.
(2023)

Used predictive ML models to identify early CKD,
selecting 30% of relevant features from 25 variables.

XGBoost performed best with an accuracy of 98.3%,
precision of 0.98, recall of 0.98, and F1-score of 0.98.

[7] Alsuhibany
et al. (2021)

Developed an Ensemble DL Clinical Decision Support
System (EDL-CDSS) for CKD diagnosis in IoT
frameworks. Compared DT, MLP, DBN, CNN-GRU,
KELM, FNC, D-ACO, and EDL-CDSS.

EDL-CDSS showed the best performance with sensitivity
of 0.9680, specificity of 0.9702, accuracy of 0.9691, and
F1-score of 0.9692.

[8] Chowdhury
et al. (2021)

Assessed 10 ML models, including RF, LightGBM,
KNN, SVM, DT, GB, XGB, SGD, LR, and GNB for
CKD prediction.

RF had the highest accuracy (96%), followed by
LightGBM (95%). Other models also performed above
90%.

[9] Srikanth et
al. (2023)

Used ensemble ML techniques for CKD prediction using
a dataset of 201 records and 29 attributes. Evaluated RF,
DT, SVM, and AdaBoost.

RF and SVM achieved 98.3% accuracy, while DT
reached 96.6%.

[10] Ghosh et al.
(2023)

Compared ML algorithms (XGBoost, RF, LR, AdaBoost)
and proposed a Hybrid Model for CKD prediction.

Hybrid Model outperformed all with accuracy of 94.99%,
precision of 95.21%, recall of 95.11%, F1-score of
95.32%, and AUROC of 95.56%.

test optimizes feature selection. Arif et al. (2023) [21]
created an ML framework to detect CKD early. They
used advanced preprocessing methods and the Boruta
algorithm. By applying the K-NN algorithm and optimizing
hyperparameters, they achieved perfect accuracy on the UCI
CKD dataset. Bai et al. (2022) [22] used ML models to
predict the progression of CKD to end-stage kidney disease
(ESKD). They used a longitudinal dataset and tested five
ML algorithms, with logistic regression, NBs, RF, DTs, and
k-NNs performing well. The study suggests ML models
can be helpful for patient screening and early detection but
acknowledges the need for external validation and further
enhancement. Dritsas et al. (2022)[23] developed ML tools
for predicting CKD using class-balancing techniques. They
used feature ranking and analysis to identify key variables
influencing CKD prediction. The study emphasizes the
importance of preprocessing steps in building robust models
for medical applications but lacks specific algorithmic
comparisons and metric outcomes. Iftikhar et al. (2023)

[24] compared ML models for predicting CKD using
a case-control dataset from Pakistan. The models were
assessed using many criteria, such as specificity, accuracy,
sensitivity, and the Diebold-Mariano test. The research
indicated kernel-based SVMs were proficient in predicting
CKD, highlighting the need for a thorough assessment.
Singh et al. (2022) [25] devised a deep neural network
(DNN) for the early identification and prediction of CKD,
emphasizing diabetes and hypertension. The DNN surpassed
traditional classifiers in predicted accuracy and robustness,
underscoring the efficacy of deep learning in medical
datasets. Rashed-Al-Mahfuz et al. (2022) [26] studied
CKD using machine-learning techniques. They employed
eight classifiers, such as Logistic Regression and Random
Forest, to evaluate the disease’s characteristics. They utilized
principal component analysis (PCA) for feature extraction to
enhance diagnosis accuracy. Table II presents a comparative
analysis of various CKD prediction models, outlining their
descriptions, techniques used, and performance results.
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Fig. 1. Framework of the Proposed CKD Detection Model Using AP CKD Dataset

Venkatrao et al. (2023) [27] created HDLNet, a hybrid
DL network model for early detection and classification
of CKD using advanced architectures and optimization
techniques. The model demonstrated superior performance
on the UCI CKD dataset. Terlapu et al. (2023) [28] developed
a hybrid diagnostic model for Uddanam nephropathy, a
localized CKD variant in Andhra Pradesh, India. The
model, which combined Principal Component Analysis
(PCA) with Genetic Algorithm (GA) and Multi-Layer
Perceptron (MLP), outperformed standard classification
methods in testing accuracy of 98.54%. Deepika et al.
(2023) [29] propose a hybrid IoMT platform for early
chronic kidney disease detection and diagnosis, using
HMANN and FFOA algorithms for enhanced accuracy and
data reduction. The methodology includes preprocessing
steps like segmenting kidney regions in ultrasound images.
Hosseinzadeh et al. (2021) [30] developed a diagnostic
model for chronic kidney disease using IoT-based multimedia
data, enhancing predictive performance and reducing
computational overhead. The Decision Tree classifier
outperforms other models, achieving 97% accuracy and
95% specificity. Further validation on diverse datasets is
needed. Gogoi et al. (2024) [31] review ML techniques
for CKD prediction and diagnosis, highlighting progress
and challenges like small datasets, lack of stage-specific
models, and interpretability and privacy concerns. They
propose solutions like Generative AI, SHAP and LIME, and
privacy-preserving methods like homomorphic encryption
and federated learning. Akter et al. (2024) [32] developed
CKD.Net, a DL hybrid model that predicts the five stages
of CKD using a balanced dataset with 27 features. The

model achieves outstanding classification performance and
noninvasive prediction of eGFR and creatinine levels with
high confidence. This advancement in AI-driven clinical
diagnostics is significant for early CKD detection. Vital et al.
(2021) [33] conducted a study on Uddanam Chronic Kidney
Disease (UCKD) in the coastal Srikakulam region of Andhra
Pradesh, India. They used statistical analysis and machine
learning techniques to analyse CKD datasets, including
Naı̈ve Bayes, k-NN, Logistic Regression, C4.5, SVM, and
Probabilistic Neural Networks (PNN). The PNN model
showed superior performance, enabling early diagnosis and
supporting resource-constrained efforts. Elkholy et al. (2023)
[34] propose a ”DFS-ODBN” framework for early and exact
detection of CKD. The framework uses a deep belief network
optimized by the Grasshopper Optimization Algorithm and
a Density-based Feature Selection algorithm. The model
outperforms alternative methods with reasonable accuracy,
sensitivity, and specificity, advancing medical diagnostics.

III. MODELS AND MATERIALS

The section discusses the clinical AP-CKD dataset from
Andhra Pradesh, India, and its optimized MLP models,
utilizing advanced feature selection techniques like PSO, GA,
and Firefly Algorithm for enhanced detection performance.

1) Proposal Model: Fig. 1 shows the framework of a
proposed model for detecting chronic kidney disease (CKD).
It uses the AP CKD dataset to make accurate predictions and
analysis. The CKD detection model is designed to predict
CKD early using advanced technology and machine learning
(ML) methods. We collected the patient’s clinical data from
various clinical centers and hospitals in Andhra Pradesh.
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The data is cleaned and prepared to ensure its quality.
Important features needed to detect CKD are chosen using
Particle Swarm Optimization (PSO) and Genetic Algorithms
(GA). The data is divided into 70% for training and 30%
for accuracy testing. Different ML models, such as Naive
Bayes, K-Nearest Neighbours, Support Vector Machine, and
Logistic Regression, are trained and compared to see which
predicts CKD best. The model’s performance is evaluated
using precision, accuracy, F1 score, recall, and AUC, which
help understand how well each model works. After finding
the best model, it is tested for reliability. Experts check
the model to ensure it meets clinical standards for real-life
use. Finally, detailed reports on the model’s performance are
created for stakeholders, ensuring transparency and helping
them make informed decisions.

2) Dataset Description: The CKD dataset was
collected from different clinical centres and hospitals
from North coastal districts (Srikakulam, Vizainagaram, and
Visakhapatnam) of Andhra Pradesh, India. The AP CKD
dataset includes 1,348 patient records. After eliminating
missing values and outliers, there are 1,150 patient records
for analysis, including 29 features and one target variable.
These features include personal details like age and gender,
necessary health measurements such as blood pressure, and
urine test results showing Specific Gravity and Albumin
levels. It includes biochemical indicators like haemoglobin,
serum creatinine, and blood urea, as well as immune system
markers like neutrophils and lymphocytes. It classifies
individuals as CKD (1) or non-CKD (0). It is helpful for
ML and statistical models. The Table III shows in detailed
information about each feature attributes (A00 to A29) and
one class attribute (T01) with range of each attribute.

3) Firefly Algorithm: The Firefly (FF) Algorithm is
an optimization algorithm based on how fireflies flash.
This method is effective for resolving complex challenges.
Fireflies use flashlights to attract mates or prey. The light
dims as they travel away. A dim firefly will go towards a
brighter one. If there are no brighter fireflies nearby, they will
travel at random. The efficient global search method is easy
to use and adaptable. It works well for complex problems
with many dimensions. It helps avoid getting stuck in local
optima and can be applied to different types of problems. The
FF treats all fireflies as the same gender. Their attractiveness
depends on how bright they are. If a firefly doesn’t see a
brighter one nearby, it will move randomly.

The objective function f(x) is to be minimized or
maximized where x is a solution vector in d dimensions.

f(x), x ∈ Rd (1)

An objective function defines a firefly’s brightness at a
particular position. In a maximization problem, increasing
brightness improves the objective function. In a minimization
problem. I(x) is the intensity of light determined as

I(x) ∝ f(x) (2)

I(x) =
1

1 + f(x)
(3)

The attractiveness of a firefly is determined by its beta value.

β(r) = β0e
−γr2 (4)

β0 : Initial attractiveness at a distance r = 0.
γ : Light absorption coefficient.
r : Distance between two fireflies.

r = ∥xi − xj∥2 =

√√√√ d∑
k=1

(xi,k − xj,k)2 (5)

The formula for attracting a less bright firefly i to a brighter
firefly j is:

xi = xi + β0e
−γr2(xj − xi) + αȯ1 (6)

xi represents the current position of a firefly. xj indicates
the current position of another firefly, which is used for
attraction. α is the randomization parameter that determines
the step size. ϵ is mentioned as random number vector drawn
from a Gaussian or Uniform distribution If a firefly doesn’t
see a brighter one, it will move in a random direction as
follows:

xi = xi + α(rand− 0.5) (7)

Fig. 2 shows the detailed analysis of FF+MLP fine-tuned
algorithms An MLP is a feedforward ANN with input,
hidden, and output layers. It learns through weighted edges,
and its performance is significantly influenced by its hyper
parameters. The Firefly Optimization Algorithm (FOA) is a
method that uses the bioluminescent behaviour of fireflies to
attract them based on their brightness, aiming to find optimal
solutions. The tuning of hyper parameters in a Multi-Layer
Perceptron (MLP) is focused on reducing the error when
validating the model. Key factors in this optimization
process include Learning rate, the no. of neurons and
layers that are hidden in each layer, activation functions,
weight initialization methods, dropout rates, and batch size.
Implementing a ML model entails designing the MLP
architecture, configuring the FOA parameters, integrating
FOA with MLP training, executing the FOA algorithm, and
assessing the final model. The model is trained using the
optimal hyper parameters and then evaluated on a different
dataset to determine its performance. This method guarantees
precise and efficient ML.

The FF (shown in Algorithm 1) is a technique of
optimization. It simulates how fireflies flash to discover the
optimum option. The algorithm adjusts their placements over
time to come closer to the best solution.

Algorithm 1 Firefly Algorithm
Initialization: Randomly initialize the firefly population
Step 1: Evaluate Brightness: Calculate brightness using
the objective function.
Step 2: Firefly Movement: For each firefly

• Move towards the brighter firefly based on
attractiveness.

• If no brighter firefly is found, move randomly.
Step 3: Update Solutions: Adjust the fireflies’ positions
and recalculate brightness.
Step 4: Repeat: Iterate until the stopping criterion
(maximum iterations or convergence) is met.
Step 5: Return the Best Solution: Output the optimal
solution. =0
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TABLE III
CKD DATASET DESCRIPTION

(Code) Attribute Data
Description

(Code) Attribute Data
Description

(A00) Age Continuous (A16) Potassium Continuous
(A01) Sex Discrete (A17) Chloride Continuous
(A02) BP Discrete (A18) Haemoglobin Continuous
(A03) Specific-Grvy Continuous (A19) PackedCell Continuous
(A04) Albumin Continuous (A20) WBCells Continuous
(A05) Urinal Sugar Continuous (A21) Neutrophils Continuous
(A06) MCV Continuous (A22) Lymphocytes Continuous
(A07) Platelet-Count Continuous (A23) Eosinophils Continuous
(A08) RedBloodCells Continuous (A24) Monocytes Continuous
(A09) Pus-Cell Discrete (A25) Basophils Continuous
(A10) PusCellClumps Discrete (A26) Uric Acid Continuous
(A11) Bacteria Discrete (A27) Bilirubin Continuous
(A12) Blood-Glucose Continuous (A28) Hypertension Discrete
(A13) Blood-Urea Continuous (A29) Diabetic Discrete
(A14) Serum Creatine Continuous (T01) CKD/NON-CKD Discrete
(A15) Sodium Continuous

Fig. 2. Framework of the MLP Hyper Parameters Tuning using Firefly Algorithm

4) PSO Algorithm: Russell Eberhart and James Kennedy
developed the Particle Swarm Optimization (PSO) method
1995.The algorithm is based on the premise that birds in a
flock communicate information to alter their location while
seeking for food, assessing their personal and global best
experiences. PSO is a search space model that provides a
possible solution inside a swarm of particles. PSO is easy to
implement because it has few parameters to adjust. It works
well for high-dimensional problems and converges quickly
for continuous optimization. Additionally, it is flexible and
can be adapted for various optimization tasks. It entails
computing each particle’s position (xi), velocity (vi), personal

best (pbesti), and global best (gbesti) depending on its
location in the search space. The objective function to be
minimized or maximized should be

f(x), x ∈ Rd (8)

The d-dimensional solution vector represents a particle’s
position. The particle position and velocity are updated using
specific equations.

v
(t+1)
j = wv

(t)
j +c1r1(pbestj−x(t)

j )+c2r2(gbest−x(t)
j ) (9)

v
(t+1)
j is the velocity of particle i has been updated at

iteration t+1. Inertia weight w, self-confidence c1, swarm
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Fig. 3. Framework of the MLP Hyper Parameters Tuning using PSO Model

confidence c2, r1 and r2 are Random numbers between [0
1].

x
(t+1)
i = x

(t)
i + v

(t+1)
i (10)

The position update is x
(t+1)
j the updated position i of

the particle during the iteration. Inertia weight adjustment is
a technique that maintains the balance between exploration
and exploitation by reducing it over iterations.

w = wmax −
(wmax − wmin)

tmax
· t (11)

The Fig. 3 shows the PSO+MLP fine-tuned models. The

TABLE IV
ANALYSIS OF CONFUSION MATRIX STRUCTURE

Class Predicted Values Total
NCKD (0) CKD (1)

Actual Values NCKD (0) (0,0) (0,1) T3
CKD (1) (1,0) (1,1) T4

Total T1 T2 T

Particle Swarm Optimization (PSO) (Algorithm 2) technique
optimizes the parameters of an MLP, improving performance
by automating the search for hyper parameters such as
learning rate, number of neurons, activation functions,
and weight initialization schemes. This population-based
optimization method is critical for improving the MLP’s
performance. An MLP is a neural network with three
layers: input, hidden, and output. It is used for tasks
like classification and regression. The performance of an
MLP depends on the correct hyper parameters. PSO is an
optimization method inspired by birds and fish. It involves
particles that explore a search space to find optimal solutions,
adjusting their positions based on personal and collective

experiences. To tune MLP hyper parameters, we aim to
reduce errors on a validation dataset. It’s essential to
establish the range for different hyper parameters, such as
the learning rate, the number of hidden layers, the number of
neurons in each layer, the activation functions, regularization
parameters, and batch size.

Algorithm 2 Particle Swarm Optimization (PSO)
1: Initialization: Randomly initialize the positions xi and

velocities vi of all particles in the search space. Set
parameters: w (inertia weight), c1 (cognitive coefficient),
c2 (social coefficient).

2: Step 1:
a. Evaluate Fitness: Evaluate the fitness of each

particle using the objective function f(xi). Update
pbest (personal best) for each particle.

b. Update gbest : Update the global best (gbest) based
on the best fitness value across the swarm.

3: Step 2: Update Velocity and Position
a. Update Velocity: Update each particle’s velocity

using the velocity update equation: vi ← wvi +
c1r1(pbesti − xi) + c2r2(gbest− xi), where r1, r2
are random numbers in [0, 1].

b. Update Position: Update each particle’s position
using the position update equation: xi ← xi + vi.

4: Step 3: Check Stopping Criteria Iterate until
the stopping criterion (e.g., maximum iterations or
convergence) is met.

5: Step 4: Return the Best Solution Output the global
best position (gbest) and its corresponding fitness value
f(gbest). =0
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TABLE V
CKD DATASET CONTINUOUS FEATURES STATISTICAL ANALYSIS

Attribute CKD NON-CKD CKD & NON-CKD (Total)
Mean Median Mean Median Mean Median

(A00) Age 51.74 ± 15.68 54 46.72 ± 16.15 46 49.86 ± 16.04 51
(A03) Specific-Grvy 1.01 ± 0 1.015 1.02 ± 0 1.02 1.02 ± 0.01 1.015
(A04) Albumin 3.35 ± 0.99 3.36 0.32 ± 0.77 0 2.21 ± 1.73 2.65
(A05) Urinal Sugar 1.47 ± 1.73 1 0.17 ± 0.47 0 0.98 ± 1.53 0
(A06) MCV 82.12 ± 10.63 83 80.91 ± 9.34 81 81.67 ± 10.18 82.5
(A07) Platelet-Count 2.25 ± 0.9 2.1 2.45 ± 0.88 2.4 2.33 ± 0.9 2.2
(A08) RedBloodCells 3.27 ± 1 3.21 5.1 ± 0.82 5.2 3.96 ± 1.29 3.885
(A12) Blood-Glucose 181.63 ± 88.36 154.5 115.63 ± 33.03 111.5 156.95 ± 79.46 129
(A13) Blood-Urea 73.2 ± 55.63 57 35.68 ± 16.83 34 59.17 ± 48.7 45
(A14) Serum Creatinine 7.4 ± 3.49 7.81 2.86 ± 1.24 2.91 5.7 ± 3.61 4.82
(A15) Sodium 138.46 ± 12.12 139.2 141.25 ± 5.21 141 139.51 ± 10.19 139.6
(A16) Potassium 6.02 ± 7.98 5.14 4.44 ± 0.68 4.6 5.43 ± 6.37 4.8
(A17) Chloride 106.52 ± 8.73 105.8 103.51 ± 4.86 102.45 105.4 ± 7.66 104.3
(A18) Haemoglobin 9.18 ± 2.84 8.5 14.71 ± 1.86 14.9 11.25 ± 3.68 10.85
(A19) Packed Cell 26.25 ± 7.3 24.75 44.5 ± 5.73 45 33.07 ± 11.12 31.2
(A20) WBCells 7608.36 ± 4159.03 6800 7008.13 ± 2683.69 7200 7383.93 ± 3687.5 7000
(A21) Neutrophils 60.43 ± 13.38 62 60.07 ± 13.54 61.9 60.29 ± 13.43 61.9
(A22) Lymphocytes 29.47 ± 11.35 28 30.41 ± 11.15 29.1 29.82 ± 11.28 28.4
(A23) Eosinophils 4.1 ± 4.02 2.8 3.69 ± 3.74 2.6 3.94 ± 3.92 2.7
(A24) Monocytes 5.29 ± 3.38 4.75 5.28 ± 3.22 4.7 5.29 ± 3.32 4.7
(A25) Basophils 0.16 ± 0.26 0.1 0.15 ± 0.25 0.1 0.16 ± 0.26 0.1
(A26) Uric Acid 6.82 ± 2.03 6.815 6.51 ± 2.16 6.46 6.71 ± 2.08 6.78
(A27) Bilirubin 0.76 ± 1.22 0.53 0.74 ± 1.17 0.5 0.75 ± 1.2 0.52

TABLE VI
CKD DATASET DISCRETE FEATURES STATISTICAL ANALYSIS.

Attribute CKD NCKD
(A01) Sex Male-515(71.53%) Male-323(75.12%)

Female-205(28.47%) Female-107(23.49%)
(A02) Blood pressure Normal-127(17.64%) Normal-139(32.33%)

High-295(40.97%) High-23(5.35%)
Low-298(41.39%) Low-269(62.56%)

(A09) Pus cell Normal-378(52.50%) Normal-377(87.67%)
Abnormal-342(47.50%) Abnormal-53(12.33%)

(A10) Pus cell clumps Present-478(66.39%) Present-26(6.05%)
Not Present-242(33.61%) Not Present-404(93.95%)

(A11) Bacteria Present-245(34.03%) Present-23(5.35%)
Not Present-475(65.97%) Not Present-407(94.65%)

(A28) Hypertension Present-421(58.47%) Present-37(8.6%)
Not Present-299(41.53%) Not Present-393(91.4%)

(A29) Diabetic Present-441(61.25%) Present-13(3.02%)
Not Present-278(38.61%) Not Present-417(96.98%)

5) Confusion Matrix and Performance Metrics: The
confusion matrix (Table IV) assesses a model’s accuracy
in predicting CKD and NCKD, encompassing True Positives
(TP), False Negatives (FN), False Positives (FP), and True
Negatives (TN). The matrix also includes totals for predicted
and actual cases of both diseases.
Performance matrices
ML metrics include accuracy (ACC), precision (PRE), recall
(REC), and F1-score. Accuracy shows how many predictions
were correct. Precision indicates the percentage of true
positives among all positive predictions. The recall is a
measure of how many TPs were recognized. The F1 score
combines ACC and REC to provide a fair evaluation.

Equations (1) to (10) shows the whole metrics for classes
CKD(1) and NCKD(0).

Accuracy =
TP (CKD) + TP (NCKD)

Total(CKD) + Total(NCKD)
(12)

Precision(CKD) =
TP (CKD)

TP (CKD) + FP (CKD)
(13)

Precision(NCKD) =
TP (NCKD)

TN(NCKD) + FP (NCKD)
(14)

OverallPrecision =
Precision(CKD) + Precision(NCKD)

2
(15)

Recall(CKD) =
TN(CKD)

TN(CKD) + FN(CKD)
(16)

Recall(NCKD) =
TP (NCKD)

TP (NCKD) + FalseNegative(NCKD)
(17)

OverallRecall =
Recall(CKD) +Recall(NCKD)

2
(18)

F1Score(CKD) = 2×Precision(CKD)×Recall(CKD)

Precision(CKD +Recall(CKD)
(19)
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F1Score(NCKD) = 2×Precision(NCKD)×Recall(NCKD)

Precision(NCKD) +Recall(NCKD)
(20)

OverallF1Score =
F1Score(CKD) + F1Score(NCKD)

2
(21)

IV. RESULT ANALYSIS

The Result Analysis section evaluates proposed MLP
models using CA and AUC metrics, highlighting the
effectiveness of PSO, GA, and the Firefly Algorithm
for feature selection. The MLP+PSO model demonstrates
superiority in CKD detection.

A. Statistical Analysis

The CKD dataset (Table V) describes significant
differences between CKD and non-CKD groups across
various biomarkers. CKD patients have a higher average
age, suggesting increased susceptibility to kidney-related
disorders. Specific gravity decreases in CKD patients,
indicating reduced kidney function regulating urine
concentration. Albumin levels are significantly higher in
CKD patients, indicating impaired kidney function in
preventing protein leakage into urine. Urine sugar levels
are also elevated in CKD patients, indicating a higher
prevalence of glucose-related metabolic disruptions. Mean
corpuscular volume and platelet counts are slightly elevated
in CKD patients, suggesting anemia-related complications.
Blood glucose levels are higher in CKD patients, suggesting
a link between diabetes and kidney dysfunction. Elevated
blood urea and serum creatinine confirm impaired kidney
filtration. Electrolyte imbalances in CKD patients are also
observed. Hemoglobin levels are reduced in CKD patients,
supporting anemia as a hallmark complication. Uric acid
levels are slightly elevated in CKD patients, indicating
reduced clearance efficiency by compromised kidneys.
The CKD dataset (Table VI) shows apparent differences
between people with CKD and non-CKD. In the CKD
group, most patients are male, making up 71.53% of the
total. In contrast, the non-CKD group has an even higher
percentage of males, 75.12%, and 23.49% of females. Blood
pressure patterns show that hypertension is prevalent in
CKD patients, with 17.64% having normal blood pressure
and 40.97% having high blood pressure. Pus cell analysis
reveals that CKD patients’ urinary tract or renal infections
are more common. Pus cell clumps indicate severe kidney
infection or damage, while bacterial presence is strongly
associated with CKD pathology. Hypertension is both a
cause and an effect of CKD, with 58.47% having a history
of hypertension and 41.53% not having it. Diabetes is one
of the leading causes of CKD, with 61.25% having it and
38.61% not having it.

B. Feature Selection using PSO Algorithm

The Particle Swarm Optimization (PSO) algorithm has
enhanced ML models for detecting chronic kidney disease
(CKD). The algorithm (Fig. 4) selects 17 key features, such
as age, sex, albumin, and more, which correlate with CKD

risk factors. This results in a 43.33% reduction in feature
space while retaining the most influential attributes. The
PSO-based feature selection improves model performance,
interpretability, and scalability, enabling faster training with
fewer resources, improved prediction accuracy, and more
interpretable results. The PSO algorithm reduced feature
space by 43.33% while retaining key features for CKD
detection, selecting 17 from the CKD dataset, including
age, sex, albumin, MCV, pus-cell, bacteria, blood-glucose,
blood-urea, sodium, potassium, packed cell volume, white
blood cell count, neutrophils, lymphocytes, monocytes,
basophils, and hypertension.
PSO selected CKD Features Correlation Analysis: The
correlation heatmap (Fig. 5) of the AP-CKD dataset shows
important relationships among features enhanced using PSO.
There are strong positive correlations, such as T01-F28
with a correlation of 0.49, T01-F12 with a correlation
of 0.40, and T01-F13 with a correlation of 0.37. These
findings indicate that features like urea, creatinine, and other
markers are closely linked to CKD. Conversely, negative
correlations, such as T01-F19 (-0.79) and T01-F09 (-0.36),
correspond to clinical signs of anaemia in CKD. These
findings are reinforced by statistical differences in the CKD
and non-CKD groups for haemoglobin, creatinine, and urea.
PSO feature selection focuses on important features such as
F28, F12, F13, F11, F00, F09, and F19 for CKD. Features
like F01, F06, and F22, which are redundant or weakly
correlated, are less important unless they show non-linear
patterns.
Statistical Feature Alignment: Linking correlation patterns
to medical statistics (Table V): Creatinine (A14): Very high
in CKD (7.4 vs. 2.86). Mapped to F13/F12. Positively
correlated with T01 (CKD) and F28. Blood Urea (A13):
Same pattern (73.2 vs. 35.68). Strongly supports positive
correlation with CKD labels. Haemoglobin (A18): Very
low in CKD (9.18 vs. 14.71). Mapped to F19, which
has strong negative correlation with CKD. RBC (A08):
3.27 in CKD vs. 5.10 in Non-CKD → confirms negative
correlation (T01–F09). Potassium (A16): High variability
in CKD (6.02±7.98) → appears in moderate relationships
(e.g., F16). Age (A00): Older patients more likely to
have CKD (51.74 vs. 46.72) → justifies F00–F28 positive
correlation. The analysis shows that T01 (the presence of
CKD) is closely linked to features F28, F12, F13, and F11,
indicating that these features are important for predicting
CKD. Additionally, features F19 and F09 may be connected
to important health factors like haemoglobin and red blood
cell count, emphasizing their combined relevance in CKD
diagnosis.

C. Feature Selection using GA Algorithm

The Genetic Algorithm was used to study the CKD
dataset. It helped reduce the number of features while
keeping important ones for predicting the disease. The
study identified 16 key features that improved accuracy and
efficiency. It highlighted how advanced feature selection
methods, like Best First Search, can enhance the performance
of MLP and ML models. The Genetic Algorithm (GA) (Fig.
6) has been used to identify 16 key features for detecting
CKD, reducing the original feature space by 46.67%. These
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Fig. 4. PSO Algorithm Selected Features from CKD Dataset Fitness Curve with fitness value 1

features include age, gender, kidney function, albumin,
anemia, red blood cells, pus-cells, blood glucose, high blood
urea, sodium imbalance, packed cell volume, white blood cell
count, neutrophils, monocytes, basophils, and hypertension.
GA selected CKD Features Correlation Analysis
(Fig. 7): The GA-based feature correlation heatmap
helps us understanding the relationship between clinical
features and CKD status in the AP-CKD dataset. Strong
positive correlations with features F28, F12, and F13,
indicate important biomarkers, such as urea and creatinine,
that increase as CKD progresses. Conversely, negative
correlations, particularly with F19 (haemoglobin) and
F08/F09 (red blood cells), reflect the anaemia associated
with CKD patients. F28 stands out as a central feature,
closely connected to both the target and other markers.
The heatmap shows Pearson correlation coefficients between
GA-selected features and target class in the AP-CKD
dataset. Positive correlation indicates a direct relationship,
negative correlation indicates an inverse link, and near-zero
correlation indicates weak or no linear relationship. The
study shows that important features such as F28, F12,
F13, F11, F00, F09, and F19 should be prioritized with
higher fitness values in GA optimization and kept in MLP
modelling. On the other hand, features like F01, F06, and F22
should be excluded unless justified by non-linear patterns.
Statistical Feature Alignment: As per Table V and VI,
connecting key medical statistics to feature correlations:
Creatinine (A14): Extremely elevated in CKD (7.4 vs.
2.86) → aligns with F13 and T01/F28 positive correlations.
Blood Urea (A13): Sharp rise in CKD (73.2 vs. 35.68) →
possibly F12, positively tied with CKD. Haemoglobin (A18):
Significant drop in CKD (9.18 vs. 14.71) → strongly negative
with F19. RBC (A08): Lower in CKD (3.27 vs. 5.10)

→ correlates negatively with T01 and F08/F09. Potassium
(A16): High variance (6.02±7.98) → weakly correlates,
appears moderately linked to F16. Age (A00): Higher in
CKD group (51.74 vs. 46.72) → weakly but positively related
to F00–F28.

D. Comparison with GA Feature Selection to PSO Feature
selection

The comparison (Table VII) examines GA and PSO
for feature selection on the CKD dataset, focusing on
their computational complexity, accuracy, and interpretability
differences. GA selected 16 out of 30 features, reducing the
feature space by 46.67%, while PSO selected 17 with a
43.33% reduction. GA is slightly better for dimensionality
reduction, and both methods retain essential attributes. GA
focuses on key biomarkers like Age and Albumin, while
PSO emphasizes Age and Sodium. PSO is faster and more
accurate for large datasets, while GA is better for feature
reduction.

TABLE VII
COMPARISON OF GA AND PSO FEATURE SELECTION

Aspect GA PSO
Number of Features16 out of 30 attributes 17 out of 30 attributes
Reduction % 46.67% 43.33%
Top Features Age, Albumin, HypertensionAge, Sodium, Lymphocytes
Convergence Speed Moderate Faster
Accuracy High Slightly Higher

E. ML Models Analysis for the GA CKD Dataset Features

The confusion matrices (Table VIII) for four ML models
(Logistic Regression, Naive Bayes, KNN, and SVM-RBF)
provide insights into their performance in predicting CKD
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Fig. 5. PSO Features Heat-Map (Corelation Matrix)

(Class-1) and Non-CKD (Class-0) cases. The analysis shows
that Logistic Regression correctly predicted 114 non-CKD
cases out of 122 actual non-CKD cases, with eight non-CKD
cases wrongly classified as CKD. The model correctly
predicted 214 out of 223 cases for CKD cases, resulting
in a True Positive Rate (TPR) (Recall) of 95.96%. Naive
Bayes correctly predicted 112 non-CKD cases out of 122
actual cases, with 10 non-CKD cases wrongly classified as
CKD. It correctly predicted 219 out of 223 CKD cases for
CKD, yielding a TPR (Recall) of 98.21%. Only 4 CKD cases
were missed, leading to an FNR of 1.79%. key Insights:
Accuracy: 95.94%, slightly better than LR. Fig. 8 shows the
performance analysis of ML models trained on GA-selected
CKD dataset features, highlighting the effectiveness of
feature selection in improving model outcomes. K-Nearest
Neighbours (KNN) correctly predicted 108 non-CKD cases
out of 122, with an FPR of 11.48%. However, 14 non-CKD
cases were misclassified as CKD. For CKD, 182 out of 223
cases were correctly predicted, resulting in a TPR (Recall) of
81.61%. A significant 41 CKD cases were misclassified as
non-CKD, leading to a FNR of 18.39%. SVM-RBF correctly
predicted only 4 non-CKD cases out of 122, resulting in an
FPR of 96.72%. 118 non-CKD cases were misclassified as
CKD. The model correctly predicted 219 out of 223 cases

for CKD, yielding a TPR (Recall) of 98.21%.

TABLE VIII
CONFUSION MATRIX ANALYSIS FOR GA CKD DATASET FEATURES

Model TNs(non-CKD) FPs(non-CKD) TNs(CKD) FNs(CKD)
LR 114 8 214 9
Naive Bayes 112 10 219 4
KNN 108 14 182 41
SVM (RBF) 4 118 219 4

F. ML Models Analysis for the PSO CKD Dataset Features

The confusion matrices (Table IX) for four ML models
(Logistic Regression, Naive Bayes, KNN, and SVM-RBF)
provide insights into their performance in predicting CKD
(Class-1) and Non-CKD (Class-0) cases. The analysis shows
that Logistic Regression correctly predicted 115 non-CKD
cases out of 122 actual non-CKD cases, with eight non-CKD
cases wrongly classified as CKD. The model correctly
predicted 214 out of 223 cases for CKD cases, resulting
in a True Positive Rate (TPR) (Recall) of 95.96%. Naive
Bayes correctly predicted 112 non-CKD cases out of 122
actual cases, with 10 non-CKD cases wrongly classified as
CKD. It correctly predicted 219 out of 223 CKD cases
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Fig. 6. GA Algorithm Selected Features from CKD Dataset

for CKD, yielding a TPR (Recall) of 98.21%. Only 4
CKD cases were missed, leading to an FNR of 1.79%—key
Insights: Accuracy: 95.94%, slightly better than LR.

TABLE IX
CONFUSION MATRIX ANALYSIS FOR PSO CKD DATASET FEATURES

Model TNs(non-CKD) FPs(non-CKD) TNs(CKD) FNs(CKD)
LR 115 7 214 9
Naive Bayes 112 10 219 4
KNN 108 14 182 41
SVM (RBF) 4 118 219 4

TABLE X
PERFORMANCE PARAMETERS ANALYSIS FOR PSO CKD DATASET

FEATURES

ML Model AUC CA F1 Score Precision Recall
LR Model 0.9867 0.9507 0.9045 0.9641 0.9596
Naive Bayes 0.9927 0.9594 0.9691 0.9563 0.9821
KNN 0.9121 0.8406 0.8687 0.9286 0.8161
SVM (RBF) 0.6804 0.6464 0.7822 0.6499 0.9821

Table X presents the performance parameters of ML models

TABLE XI
CONFUSION MATRIX ANALYSIS FOR GA CKD DATASET FEATURES

Model TNs(non-CKD) FPs(non-CKD) TNs(CKD) FNs(CKD)
MLP model 118 4 215 8
MLP+PSO 121 1 218 5
MLP+FF 120 2 218 5

using PSO-selected CKD dataset features, comparing metrics
such as AUC, CA, F1-score, precision, and recall. The
study evaluated four ML models on the CKD dataset using
five key performance metrics: AUC, Accuracy, F1 Score,

Precision, and Recall. Naive Bayes and Logistic Regression
demonstrated excellent performance distinguishing CKD
from non-CKD cases, while KNN and SVM struggled with
complex decision boundaries. Classification Accuracy (CA)
showed Naive Bayes and Logistic Regression had excellent
overall accuracy, while SVM had significant limitations in
prediction reliability. The F1 Score balanced Precision and
Recall, with Naive Bayes and Logistic Regression delivering
the most balanced performance. Precision-measured the
accuracy of optimistic predictions, with Logistic Regression
achieving the highest Precision of 96.41%. Naive Bayes
and KNN had relatively good Precision, while SVM (RBF)
performed poorly, with a Precision of 64.99%. Recall showed
Naive Bayes and SVM had excellent performance, with
Logistic Regression showing a strong recall of 95.96%. Fig.
9 shows ROC-AUC analysis of ML models on GA-selected
CKD dataset features, revealing Naive Bayes and Logistic
Regression’s superior performance in classification tasks.

G. Confusion matrix Analysis for PSO CKD Dataset
Features Versus to GA CKD Dataset Features

The confusion matrix (Table IX) analysis shows the
performance of various models in classifying CKD and
non-CKD cases. The Logistic Regression (LR) model
achieved a high True Positives count and a low
False Positives count, indicating reliable performance in
identifying non-CKD cases. The Naive Bayes model showed
high sensitivity towards CKD detection, while the KNN
model displayed weaknesses with a high False Negative
count and frequent misclassification of CKD cases. The
SVM model performed poorly, with a TN count of 4 and
a substantial FP count of 118. The PSO-selected features
slightly enhanced the LR model’s performance, reducing
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Fig. 7. GA Features Heat-Map (Corelation Matrix)

False Positives from 8 to 7 while maintaining consistent
True Positives and False Negatives. The Naive Bayes model
maintained its robustness, while the KNN model struggled
with a high False Negative count and inability to classify
CKD and non-CKD patients effectively. Fig. 10 presents the

TABLE XII
PERFORMANCE PARAMETERS ANALYSIS FOR GA CKD DATASET

FEATURES

Model AUC CA F1 Precision Recall
MLP model 0.9929 0.9653 0.9654 0.9657 0.9653
MLP+PSO 0.9963 0.9826 0.9862 0.9847 0.9821
MLP+FF 0.9988 0.9798 0.9798 0.9798 0.9798

performance analysis of ML models for the PSO-selected
CKD dataset features. The study evaluated ML models’
performance across GA and PSO-selected features. Naive
Bayes emerged as the top performer, with an AUC of
0.9927 and a Recall of 0.9821, indicating excellent ability
to distinguish between CKD and non-CKD patients. The
Logistic Regression model followed closely, with an AUC
of 0.9847 and a Precision score of 0.9683. K-Nearest
Neighbors (KNN) displayed moderate performance, while
SVM (RBF) underperformed significantly. Naive Bayes
remained the strongest contender for PSO-selected features,

with an AUC of 0.9927 and a Recall of 0.9821. The
Logistic Regression model also performed exceptionally
well, achieving an AUC of 0.9867. KNN showed moderate
results, while SVM failed to deliver satisfactory results.
PSO showed marginal improvements in Logistic Regression,
specifically in reducing false positives. The research
examines how different MLP models work to find chronic
kidney disease (CKD). It compares the basic Multilayer
Perceptron (MLP) model with improved versions that use
techniques called Particle Swarm Optimization (PSO) and
the Firefly Algorithm. The study emphasizes AUC, accuracy,
F1 score, precision, and recall measures.

H. Performance Parameters Analysis for CKD Dataset GA
Selected Features for Optimized MLPs

Fig. 11 shows the performance evaluation of improved
MLP models for the GA CKD dataset characteristics,
contrasting the regular MLP model, the MLP augmented
with PSO, and the MLP integrated with FF. The research
examines how different MLP models work to find chronic
kidney disease (CKD) using selected . It compares the basic
Multilayer Perceptron (MLP) model with improved versions
that use techniques called Particle Swarm Optimization
(PSO) and the Firefly Algorithm. The study emphasizes
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Fig. 8. ML Models Performance Analysis for the GA CKD Dataset Features

AUC, accuracy, F1 score, precision, and recall measures.
The MLP model for the GA CKD dataset performed very
well. It had an AUC of 0.9867. The accuracy was 96.53%.
The precision, F1 score, and recall were all 96.5%. The
confusion matrix (Table XI) and performance analysis (Table
XII) showed 118 true negatives and 215 true positives.
Only four false positives and eight false negatives indicated
balanced detection of both CKD and non-CKD cases. The
MLP model with PSO optimization improved performance
in the GA CKD dataset, achieving the highest AUC of
0.9927, indicating excellent discrimination between CKD
and non-CKD cases. Accuracy increased to 98.26%, and
both F1 score, and precision were close to 98.6%, indicating
superior model reliability. The model correctly identified 121
true negatives and 218 true positives, with only one false
positive and five false negatives, showcasing the effectiveness
of PSO optimization in minimizing errors and enhancing
predictive capabilities. The Firefly Algorithm optimized
MLP (MLP+FF) demonstrated robust performance with an
accuracy of 97.98% and consistent precision, recall, and
F1 scores at 97.98%. Fig. 12 shows ROC-AUC analysis
of Optimized MLP models, including PSO and FF-based
optimization, on GA CKD dataset features, demonstrating
their high classification performance.

I. Performance Parameters Analysis for CKD Dataset PSO
Selected Features for Optimized MLPs

The Study (Fig. 13) compares the performance of
Multi-Layer Perceptron (MLP) models using PSO selected

TABLE XIII
CONFUSION MATRIX ANALYSIS FOR PSO CKD DATASET FEATURES

Model TNs(non-CKD) FPs(non-CKD) TNs(CKD) FNs(CKD)
MLP model 119 3 218 5
MLP+PSO 121 1 220 3
MLP+FF 119 3 219 4

TABLE XIV
OPTIMIZED MLP USING PSO AND FF MODELS PERFORMANCE

ANALYSIS FOR THE PSO CKD DATASET FEATURES

Model AUC CA F1 Precision Recall
MLP model 0.9985 0.9779 0.9776 0.9774 0.9778
MLP+PSO 0.9989 0.9901 0.9902 0.9903 0.9901
MLP+FF 0.9981 0.9804 0.9804 0.9801 0.9807

features AP-CKD Dataset. In categorizing chronic kidney
disease (CKD) and non-CKD patients using optimization
approaches, comparing the baseline model to two improved
versions: MLP+PSO and MLP+FF. The MLP+PSO model
outperforms the baseline MLP and MLP+FF in identifying
non-CKD and CKD cases, with only one misclassification
(Table XIII). It also performs best in identifying 220
instances with only three missed cases, while MLP+FF
shows slightly less accuracy, missing four CKD cases. The
reduced false positive and false negative counts demonstrate
its superior classification reliability. The MLP+PSO model
outperforms the baseline MLP and MLP+FF in terms of
accuracy, precision, and recall. It achieves the highest AUC
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Fig. 9. ML Models ROC-AUC Analysis for the GA CKD Dataset Features

(0.9989), with a near-perfect AUC value indicating excellent
model discrimination ability. MLP+PSO outperforms the
baseline MLP with 99.01% accuracy, while MLP+FF
improves with 98.04% accuracy. It also demonstrates
the best balance between precision and recall, with an
F1 score of 0.9902, leading in both precision (0.9903)
and recall (0.9901), indicating fewer false positives and
false negatives. The study compares the performance of
Multi-Layer Perceptron (MLP) models using PSO selected
features AP-CKD Dataset. In categorizing chronic kidney
disease (CKD) and non-CKD patients using optimization
approaches, comparing the baseline model to two improved
versions: MLP+PSO and MLP+FF. The MLP+PSO model
outperforms the baseline MLP and MLP+FF in identifying
non-CKD and CKD cases, with only one misclassification.
It also performs best in identifying 220 instances with
only three missed cases, while MLP+FF shows slightly
less accuracy, missing four CKD cases. The reduced false
positive and false negative counts demonstrate its superior
classification reliability. The MLP+PSO model outperforms
the baseline MLP and MLP+FF in terms of accuracy,
precision, and recall. It achieves the highest AUC (0.9989),

with a near-perfect AUC value indicating excellent model
discrimination ability. MLP+PSO outperforms the baseline
MLP with 99.01% accuracy, while MLP+FF improves with
98.04% accuracy. It also demonstrates the best balance
between precision and recall, with an F1 score of 0.9902,
leading in both precision (0.9903) and recall (0.9901),
indicating fewer false positives and false negatives. Table
XIV evaluates the effectiveness of feature selection via PSO
Algorithms and optimization techniques like PSO and FF
in enhancing MLP-based CKD classification. The baseline
MLP model shows strong classification performance, but
higher false positive and false negative rates indicate
room for improvement. MLP+PSO delivers the best overall
performance, achieving near-perfect metrics across all
evaluation parameters. MLP+FF significantly enhances the
baseline model’s performance, improving accuracy (98.04%)
and achieving an AUC of 0.9981. However, its slightly
higher FN count indicates marginally less reliability in
identifying CKD cases. Fig. 14 shows the ROC-AUC
analysis of Optimized MLP models on the PSO CKD dataset,
highlighting their classification efficiency and effective class
distinction.
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Fig. 10. ML Models Performance Analysis for the PSO CKD Dataset Features

Fig. 11. Optimized MLP Models Performance Analysis for the GA CKD Dataset Features
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Fig. 12. Optimized MLP by PSO and FF Models ROC-AUC analysis for the GA CKD Dataset Features

Fig. 13. Optimized MLP Models Performance Analysis for the PSO CKD Dataset Features
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Fig. 14. Optimized MLP using PSO and FF Models ROC-AUC Analysis for the PSO CKD Dataset Features

Fig. 15. Comparative Analysis on Classification Accuracy
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TABLE XV
SUMMARY OF RELATED WORKS ON CKD PREDICTION MODELS

Ref.
No.

Author(s)
(Year)

Description and Models Result Analysis

[26] Rashed-Al-Mahfuz
(2021)

Developed ML models for CKD diagnosis
using optimized datasets and classifiers
(RF, GB, XGB, LR, SVM) with k-fold
cross-validation.

RF achieved 97.75% accuracy on ’DB-II’
dataset, sensitivity 96.12%, specificity
98.82%, F1-score 96.88%.

[35] Saif et al.
(2024)

Developed a framework for early CKD
prediction using DL and ensemble methods
(CNN, LSTM, LSTM-BLSTM) with
Adam/Adamax optimizers.

Ensemble model reached 98% accuracy
(six months) and 97% (twelve months),
improving early diagnosis.

[36] Ramu et al.
(2025)

Proposed a hybrid CNN-SVM model for
early CKD detection using 10 medical
indicators. CNN extracts features, SVM
classifies.

Hybrid model achieved 96.8% accuracy,
outperforming standalone SVM (94.8%)
and RF (94.6%).

[37] Rehman et al.
(2023)

Introduced a hybrid CKD prediction model
using LR, odds ratio analysis, and MRI
features with 5-fold cross-validation.

LR outperformed LDA, MLP, identifying
key features (serum creatinine, albumin,
diabetes), achieving 98.5% train and 97.5%
test accuracy.

[38] Ashafuddula et
al. (2023)

Developed a fully automated ML method
for early-stage CKD prediction using
ensemble classifiers (AdaBoost, LR, Passive
Aggressive).

Achieved 96.48% accuracy on Bangladeshi
CKD data, reducing prediction time using
FS and FSR techniques.

Present
Study

Our Study
(2025)

CKD Detection in North-Coastal Andhra
Pradesh, India. Uses clinical data, optimized
multi-level perceptron models with PSO and
GA for feature selection.

MLP+PSO outperforms standalone MLP
and MLP+FF models with AUC 0.9989
and CA 99.01%.

V. DISCUSSIONS

In this section assesses the effectiveness of optimized
MLP models for CKD detection, comparing them with
existing methods and highlighting the MLP+PSO model’s
superior accuracy and reliability. Comparing MLP models
with existing methods. Highlighting MLP+PSO model’s
superior accuracy and reliability.

A. Comparative Analysis of Classification Accuracy for MLP
Models Using GA and PSO Selected Features

The analysis compares the Fig. 15. Classification Accuracy
(CA) of different MLP-based ML models on a CKD
dataset using Genetic Algorithm (GA) and Particle Swarm
Optimization (PSO) feature selection methods. The MLP
model with GA features achieves a CA of 96.53%, but its
accuracy lags those enhanced by optimization techniques.
The MLP+PSO model achieves the highest accuracy
(98.26%) among those using GA features, demonstrating
the effectiveness of PSO in fine-tuning MLP weights.
The MLP+FF model outperforms the baseline model with
a CA of 97.98%, highlighting the utility of the Firefly
Algorithm. The MLP model with PSO features achieves a
CA of 97.79%, suggesting that PSO-selected features are
more informative for the MLP’s classification tasks. The
MLP+PSO model achieves the highest accuracy overall with
a CA of 99.01%, showcasing its effectiveness in both phases.
The MLP+FF model shows an improvement over the baseline
and is competitive with MLP+PSO, but its performance is
slightly inferior to MLP+PSO, indicating that PSO as an
optimization strategy has a slight edge over FF. The study
shows that PSO-selected features are better than GA-selected

features. Models using PSO perform better in all strategies.
The MLP+PSO model is stronger than MLP+FF models.
The baseline MLP model has 97.79% accuracy with PSO
features, while GA features yield 96.53%. The best model
for CKD classification is MLP+PSO, achieving 99.01%
accuracy. PSO is the best optimization strategy, followed
by the Firefly Algorithm. Effective feature selection and
optimization improve ML models for medical datasets.

B. Comparative Analysis Existing work and Proposal model

The research highlights advancements in CKD detection
methods, including ML, hybrid approaches, and ensemble
classifiers, with high accuracy rates, using techniques
like CNN-SVM, logistic regression, and feature selection.
The study compares CKD detection methods using DL,
hybrid approaches, and ensemble classifiers, achieving high
accuracies. The MLP+PSO model outperforms others with a
CA of 99.01% and AUC of 0.9989, demonstrating superior
performance in CKD detection tailored to specific datasets
(Table XV).

VI. CONCLUSION

The study presents a robust and efficient method for
early detection of CKD using optimized MLP models and
advanced feature selection techniques, focusing on clinical
data from north-coastal districts of Andhra Pradesh, India.
Particle Swarm Optimization (PSO) and Genetic Algorithm
were found to significantly reduce feature space in CKD
diagnosis models, retaining key biomarkers. PSO-selected
features were more informative, leading to superior model
performance. The MLP+PSO model achieved the highest
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Classification Accuracy (CA) of 99.01%, outperforming
other optimization strategies like Firefly Algorithm and GA.
The study shows that PSO is effective for feature selection
and weight fine-tuning in medical diagnostic models. This
improves the accuracy and reliability of CKD detection.
It also supports precision medicine by offering a scalable
framework for other medical datasets. Future work can build
on this study. It can explore hybrid optimization techniques.
Researchers should validate the model on larger and more
diverse datasets. This will help improve diagnostic accuracy
and generalizability.
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