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Abstract—Implicit Discourse Relation Recognition (IDRR)
involves inferring discourse relations between sentences or
paragraphs based on contextual information in the absence of
explicit connectives, which is a challenging task in discourse
parsing. With the advancement of pre-trained language models
(PLMs), recent studies have focused on using prompt-based
learning methods for IDRR, where specially designed prompt
templates are manually crafted to enhance the performance of
IDRR tasks. However, manually designed templates have lim-
ited expressive power and demands significant manual search
effort and time investment. To address these challenges, we pro-
pose a soft prompt learning method for IDRR in this paper. It
introduces a set of trainable embedding vectors and inserts them
to the input arguments to form a learnable prompt template.
This approach eliminates the need for extensive manual search
effort and provides stronger expressive capabilities compared
to discrete templates. Experimental results on the PDTB 2.0
dataset demonstrate that our method achieves superior perfor-
mance compared to state-of-the-art models. The code for our
method is available at https://github.com/L1ngYi/SPLM-IDRR.

Index Terms—Implicit Discourse Relation Recognition; Soft
Prompting; Pre-trained Language Model; Connective Predic-
tion; Cloze-Prompt Template; Discourse Parsing

I. INTRODUCTION

Implicit Discourse Relation Recognition aims to infer
discourse relations between sentences or paragraphs that
lack explicit connectives, which is a core task in discourse
parsing. This task has extensive applications in various
downstream natural language processing (NLP) tasks, such
as question answering [1], text summarization [2], and event
relation extraction [3].

In recent years, significant progress has been achieved in
IDRR research with the advancement of pre-trained language
models such as BERT [4] and RoBERTa [5]. These models
leverage contextual representations from large-scale corpora
to substantially enhance the ability of capturing discourse
relations. However, the inherent absence of explicit connec-
tives in IDRR tasks continues to pose challenges for models
in handling the complexity of discourse relations.

To improve IDRR performance, researchers have begun
exploring prompt-based learning methods. The core idea
of prompt-based learning is to reformulate specific tasks
as cloze-style questions, thereby bridging the gap between
traditional masked language models (MLMs) and down-
stream tasks. For instance, the PCP framework employed
manually crafted templates tailored to discourse relation
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recognition tasks [6], while the PLSE method integrated
mutual information maximization into cloze-style templates
to enhance the capture of global logical-semantic informa-
tion, compensating for the limitations of pre-trained lan-
guage models in this regard [7]. Although these methods
have improved the performance of IDRR tasks, manually
designed prompts face significant limitations. First, crafting
appropriate templates often requires extensive manual search
effort and domain expertise, as well as intuitive insights.
Second, manual templates have limited expressive power,
making them less adaptable to IDRR tasks and insufficient
for capturing nuanced semantics and patterns.

To address the limitations of manually designed prompt
templates, soft prompts currently have emerged as a pop-
ular method for adapting pre-trained language models to
downstream tasks. Unlike traditional handcrafted prompts
(also called hard prompts), which use fixed natural language
phrases as cues, soft prompts directly operate in the em-
bedding space through parameterized vectors. This approach
allows for greater flexibility and efficiency in adapting to
various tasks. Studies like P-Tuning have demonstrated that
using continuous, learnable vectors as prompts and inserting
them into input texts can effectively improve model perfor-
mance, especially in low-resource scenarios [8]. Therefore,
compared to current prompt-based learning methods, soft
prompting, due to its learnable and flexible nature, shows
good promise for enhancing IDRR performance.

Inspired by the P-Tuning method, this study introduces
a soft prompt learning method for IDRR. Building upon
the pre-training language model used in PLSE[7], we in-
sert a set of learnable prompt vectors into discrete prompt
templates. To ensure flexibility in experimental adjustments
and accommodate the learning requirements of different
parameter types, we decouple the learning rates of model
parameters and template parameters, thereby improving the
efficiency and performance of the model. We evaluate our
enhanced framework on the PDTB 2.0 dataset [9] which
has been widely used for IDRR tasks. Experimental results
demonstrate the effectiveness of our proposed method when
comparing it with state-of-the-art approaches.

The remainder of this paper is structured as follows.
Section 2 briefly introduces the related work. Section 3
details the proposed method. Section 4 describes the datasets,
the design and the results of the experiments. Finally, the
conclusions are in section 5.

II. RELATED WORK
A. Implicit Discourse Relation Recognition

Dai et al. highlighted that connectives serve as critical cues
for predicting discourse relations, significantly improving
accuracy [10]. However, unlike explicit discourse relation
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recognition (EDRR), which focuses on logical relations
explicitly signaled by connectives such as “because” or
“however”, implicit discourse relation recognition deals with
scenarios where such explicit markers are absent. The lack of
direct linguistic identifiers makes IDRR a more challenging
task, requiring models to infer hidden connections between
sentences or paragraphs.

As a vital task in natural language processing, IDRR
has garnered significant attention in recent years. Tradi-
tional approaches to IDRR primarily relied on rule-based
and handcrafted feature methods [11, 12]. Although these
methods laid the groundwork for understanding discourse
relations, they often struggled to handle the complexity of
linguistic phenomena effectively. With the advent of deep
learning, a shift toward neural network-based methods for
automatic IDRR emerged. Techniques such as convolution
neural networks (CNN) [13] and long short-term memory
networks (LSTM) [14] were employed to model implicit
discourse relations. These neural approaches offered better
performance by leveraging richer feature representations.

Subsequently, methods based on pre-trained language
models like BERT [4] and RoBERTa [5] marked a significant
milestone in IDRR research. These models, trained on large-
scale corpora, can self-learn rich semantic information from
context, enhancing the accuracy of implicit discourse relation
recognition [4, 5]. The availability of annotated datasets such
as the Princeton Discourse Treebank (PDTB) [9] has further
propelled research in this domain, providing ample resources
for model training and evaluation.

Despite these advancements, several challenges remain in
IDRR research. Effectively addressing ambiguity, handling
complex contexts, and ensuring robust performance in cross-
lingual applications are ongoing hurdles. Developing meth-
ods capable of overcoming these challenges are still required
for further progress in this field.

B. Prompt-based Learning

With the rapid development of large-scale pre-trained
language models such as BERT [4], RoBERTa [5], and GPT-
3 [15], prompt-based learning methods have emerged as a
popular research direction in the NLP field. The essence of
prompt-based learning is to reformulate specific tasks into
a cloze-style format, thereby narrowing the gap between
traditional masked language models and downstream tasks.

Currently, some studies [16, 17] have proposed manually
crafted prompt methods to enhance the performance of
information-driven tasks such as the IDRR tasks. However,
these approaches face significant limitations, particularly
the need for extensive experimentation to identify effective
templates that yield satisfactory performance. In the IDRR
domain, many prompt-based learning methods have been in-
troduced. For example, the PCP framework [6] reformulated
IDRR as an explicit connective prediction task and designed
prompt templates to guide pre-trained language models in
outputting appropriate connectives. Similarly, PLSE [7] em-
ployed ClozePrompt templates to transform IDRR into an
masked language model task. These approaches leverage the
capabilities of pre-trained language model while utilizing
prompts to align the task with the model’s inherent struc-
ture, showcasing the potential of prompt-based learning in
addressing the challenges of IDRR.

C. Prompt Tuning

With the rapid development of prompt-based learning
methods, traditional manual design of task-specific templates
is no longer sufficient to meet the demands of language
model prompting. Manual prompts rely on researchers’ ex-
perience and experimentation to craft natural language tem-
plates, a process that is not only inefficient but also fails to
fully exploit the potential capabilities of pre-trained language
models. To address these limitations, soft templates—also
known as Prompt Tuning—have emerged as a promising
approach. Soft templates optimize prompt representations
through parameterization and have become an important
paradigm for adapting pre-trained language models to various
downstream tasks.

Unlike manually crafted hard templates, which use fixed
natural language phrases, soft templates are represented
as continuous embedding vectors that can be dynamically
adjusted through training to suit specific tasks. This method
reduces the complexity of manual template design while
leveraging the semantic knowledge of pre-trained language
models, embedding task requirements implicitly into the
model’s input. The advent of soft templates marks a pivotal
shift in prompt learning, outperforming traditional methods
in task adaptation performance while offering effective so-
lutions for low-resource and few-shot learning scenarios.
Recently, several techniques have been proposed for prompt
tuning by mining training corpora [18], using gradient-based
search methods [19], or employing pre-trained generative
models [20]. Among them, P-Tuning proposed by Liu et al.
[8] demonstrates the potential of soft templates in bridging
the gap between fine-tuning and task-specific performance.

In addition, recent research in prompt tuning has focused
on enhancing stability, parameter efficiency, and convergence
speed. For example, Residual Prompt Tuning augments soft
prompt embeddings with residual connections, yielding sub-
stantial performance gains over baseline [32]. Furthermore,
SuperPos-Prompt accelerates convergence by superposing
multiple pretrained token embeddings, achieving superior
results compared to residual reparameterization on standard
NLP benchmarks such as GLUE and SuperGLUE [31].

Meanwhile, in multilingual settings, recent studies have
shown that freezing pre-trained language model parameters
and tuning only soft prompts is sufficient to maintain strong
cross-lingual transfer capabilities. This suggests that soft
prompts provide a compact and effective means for knowl-
edge adaptation across languages, making them particularly
valuable in low-resource or zero-shot multilingual scenarios
[30].

III. METHODOLOGY

In this section, we state the problem of implicit discourse
relation recognition, and detail the proposed method.

A. Problem Statement

Discourse relation recognition (DRR) aims to identify the
existence of logical relationships between adjacent discourse
units within the same text. The discourse units can be clauses,
sentences, and paragraphs. As shown in Figure 1, there
is usually one argument pairs (Argl, Arg2) given in the
DRR tasks where Argl and Arg2 are the discourse units,
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and the tasks are to predict the discourse relations between
the argument pairs. The DRR tasks can be divided into
explicit discourse relationship recognition, i.e., EDRR, and
implicit discourse relation recognition, i.e., IDRR, based on
the presence of significant connective words, which is like
the word “so” in the EDRR example shown in Figure 1.
Because connective words can provide linguistic information
clues in DRR tasks, EDDR usually achieve high accuracy
rate. However, due to the lack of connective words, IDRR
can only rely on semantic information of discourse units,
making this task quite challenging. In this paper, we focus
on using soft prompt learning technique to address IDRR
based on current pre-trained language models like BERT.

EDRR Example:
Argl: Art helps to get it out of me
Arg2: So, I don’t keep it all locked up inside

IDDR Example(connective is absent):
Argl: The fundamentals are pretty strong
Arg2: [ don’t see this as a better market at all

Fig. 1. The examples showing the EDRR and IDRR [7]. In the EDRR
example, the explicit connective word is “so”, while the connective word is
absent in the IDRR example.

B. Pipeline of the Proposed Method

Figure 2 illustrates the framework of our method. Given
one argument pairs (Argl, Arg2), the input will be first
templated by filling some placeholders or special mark-
ers. Specifically, besides the two arguments, there are a
mask token, i.e., [mask], and several soft markers, i.e.,
[P_11[P_2][P_31, as shown in Figure 2. The mask token
indicates the placeholder substituting for the connectives to
be predicted, while the soft markers are the placeholders rep-
resenting the soft prompts which can be adjusted and learned
during training. Then, the soft prompts will pass through
a prompt encoder which is implemented as a long short-
term memory network. With the prompt encoder, the inter-
relationships between the soft prompts will be encoded and
the embedding vectors of these soft prompts are generated.
By concatenating the embedding of these soft prompts with
the embedding of the other tokens in the input, all the input
are mapped into the high-dimensional vector space.

Next, the mapped embedding vectors are input to the
masked language model to predict the absent connectives as
shown in Figure 2. Finally, according to the mapping between
the connectives and the discourse relations, the discourse
relation implied by the input argument pair is inferred and
the loss is derived during training. With the loss, not only the
model but also the learnable vectors corresponding to these
soft prompts are updated. During testing, the argument pairs
are templated in the same way as the training, and using
the learned vectors to substitute for each soft prompt, the
discourse relations between the arguments can be derived.

In the following section, we detail the proposed method
including the prompt template and the prompt turning.

C. Prompt Template

In our method, instead of directly using raw text as
input, we construct a template to integrate the input text,
thereby transforming the IDRR task into a masked language
model task. In previous studies, such templates were often
handcrafted, for example, the template Argl:Argl.
Arg2:Arg2. The connective between Argl
and Arg2 is [MASK]. Although these approaches
appear intuitive and straightforward, crafting a high-
performance handcrafted prompt template heavily depends
on experience and intuition. It often requires considerable
time for manual search and may limit the model’s capabilities
due to the constraints of the template’s expressive power.
Therefore, we employ soft prompt templates to address this
issue. Soft prompt templates can not only help the model
understand the task but also automatically optimize and
adjust the template during training, enabling the model to
better adapt to IDRR tasks.

Specially, we use the soft prompt template like
[P_1]1[P_2][P_3]Argl[mask]Arg2 in this paper.
Here, Argl and Arg2 are still the two arguments in the in-
put representing the discourse units, and the symbol [mask]
also represents a placeholder for the connective. Differently,
there are several [P_1i] tokens which represent the learnable
soft prompts.

D. Prompt Tuning

The masked language model used in this paper is the
RoBERTa model which is further pre-trained by Wang et
al. [7] with a logic-semantic enhancement approach. By
leveraging handcrafted templates to construct connective
prediction tasks, Wang et al. [7] have employed a multi-
head cross-attention module alongside a mutual information
maximization objective to train RoBERTa model and per-
form global logic-semantic learning. Since IDRR task is not
directly signaled by explicit connectives (e.g., “because” or
“but”) but instead relies on contextual understanding across
discourse units, it needs to capture dependencies spanning
sentences and even paragraphs in long texts. Therefore, we
employ LSTM network which effectively captures long-
distance dependencies to learn the inter-relationships be-
tween soft prompts, which is similar with the research [8].

While using the masked large language model to predict
the absent connectives, we employed a verbalizer that maps
connectives to implicit discourse relation labels. This ver-
balizer defines a discrete answer space for IDRR, which
is a subset of the pre-trained language model vocabulary.
For PDTB dataset, the verbalizer is shown in Table I,
which consists of a set of high-frequency and low-ambiguity
connectives manually selected by Wang et al. [7] to represent
the corresponding discourse relations.

Once the discourse relations are predicted, the cross-
entropy loss calculated by Eq. (1) will be derived to tune
the model.

N
1

L= N;—logm =V(e) [T@) (D)

In this equation, N represents the number of training

examples, 7' denotes the prompt template used to transform

the input argument pair x, V' is the verbalizer that maps the
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The pipeline of the proposed method. The P_1, P_2 and P_3 are the soft markers representing the soft prompts to be learned during training,

and the [mask] indicates the masked token substituting for absent connectives.

TABLE I
THE VERBALIZER MAPPING CONNECTIVES BETWEEN IMPLICIT DISCOURSE RELATION LABELS AND CONNECTIVES ON PDTB 2.0 DATASET,
CONSISTING OF FOUR TOP-LEVEL AND 11 SECOND-LEVEL CLASSES.

Top-level Second-level Connectives
. Concession however, although, though
Comparison
Contrast but
. Cause because, so, thus, consequently, therefore
Contingency . .
Pragmatic cause as, since
Alternative instead, rather
Conjunction and, also, fact, furthermore
Expansion Instantiation instance, example
List finally
Restatement specifically, indeed, particular
Asynchronous then, after, before
Temporal .
Synchrony meanwhile, when

connective ¢ to the implicit discourse relation label [/, and P
estimates the probability of the gold semantic label [.

While tuning the model with the losses, a differentiated
learning rate strategy is adopted, considering that the pre-
trained masked language model already contains signifi-
cant useful information and there are a large number of
parameters. That is, we assign a specific learning rate to
LSTM network to keep it separate from that of the masked
large language model. By carefully balancing the learning
rates, this strategy will enable the soft templates to adapt
dynamically without over-fitting and destabilizing the pre-
trained masked language model.

IV. EXPERIMENTS

In order to validate the effectiveness of the proposed
method, extensive experiments have been done. In this sec-
tion, we describe the experimental setup and results.

A. Dataset

We used the Penn Discourse Treebank 2.0 (PDTB 2.0)
for the evaluation in this paper. It is a widely-used corpus
comprising 2,312 articles from the Wall Street Journal (WSJ),
annotated with discourse relations through a lexically-driven
approach [9]. The discourse relations are organized into
a three-level hierarchy: classes, types, and sub-types. Fol-
lowing established practices [21], the dataset is split into
training (sections 2-20), validation (sections 0-1), and test
sets (sections 21-22). Consistent with prior research [5, 22],
our evaluation focuses on the four top-level implicit discourse
relation classes and 11 prominent second-level types, which
can be seen in Table L.

B. Implementation Details

Our implementation was based on the open-source frame-
work OpenPrompt [23], which facilitated the construction of
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prompt-learning experiments. We used the PLSE method [7]
to pre-train the masked large language model of RoBERTa
[5] and employed AdamW [24] as the optimizer. All exper-
iments were conducted on a Tesla T4 GPU.

For top-level classes on PDTB2.0, we trained for 10
epochs and selected the model that performed best on the
validation set. Due to GPU resource constraints, we used
a batch size of 32 and a learning rate of 1 x 10~°. For
second-level classes on PDTB2.0, considering the increased
complexity of the task, we trained for 15 epochs and selected
the best-performing model on the validation set. After con-
ducting a detailed hyperparameter search, we set the batch
size for the training data to 16, and for the validation and
test sets to 32. We set the learning rate for the masked large
language model to 1 x 107> and for the prompt encoder to
1x1073.

C. Baselines

To validate the effectiveness of our method, we compared
it with a set of state-of-the-art methods.

o CG-T5 [25]: By viewing IDRR as a generation task,
it proposes a method joint modeling of the discourse
relation recognition and generation.

o LDSGM [26]: Consider multi-level IDRR as a con-
ditional label sequence generation task, it proposes a
label dependence-aware sequence generation model for
IDRR.

o PCP [6]: It instructs large-scale pre-trained models
to use knowledge relevant to discourse relation and
utilizes the strong correlation between connectives and
discourse relations to help the model recognize implicit
discourse relations.

e« GOLF [27]: It proposes a novel global and local
hierarchy-aware contrastive framework to sufficiently
exploit global and local hierarchies of classes to learn
better discourse relation representations.

« DiscoPrompt [28]: Considering that it is more effective
to predict the paths inside the hierarchical tree rather
than flat labels or connectives, it proposes a prompt-
based path prediction method to utilize the interactive
information and intrinsic senses among the hierarchy in
IDRR.

o ChatGPT [29]: It is an improved dialogue generation
approach that strengthens interactivity and reliability in
dialogue systems.

o« PLSE [7]: It seamlessly injects knowledge relevant
to discourse relation into pre-trained language models
through prompt-based connective prediction, while de-
signing a novel self-supervised learning objective based
on mutual information maximization to derive enhanced
representations of logical semantics for IDRR.

D. Overall Performance Comparison

To evaluate the effectiveness of the proposed soft prompt
learning framework, we compare its performance with these
selected methods on the PDTB 2.0 dataset. The comparison
is carried out on both the top-level (4-class) and second-level
(11-class) implicit discourse relation recognition tasks. And
the template of [P_1][P_2][P_3]Argl [mask]Arg2
was adopted for the proposed method during comparison.

Two commonly used evaluation metrics were adopted:
Macro-F1 and Accuracy. The macro-F1 is defined as the
unweighted mean of class-wise F1 scores:

. 2.P-R

1
Macro-F1 = —
acro C 2P +R,

i=1

where P; and R; denote the precision and recall for class ¢,
and C is the total number of classes.
The accuracy is calculated as:

Number of correct predictions

Accuracy = —
Y Total number of predictions

TABLE II
MACRO-F1 SCORES (%) AND ACCURACY (%) EVALUATED ON THE
PDTB 2.0 DATASET. BOLD NUMBERS REPRESENT THE BEST RESULTS.

Method PDTB-Top PDTB-Second
F1 Acc. F1 Acc.
CG-T5 [25] 57.18 65.54 37.76 53.13
LDSGM [26] 63.73 71.18 40.49 60.33
PCP [6] 64.95 70.84 41.55 60.54
GOLF [27] 65.76 72.52 41.74 61.16
DiscoPrompt [28] 65.79 71.70 43.68 61.02
ChatGPT [29] 36.11 44.18 16.20 24.54
PLSE [7] 68.12 73.23 47.22 62.85
Ours 69.32 73.90 48.91 62.95

Table II shows the comparison results. From the results, we
can see that our method achieves the best performance on the
PDTB2.0 dataset. For the top-level discourse relation classes,
the macro-F1 increases by 1.2% and the accuracy improves
by 0.7%. For the second-level discourse relation classes,
the macro-F1 rises by 1.7%, and the accuracy improves
by 0.1%. Compared to latest method of PLSE, our method
still demonstrates certain performance improvements. These
results indicate the effectiveness of our work, and show the
superiority of continuous templates using soft prompts over
traditional handcrafted templates.

To provide more detailed insights, we further break down
the macro-F1 scores across the four top-level and the eleven
second-level discourse relation classes. Table III shows the
results over four top-level discourse relation classes: Com-
parison, Contingency, Expansion and Temporal. These re-
sults indicate that our model outperforms these baselines
in each class, especially in the Comparison and Temporal
classes, with respective gains of 2.98% and 0.86% over
PLSE method. Table IV reports the fine-grained macro-F1
performance for the eleven second-level discourse relation
classes. The results show that our model achieves the best
macro-F1 scores in six classes, including Contrast, Cause,
Restatement, Asynchronous, and Synchrony. Notably, in the
Synchrony class, our model achieves 66.67% in terms of
macro-F1, a substantial improvement over PLSE (33.33%)
and other baselines (0%), reflecting its strength in handling
rare and challenging discourse categories.

E. Evaluation under Few-shot Settings

To assess the robustness of our model under limited
supervision, we conducted a series of few-shot experiments
using only 30%, 50%, and 70% of the full training data.
This setting simulates real-world scenarios where annotated
discourse relations are scarce, particularly in fine-grained
classification.

Volume 52, Issue 10, October 2025, Pages 3837-3844



TAENG International Journal of Computer Science

TABLE III
MACRO-F1 SCORES (%) FOR TOP-LEVEL DISCOURSE RELATION
CLASSES ON PDTB 2.0.

Model Comp. Cont. Exp. Temp.

CG-T5 55.40 57.04 74.76 41.54

GOLF 67.71 62.90 79.41 54.55

DiscoPrompt | 62.55 64.45 78.77 57.41

PLSE 65.02 64.49 80.60 62.39

Ours 68.00 65.55 80.49 63.25
TABLE IV

MACRO-F1 SCORES (%) FOR SECOND-LEVEL DISCOURSE RELATION
CLASSES ON PDTB 2.0.

Second-level GOLF DiscoPrompt PLSE  Ours
Comp.Concession 0.00 9.09 0.00 0.00
Comp.Contrast 61.95 59.26 61.92  64.98
Cont.Cause 63.35 63.83 64.94  67.85
Cont.Pragmatic Cause 0.00 0.00 0.00 0.00
Exp.Alternative 63.49 72.73 51.85  56.00
Exp.Conjunction 60.28 61.08 60.58  56.85
Exp.Instantiation 73.36 69.96 76.50  73.49
Exp.List 27.78 37.50 4545  26.09
Exp.Restatement 59.84 60.00 61.39  61.26
Temp.Asynchronous 63.82 57.69 63.49  64.86
Temp.Synchrony 0.00 0.00 33.33  66.67

As shown in Figure 3, the model exhibits stable and
consistent performance across all training proportions. In the
PDTB-TOP (4-class) setting, the macro-F1 and the accuracy
both remain relatively steady, showing only modest increases
as more data becomes available. Notably, even at 30% super-
vision, the model retains competitive performance, indicating
its ability to learn meaningful patterns under data-constrained
conditions. In the more complex PDTB-Second (11-class)
setting, the performance also progresses gradually. Although
both macro-F1 and accuracy are lower compared to the top-
level task—as expected given the increased difficulty—the
model avoids sharp degradation and maintains a consistent
trend across different levels of supervision.

These observations highlight the model’s generalization
capability in few-shot scenarios. Rather than relying solely
on large amounts of data, the hybrid prompt framework
demonstrates resilience and stability, making it a promising
approach for discourse relation recognition in few-shot set-
tings.

F. Robustness to Template Perturbation

Prompt-based models are often sensitive to the structure
and semantics of their input templates. To evaluate how
well the proposed method copes with structural deviations,
we conducted a series of controlled template perturbation
experiments. Each variation alters the original template in a
specific way to simulate potential design noise or deployment
inconsistencies.

We considered three types of perturbations applied to the
base soft template: (1) shifting the [MASK] token to the
end of the sequence, thus decoupling it from its natural
contextual position; (2) inserting an unrelated token ("XX")
immediately before the [MASK]; and (3) inserting a mislead-
ing discourse cue ("WHY") before the [MASK] to introduce
semantic ambiguity. All experiments were conducted on
both the top-level classes and second-level classes of PDTB
dataset.

The results are shown in Table V. ID 1 represents the

original template structure which we have adopted in the
comparison experiments, while IDs 2—4 introduce position
shifts or irrelevant token insertions. Across both tasks, the
original template achieves the highest macro-F; and accuracy
scores, as expected. However, performance under pertur-
bation remains stable. In the top-level discourse relation
recognition task, macro-F; varies from 69.32% (original) to
66.30%(inserting the "WHY" before the [MASK]), 63.08%
(with "xX") and 59.23% ( [MASK] is moved to the end),
reflecting a controlled decline without abrupt collapse. A
similar pattern is observed in the second-level discourse
relation recognition setting, where macro-F; decreases from
46.82% to 45.55%, 43.89% and 43.53% under analogous
conditions. Accuracy metrics mirror this trend, suggesting
that the model retains strong prediction capacity despite
significant template modification. These findings indicate
that our soft prompt design exhibits a desirable level of
structural robustness: it maintains a consistent performance
profile under syntactic and semantic disturbances.

G. Parameter Sensitivity Analysis

To further understand how the position and the number of
soft prompt tokens affect model performance, we conducted
a series of controlled experiments, with results shown in
Table VI. Each row corresponds to a different variant of the
input template, either modifying the position of the [P_1]
soft prompt tokens or the position of the [mask] token. Our
goal is to identify optimal template structures for both top-
level and second-level discourse relation recognition tasks.

For instance, the #1 template is [P_1] [P_2] [P_3]
Argl [mask] Arg2, which places all soft tokens at the
beginning and inserts the [mask] token between the two
arguments. In #2 template, i.e., Argl [mask] Arg2
[P_1]1[P_2][P_31, we move the soft prompt tokens to
the end. #3 template places the soft prompt tokens behind the
[mask] token. #4 template places the soft prompt tokens
before the [mask] token but behind the argument Argl.
It can be seen that the position of the soft prompt tokens
indeed affect the performance of the proposed method. And
among these variant templates, the #1 temple yields the best
performance overall, which has been selected for comparison
with other methods in our experiments.

#5—#7 templates explore the impact of the number of
soft prompt tokens, ranging from 2 to 5. Although five soft
prompt tokens slightly improve the accuracy of the top-level
discourse relation recognition, performance on second-level
classification degrades, suggesting that more soft tokens may
not always yield better generalization, especially for fine-
grained tasks.

V. CONCLUSION

This paper proposes a soft prompt learning method for
implicit discourse relation recognition. Different from exist-
ing methods, we employ soft prompt template instead of
handcrafted prompt template when using pre-trained lan-
guage model. Besides eliminating the reliance on manual
experience and intuition, it can not only help the model
understand the task but also automatically optimizes and
adjusts the template during training, enabling the model to
better adapt to discourse relation recognition task.
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Few-shot evaluation results of the hybrid prompt model on PDTB-TOP and PDTB-Second tasks. Left: F1 scores across four levels of training

supervision (30%, 50%, 70%, and 100%). Right: Corresponding accuracy values. The curves indicate that the model maintains stable performance under

reduced training data, with no sharp degradation observed.

TABLE V
PERFORMANCE OF THE OUR SOFT PROMPT METHOD UNDER DIFFERENT TEMPLATE STRUCTURES ON PDTB-TOP AND PDTB-SECOND TASKS. EACH
ROW CORRESPONDS TO A CONTROLLED PERTURBATION OF THE ORIGINAL TEMPLATE.

PDTB-Top PDTB-Second
ID Template F1  Acc F1  Acc
I [P_1] [P_2] [P_3] Argl [mask] Arg2 6932 73.90 4682 63.04
2 [P_1] [P_2] [P_3] Argl Arg2 [mask] 5023 68.93 4389 5861
3 [P_1] [P_2] [P_3] Argl XX [mask] Arg2 63.08 7122 4555  62.85
4 [P_1] [P_2] [P_3] Argl WHY [mask] Arg2 6630 7228 4353 60.92

TABLE VI
MACRO-F1 SCORES (%) AND ACCURACY (%) EVALUATED ON THE PDTB2.0 DATASET USING DIFFERENT TEMPLATES. HERE, [P_I] REFERS TO SOFT
PROMPT MARKERS, AND [MASK] REFERS TO MASKED TOKENS.

PDTB-Top PDTB-Second
b Template FI  Acc FI  Acc
1 [P_1] [P_2] [P_3] Argl [mask] Arg2 67.14  73.14 4891 62.95
2 Argl [mask] Arg2 [P_1] [P_2] [P_3] 68.12 7275 4549 61.21
3 Argl [mask] [P_1] [P_2] [P_3] Arg2 67.11  73.22 42.00 59.29
4 Argl [P_1] [P_2] [P_3] [mask] Arg2 68.07 73.18 4200 6141
5 [P_1] [P_2] [P_3] [P_4] Argl [mask] Arg2 66.69  72.37 4237  59.58
6 [P_1] [P_2] [P_3] [P_4] [P_5] Argl [mask] Arg2 67.34 73.23 4334 59.67
7 [P_1] [P_2] Argl [mask] Arg2 67.09 7275 43.67 60.54

Through a series of controlled and comparative experi-
ments, we have validated the effectiveness and robustness
of the proposed soft prompt tuning framework. Our method
achieves competitive performance compared to state-of-the-
art baselines, while also demonstrating notable stability under
few-shot training conditions. Furthermore, it maintains con-
sistent performance in the face of prompt template pertur-
bations, indicating structural resilience. The parameter sen-
sitivity analysis further reveals that the position and number
of soft tokens are critical design factors that influence model
effectiveness. Overall, these findings support the conclusion
that soft prompting is both a practical and theoretically
grounded approach for implicit discourse relation recogni-
tion.
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