
Abstract—This study proposes an optimized Least Squares
Support Vector Machine (LSSVM) model to enhance the
accuracy of short-term traffic flow prediction. We first analyze
the LSSVM algorithm’s implementation and introduce an
improved leave-one-out cross-validation (LOOCV) method for
parameter selection, significantly enhancing the model’s
performance. Next, we tailor the LSSVM framework
specifically for traffic flow prediction tasks. To validate the
model’s efficacy, we conduct comparative experiments against
two state-of-the-art algorithms, DeepSORT and YOLOv5,
using real-world traffic datasets. Experimental results
demonstrate that our optimized LSSVM model achieves a
prediction accuracy of 97.29% and a lower mean absolute
percentage error (MAPE) than both benchmark methods.
These findings underscore the model’s robustness in capturing
the continuous and complex dynamics of traffic flow, offering a
reliable solution for advancing intelligent transportation
systems.

Index Terms—Least squares support vector machine, Cross
validation, Comparative experiment, Traffic flow prediction

I. INTRODUCTION
HORT-term road traffic flow analysis stands as a
cornerstone of intelligent transportation systems (ITS),

playing a pivotal role in traffic information services and
traffic control management. As such, the accurate analysis
and prediction of short-term traffic flow for road condition
assessment have emerged as a critical challenge in modern
ITS, demanding effective solutions.
In recent years, numerous advanced methodologies have

been developed to tackle this challenge. Li Jia et al. [1]
proposed an enhanced Kalman filter approach specifically
designed for real-time traffic prediction under normal
operating conditions. Pei Yulong et al. [2] constructed a
short-term traffic flow prediction model for urban road
network nodes by combining the BP learning algorithm with
an error-corrected SPDS algorithm. Guo D. Y. et al. [3]
developed an innovative object-oriented time-delayed
recurrent neural network model, which showed high
accuracy in short-term traffic flow forecasting.
For addressing complex traffic patterns, Xie Y. H. et al. [4]

proposed a hybrid approach that integrates wavelet analysis
with fuzzy Markov theory to effectively predict random
fluctuations in short-term traffic flow time series. Meanwhile,
Li J. Y. et al. [5] explored the fractal characteristics of traffic
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flow variations by combining phase space reconstruction
techniques with chaos and fractal theory, yielding promising
results.
In practical applications, Stephen Clark et al. [6] extended

non-parametric regression methods to multivariate analysis
and successfully implemented multivariate non-parametric
regression algorithms for predicting actual traffic conditions
in London. Through comparative experiments, Tian Jing et al.
[7] demonstrated that both BP neural networks and chaotic
time series prediction methods can achieve high accuracy in
short-term traffic flow forecasting, with the latter showing
superior real-time performance.
Although the aforementioned traffic flow prediction

methods exhibit relatively low computational complexity,
they still fail to meet the rigorous requirements for accuracy
and real-time adaptability in traffic systems with complex
road conditions. These algorithms may face challenges such
as slow convergence and diminished predictive accuracy
when tackling complex nonlinear problems. Furthermore,
insufficient emphasis has been placed on the integration and
forecasting of traffic parameters across multiple time
horizons, as most existing studies focus primarily on
single-step predictions rather than continuous multi-step
forecasting. To address these limitations, this paper proposes
an approach based on Least Squares Support Vector Machine
(LSSVM) regression. Leveraging its advantages—including
low structural risk, minimal parameter tuning needs, and
strong capability in handling nonlinear regression — this
method aims to enhance traffic flow prediction performance
under complex road conditions.

II. LEAST SQUARES SUPPORT VECTORMACHINE (LSSVM)
ALGORITHM

Traditional support vector machines (SVMs) are effective
in addressing practical challenges such as small sample sizes,
non-linearity, high dimensionality, and the problem of local
minima. However, in real-world applications, the
computational complexity of SVM algorithms is directly
proportional to the number of samples. As the sample size
increases, the computational process becomes more intricate,
resulting in reduced computational efficiency. To alleviate
this limitation, the least squares support vector machine
(LSSVM) has been proposed as an enhancement to
traditional SVM algorithms. The formulation of the LSSVM
algorithm can be summarized as follows.
Given a set of l training samples ��, �� , � = 1,2, ⋯, � ,

where each input training sample is denoted by �� ∈ � and
the corresponding output training sample by �� ∈ � , the
objective optimization function f(x) of the LSSVM algorithm
can be formulated as follows.
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Among them, ∅( ∙ ) denotes the kernel space mapping
function, � represents the weight vector, �� refers to the
relaxation variable, b is the bias term, and � stands for the
normalization parameter, where � > 0.
To find the minimum of the objective function, the
Lagrangian function L(x) is formulated as follows.
�(�) = 1

2
� 2 + � �=1

� ��
2 − �=1

� �� ��∅(��) + � + �� − ���� (3)

Where αi denotes the Lagrange multiplier.
The partial derivatives of Equation (3) are computed

following the Karush-Kuhn-Tucker (KKT) optimality
conditions outlined in [7], yielding the following results.
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By eliminating w, the optimization problem of the
objective function f(x) is transformed into solving a linear
equation.

� + 1/� 1
1 0

�
� = �

0 (8)

Among them, �(��, ��) = ���( − �� − ��
2/2�2), and

the kernel function used is the radial basis function (RBF
kernel).
By solving Equation (8), parameters � and � can be

obtained. Accordingly, the Least Squares Support Vector
Machine (LSSVM) model for function estimation is
established as follows.

� = �=1
� ��� + �� (9)

From the derivation process, it is evident that the LSSVM
algorithm involves determining only two parameters, γ and σ.
Furthermore, by adopting the least squares loss function
combined with equality constraints, the LSSVM algorithm
transforms the optimization process into a system of linear
equations. This structural reformulation significantly reduces
the computational complexity of the algorithm [8–9].

III. PARAMETER SELECTION FOR LSSVM MODELING

In applying the Least Squares Support Vector Machine
(LSSVM) algorithm to traffic flow prediction, parameter
selection plays a crucial role. The suitability of kernel
function parameters and the regularization factor
significantly affects the performance of the LSSVM model.
Typically, parameter selection is performed via two main
approaches: empirical selection and automated optimization.
While empirical selection offers certain advantages in model
development, it relies heavily on subjective judgment, which
may undermine the consistency and reliability of modeling
results. In contrast, automated parameter determination
through programming enables the systematic identification of
optimal parameters, thereby improving model performance.
To ensure both accuracy and robustness, this study adopts the
cross-validation method [10] for parameter selection.
The core principle of cross-validation can be summarized

as follows: Given a dataset with independently and
identically distributed (i.i.d.) data points in the input space,
the dataset is partitioned into two distinct subsets. The first
subset serves as the training set for model development,

while the second acts as the test set to evaluate the trained
model's performance. The optimal parameter set is then
selected based on the configuration that yields the highest
performance metric on the test set.
Cross-validation methods can be broadly categorized into

two main types: k-fold cross-validation [11]
and leave-one-out cross-validation (LOO-CV) [11].
While k-fold cross-validation is computationally efficient
and thus preferred for large datasets, LOO-CV offers a more
exhaustive evaluation and is typically applied to smaller
datasets. In this study, we adopted LOO-CV to determine the
optimal model parameters.
The Leave-One-Out Cross-Validation (LOO-CV) method

sets the number of iterations (k) equal to the total sample size
(n). The resulting error estimate is computed as follows.

��� − ������� = 1
� �=1

� � �� − ��� (10)

Here, � �� denotes the predicted value, �� represents the
corresponding observed value, where the data pair ��, �� is
held out as the test set while the remaining data points are
used for model training.
The conventional LOO-CV method exhibits two key

limitations: (1) it can only evaluate model errors for
individual parameter pairs, yielding incomparable error
metrics, and (2) its iterative parameter assignment process
significantly increases computational complexity and
resource demands. To address these issues, we propose
augmenting the traditional LOO-CV framework with an
integrated parameter optimization module. This enhancement
facilitates systematic parameter tuning while improving
computational efficiency, ultimately leading to superior
model performance. Figure 1 illustrates the proposed
parameter optimization methodology.

Figure 1 illustrates the parameter optimization workflow,
which consists of four key steps: First, the parameter search
space is defined and candidate values are selected. Second,
the input samples are randomly divided into n mutually
exclusive subsets, with one subset reserved for testing and the
remaining n-1 subsets used for training. Third, the LSSVM

Fig. 1. Flowchart of optimal parameter selection
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model is trained and validated, with the prediction accuracy
quantified by the root mean square error (RMSE). Finally,
after iterating through all test subsets, the optimal parameter
combination is identified based on minimal RMSE criteria.

IV. LSSVM ALGORITHM PREDICTION

The Least Squares Support Vector Machine (LSSVM)
algorithm is employed for traffic flow prediction, with its
complete implementation procedure depicted in Figure 2.

Figure 2 presents the LSSVM-based traffic flow prediction
framework, which comprises four key phases: (1)
normalization of historical traffic flow data, (2) computation
of inter-sample similarity and selection of high-similarity
training samples, (3) construction of the prediction model
with parameters optimized via leave-one-out cross-validation,
and (4) application of the trained model for traffic flow
forecasting.
To assess the predictive performance of the LSSVMmodel,

this study employs traffic flow data collected from the
Shanghai North-South Elevated Road. The dataset comprises
15-minute interval records spanning from November 27 to
December 15, 2023. For model development and evaluation,
the dataset is divided into two distinct temporal subsets: (1) a
training set (November 27 - December 10, 2023) for model
calibration, and (2) a testing set (December 11 - 15, 2023) for
predictive accuracy validation.
For the LSSVM prediction model implementation, we

employ the radial basis function (RBF) as the kernel function,
with optimal parameters γ= 5.1125 and σ=1.4871 determined
through cross-validation. The model demonstrates robust
performance in continuous five-day traffic flow forecasting,

as evidenced by the close agreement between predicted and
measured mean values shown in Figure 3.

Figure 3 demonstrates strong agreement between the
predicted and measured five-day average traffic flows,
achieving a prediction accuracy of 97.29%. These results
validate the LSSVM model's capability to accurately
characterize real-world traffic flow dynamics.

V. COMPARATIVE EXPERIMENT

To evaluate the reliability of the proposed LSSVM
algorithm, this study compares its performance with two
state-of-the-art prediction methods: Deep SORT [12] and
YOLOv5 [13]. The comparative analysis employs the
benchmark HighD dataset [14], which contains 190,100
vehicle trajectories (totaling 64,000 km) recorded over 19.5
hours at six highway locations, including 6,500 documented
lane changes. The Mean Absolute Percentage Error (MAPE)
[15] serves as the primary evaluation metric for quantifying
prediction accuracy. Figure 4 presents the comparative
results, demonstrating the superior performance of the
LSSVM approach.

Fig. 2. Flowchart of LSSVM algorithm for traffic flow prediction

Fig. 3. Comparison of Real and Predicted Traffic Flow for
5 consecutive days

Fig. 4. Comparison of traffic flow prediction using three different algorithms
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Figure 4 demonstrates that during the five-day prediction
period, the proposed LSSVM algorithm achieves 62% and
35% reductions in MAPE values compared to the two
benchmark algorithms, respectively. These significantly
lower error rates indicate superior prediction accuracy and
enhanced suitability for continuous traffic flow forecasting
applications.
To provide additional validation of the algorithm's

effectiveness, we evaluate prediction accuracy using mean
square error (MSE) [16] as a complementary performance
metric. Figure 5 presents the comparative MSE results for all
three algorithms, further demonstrating the robustness of our
proposed approach.

As evidenced in Figure 5, the LSSVM model achieves
significantly lower MSE values than both comparative
forecasting methods. This result further validates the superior
predictive accuracy of our proposed approach for traffic flow
forecasting, demonstrating its potential to enable more
reliable traffic management decisions.

VI. CONCLUSION
This study develops a traffic flow prediction framework

using the Least Squares Support Vector Machine (LSSVM)
algorithm. Through comprehensive model implementation
and comparative performance analysis, we draw the
following key conclusions:
1) Parameter selection plays a pivotal role in

LSSVM-based traffic flow prediction. Our study
introduces an enhanced leave-one-out cross-validation
methodology to optimize model parameters. This
approach significantly improves model performance
through precise parameter calibration, demonstrating
particular effectiveness when working with limited
dataset sizes.

2) To evaluate predictive performance, the LSSVM model
trains on 14 days of traffic flow data and tests on 5
consecutive days of holdout data. The comparison
between predicted and measured average values
achieves 97.29% accuracy, demonstrating the model's
effectiveness in capturing and forecasting traffic flow

dynamics.
3) To validate the reliability of the LSSVM model, this

study conducts a comparative analysis with two
widely-used prediction algorithms: Deep SORT and
YOLOv5. The experimental results show that the
proposed LSSVM model achieves significantly lower
Mean Absolute Percentage Error (MAPE) values
compared to these benchmark methods, demonstrating
superior prediction accuracy and enhanced applicability
for continuous traffic flow forecasting tasks.
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Fig. 5. Comparison of traffic flow prediction using
three different algorithms
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