
 

  

Abstract—The Average Run Length (ARL) is a key indicator 

for evaluating how well control charts identify shifts. The 

purpose of this study is to derive explicit formula ARL and 

compare to ARL values obtained from numerical integral 

equation (NIE) techniques, such as the Midpoint, Simpson’s, 

and Trapezoidal rules, in order to determine explicit formulas 

for the Extended Exponentially Weighted Moving Average 

(Extended EWMA) control chart and assess its performance. 

The suggested method is created using an exponential white 

noise seasonal autoregressive (SAR(P)L) model with trend 

component. Banach's Fixed Point Theorem was used to ensure 

the uniqueness of the explicit ARL solution after the solution 

was derived using the Fredholm integral equation. Almost 

instantaneous results were obtained in practice, and the 

resulting expression greatly surpassed the ARL values 

produced by NIE techniques in terms of processing speed. The 

suggested extended EWMA control chart's greater efficiency is 

demonstrated using data on commodity prices series, especially 

those of gold and silver, which show significant volatility as a 

result of market dynamics. They make excellent candidates for 

statistical monitoring because of their susceptibility to 

variations, where early identification of structural changes is 

essential for financial risk management and well-informed 

decision-making. 

 
Index Terms— average run length, explicit formula, 

extended EWMA control chart, numerical integral equation 

 

I. INTRODUCTION 

NE significant and effective method for tracking and 

improving several processes across numerous 

industries is statistical process control, or SPC. Control 

charts are a core tool in Statistical Process Control (SPC), 

commonly applied to monitor ongoing processes and detect 

early signs of variation or unexpected behavior. This enables 

timely identification of anomalies and emerging trends 

during real-time operations. 

 The concept of control charts was first introduced by 
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Shewhart [1], whose chart was designed to identify major 

deviations in process parameters. Since then, more sensitive 

tools such as the Cumulative Sum (CUSUM) chart [2] and 

the Exponentially Weighted Moving Average (EWMA) 

chart [3] have been developed to effectively capture small to 

moderate shifts in the process mean, offering improved 

detection capabilities over traditional charts. Furthermore, 

for processes where the data are both autocorrelated and 

from an independently normal distribution, Khan et al. [4] 

improved upon the modified exponentially weighted moving 

average (Modified EWMA) control chart, which had 

previously been developed by Patel and Divecha [5]. In 

2010, Mahmoud and Woodall [6] modified the double 

exponentially weighted moving average (Double EWMA) 

control chart, which was originally introduced by Shamma 

and Shamma [7], and demonstrated that it provides greater 

sensitivity in detecting subtle changes in process parameters. 

Afterwards, the extended exponentially weighted moving 

average (Extended EWMA) control chart, proposed by 

Naveed et al. [8] in 2018, is an enhanced version of the 

traditional EWMA chart designed to more effectively detect 

subtle changes in process parameters. In real-world 

applications, control charts have been utilized across a wide 

range of fields, including healthcare, energy, finance, and 

environmental monitoring, demonstrating their versatility 

beyond traditional industrial contexts. In particular, Waqas 

et al. [9] conducted a systematic review and bibliometric 

analysis highlighting the extensive application of control 

charts, especially the EWMA chart, in hospital quality 

monitoring systems. Raza et al. [10] showed that the 

DEWMA-based control chart outperformed traditional 

control charts in terms of detection sensitivity and accuracy 

when applied to monitor censored recovery durations in 

cancer patients. In a review of control chart applications in 

finance, Bisiotis et al. [11] emphasized their effectiveness in 

tracking time series data related to stock prices, trading 

strategies, and risk management metrics. 

The two-component average run length (ARL) is 

frequently used to assess a control chart's performance. The 

estimated number of samples from an in-control process 

before a false alert arises is represented by ARL₀, which 

should be as large as feasible to reduce false alarms. On the 

other hand, ARL₁, which represents the expected number of 

observations from an out-of-control process before a true 

alarm is triggered, should be minimized to enable timely 

detection of actual process shifts. 
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Various techniques have been employed to estimate the 

ARL, including Monte Carlo simulation [12], Markov chain 

analysis [13], and the numerical integral equation (NIE) 

method using quadrature rules such as the midpoint, 

trapezoidal, and Simpson’s rules [14 -16]. 

Subsequently, several researchers proposed explicit 

formulas for computing the ARL and used these methods to 

verify the accuracy of their results. 

Autocorrelation refers to the statistical dependence 

between successive observations in a time series. Control 

charts are widely used statistical tools for detecting shifts in 

process behavior; however, their effectiveness may be 

compromised when autocorrelation is present. Among these, 

SARIMA models, which are capable of capturing both 

seasonal patterns and linear or quadratic trends, are 

particularly effective in modeling the complex behaviors 

typically found in real-world time series. Such data often 

exhibit both periodic fluctuations and long-term trends. 

Numerous empirical investigations have confirmed the 

effectiveness of this approach. For example, Chen [17] 

applied the SARIMA model to the automotive sector by 

analyzing and forecasting new and used car sales in the 

United States. The results showed that SARIMA 

successfully captured both long-term trends and seasonal 

fluctuations, leading to accurate sales forecasts. Similarly, 

Rono, Muriithi, and Mwangi [18] employed the SARIMA 

model to forecast outpatient visits, with the goal of 

enhancing healthcare planning through accurate short-term 

predictions. 

Forecast error, defined as the difference between actual 

and predicted values, is a key indicator of model accuracy. 

Lower error values typically indicate better model 

performance. Although forecast errors are commonly 

assumed to be uncorrelated and normally distributed (i.e., 

white noise), real-world time series data, especially those 

with autocorrelation or seasonality, may generate errors that 

follow an exponential white noise pattern. This deviation 

from standard assumptions necessitates the use of more 

advanced modeling techniques. 

Many academics have also developed precise formulas 

for calculating the Average Run Length (ARL) of various 

types of control charts. To illustrate, Suriyakat and Petcharat 

[19] provided an explicit formula for the ARL of an EWMA 

chart incorporating exogenous variables and a stationary 

moving average process. Zhang et al. [20] proposed explicit 

formulas for the performance evaluation of the CUSUM 

chart under an SMA(Q)S process with exponential white 

noise. An explicit formula for the ARL of a double moving 

average (DMA) control chart is proposed by Raweesawat 

and Sukparungsee [21] to track the process mean of a 

ZIPINAR(1) model. Later, Evaluating the ARL for a Shift in 

the Mean of a Long-Memory ARFIMA(1, d, 1)(1, D, 1)S 

model with exponential white noise operating on CUSUM 

chart was represented by Peerajit [22]. The ARL of the 

EWMA control chart, under the SARX(P, r)L model, can be 

accurately determined using the method introduced by 

Phanyaem [23]. Moreover, the extended EWMA control 

chart for AR(p) with Exogenous Variables was proposed by 

Muangngam et al. [24] for performance evaluation. 

Recently, Sunthornwat et al. [25] proposed explicit formulas 

for the ARL of the double DEWMA control chart applied to 

an SMA(Q)S process with exponential white noise. Karoon 

and Areepong [26] evaluated ARL performance of new 

extended EWMA control chart by comparing it with the 

standard and previously extended EWMA charts. They also 

provided an explicit ARL solution for the new chart under 

AR model, using a Thai economic dataset for empirical 

comparison. 

Numerous researchers have formulated explicit 

expressions for ARL based on the SAR(P)L model, 

incorporating trend components into various types of control 

charts. These enhanced models have demonstrated improved 

effectiveness in detecting process shifts. Beginning in 2022, 

Petcharat [27] developed specific formulations for the ARL 

of CUSUM control charts based on the SAR(P)L model with 

a trend component, utilizing silver price data (USD/oz) for 

validation. Subsequently, in 2023, Areepong and Karoon 

[28] utilized observations from a seasonal autoregressive 

model to enhance usability by deriving exact formulas for 

the ARL applied to a double EWMA control chart. Air 

pollution, which is one of Thailand’s critical environmental 

issues, was selected as the application context for the study. 

In the following year, 2024, Areepong and Karoon [29] 

extended their previous work by deriving explicit ARL 

formulas based on a seasonal autoregressive model with an 

added trend component. This enhanced approach was 

further applied to a GDP dataset in Thailand. In 2025, 

Sukparungsee and Areepong [30] proposed an explicit ARL 

formula using an integral equation approach for the double 

modified EWMA chart under the SAR(P)L process. 

To the best of our knowledge, no prior studies have 

presented explicit ARL formulas for an extended EWMA 

control chart based on the trend SAR(P)L model with 

exponential white noise. This study addresses that research 

gap by deriving an exact ARL expression for the extended 

EWMA chart within the trend SAR(P)L framework. The 

proposed approach builds upon and extends the earlier work 

of Karoon et al. [29], who previously examined control chart 

performance under the SAR(P)L model without a trend 

component. The performance of the explicit ARL formulas 

is compared between the conventional and extended EWMA 

control charts using both simulated and real-world datasets. 

To demonstrate the effectiveness of the proposed method, 

gold and silver price series, which are well known for their 

high volatility, are used. Their significant fluctuations make 

them appropriate for statistical monitoring and the early 

detection of structural changes. 

II. MATERIAL AND METHODS 

A. Structures of Control Charts 

To begin with, the concept of the traditional EWMA 

control chart was introduced by Roberts [3], who 

demonstrated its effectiveness in identifying minor shifts in 

process behavior. The EWMA statistic in Eq. (1) is 

computed using the following formula:  

 

1(1 ) , 1, 2,...t t tEw Ew Y t −= − + =                             (1) 

 

where 
tY  is a sequence of trend SAR(P)L model with 

operating based on exponential white noise,   represents 

the exponential smoothing parameter with interval as 

1
(0 1)  . The EWMA control chart's control boundaries 

are as 
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
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−
  

 

where K  denotes the width of the control limits of EWMA. 

0
  is the mean whereas   is the mean and the standard 

deviation of the process, which are obtained from the 

variance ( 2 ) of the EWMA statistic as  2

2






 
 − 

.  

Mathematically, the stopping time is formulated as: 

 inf{ 0 : , }Ew t tt Ew r Ew s  =     and then r and s  

are showed as the lower ( LCL ) and upper (UCL ) control 

limit of EWMA control chart. 

 

 Building upon Roberts’ [3] introduction of the EWMA 

control chart for monitoring processes over time, Naveed [8] 

developed the extended EWMA control chart. This 

enhanced version demonstrates strong performance in 

detecting subtle deviations from the process behavior. Using 

the recursive equation in Eq. (2) below, the extended 

EWMA control chart can be expressed. 

 

1 2 1 1 2 1
(1 ) , 1, 2,...

t t t t
Ex Y Y Ex t   

− −
= − + − + =          (2) 

 

where 
1

  and 
2

  are exponential smoothing parameters 

with interval as 
1

(0 1)   and 
2 1

(0 )   , respectively. 

Moreover,   represents 1 2
1  − + . The upper and lower 

control limits appeared as follows on the Extended EWMA 

chart:  

 

2 2

1 2 1 2
0 2

1 2 1 2

2ˆ ,
2( ) ( )

K
   

 
   

+ − 


− − −
                                                                              

 

where 0
  and   represent the mean, the process standard 

deviation as mentioned previously,   rewritten from the 

variance ( 2 ) of extended EWMA statistic as follows below 

2 2

2 1 2 1 2

2

1 2 1 2

2

2( ) ( )

   


   

 + − 
 

− − − 
, and then K̂  denotes the width 

of the control limits of Extended EWMA. The stopping time 

can be expressed by the following equation: 

inf{ 0 : , }Ex t tt Ex r Ex s =     where r  and s  are 

illustrated as the lower ( LCL ) and upper (UCL ) control 

limit of Extended EWMA control chart. More importantly, 

if 
2

  instead of 0 in Eq. (2), the Extended EWMA statistic 

transforms into the EWMA statistic. 

 

B. Methodology of Derivation Explicit ARL Formula 

under Trend SAR(P)L Model 

 

This study uses the general trend seasonal autoregressive 

model, commonly referred to as the trend SAR(P)L model, a 

statistical technique for examining time-series data, to 

construct exact ARL formulas. This model, which 

incorporates seasonal patterns and trends, is widely utilized 

in disciplines like engineering and economics.                        

The following Eq. (3) contains its formulation. 

 

1 1 2 2
...

t t L t L P t PL t
Y t Y Y Y     

− − −
= + + + + + +            (3)      

 

where   is the constant of trend SAR(P)L model,   

represents the constant term or trend component, which is 

treated as an exogenous variable to capture the underlying 

trend or time of the data. , 1, 2,...,
t

t P = denote the 

coefficients of time series model with 
1 2
, ,..., ( 1,1)

P
    − . 

In this context, L denotes the seasonal length, where L = 4 

corresponds to quarterly data and L = 12 corresponds to 

monthly data. Also, t
 denotes the error term, assumed to 

be a continuous i.i.d. random variable derived from 

exponential white noise.; ( )
t

Exp  . The probability 

density function of t
 can be showed as  

 

( , ) 1 ; 0
y

f y e
  −

=  .  

 

Guided by the ARL characteristics explored in this study, 

several change-point models are analyzed as follows. 

 

0

1

( ), 1, 2,..., 1

( ), , 1,...
t

Exp t

Exp t

 


  

= −


= +
                                     (4) 

 

where 0
  and 1

  are known parameters, which 0
  

represents the mean of exponential distribution , and 

1 0
.   By exploring the change point in Eq. (4), the ARL 

defined with (.)E  can be explained as follows. 

 

0

1 1

( ), ( )

( ), 1 ( )

ARL E no change
ARL

ARL E change

 

 


= = 

= 
= =

,  

 

where (.)E  is the mean under exponential distribution 

( , )f y  for a given change-point time.  =   shows      

in-control which stands for ARL0, whereas 1 =  Represents 

the first occurrence of a shift from 0
  to 1

  in the process, 

which is known as out-of-control ARL which stands for 

ARL1.  

In this Study, let t
  denote the Extended EWMA statistic, 

with a change-point occurring at time 1t = . Then, using the 

trend SAR(P)L model, the statistic defined in Eq. (2) can be 

reformulated as follows: 

 

1 1 1 2 1 1 0
( )

L
Ex Y Ex   

−
= + − +    

 

where   represents 1 1 1 2 1 2 1
...

L L P PL
Y Y Y    

− − −
+ + + + + . 
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The extended EWMA control chart, under the in-control 

state, functions as a two-sided control chart when both upper 

and lower thresholds are considered. So that, t
r Ex s  . 

It can be rewritten as follows: 

 

1 1 2 1 1 0
( )

L
r Y Ex s   

−
 + − +    

1 1 1 2 1 1 0L
r Y Ex s    

−
 + − +    

0 2 1 1 0 2 1 1

1

1 1

L Lr Ex Y s Ex Y 
  

 

− −−  + −  +
−   − . 

Assume the initial values are given by 0
Ex = . The interval 

( t
 ) can be transformed into the form: 

 

2 1 1 2 1 1

1

1 1

L L
r Y s Y   

  
 

− −
−  + −  +

−   − .                                            

 

Let ( )  be the explicit ARL formula running on extended 

EWMA control chart under trend SAR(P)L model. As shown 

below, a modification based on the Fredholm integral 

equation of the second kind [32] was used to get the explicit 

ARL formula in this investigation.  

 

( )1 1 2 1 1 1 1
( ) 1 ( ) ( )

q

L

q

Y f d         



−
= + + − +   

where q  and q represent 
2 1 1

1

Lr Y 




−− +
−  and 

2 1 1

1

Ls Y 




−− +
− , respectively. 

 

Let   denotes 1 1 2 1 1
( )

L
Y    

−
+ − +  , and then 

1

1

d

d





= whereas 1

1

1
d d 


= = . 

 

The integral variable of ( )  was changed; This expression 

can be rearranged as Eq. (5), presented below. 

 

( ) 2 1 1

1 1

1
( ) 1 .

s

L

r

Y
f d

  
     

 

−
 −  +

= + − 
 

           (5) 

 

When consider that 1
( )Exp  , the second-kind Fredholm 

integral equation can be used to get the explicit ARL 

formula, which is as follows: 

 

1

( )
( ) 1


 

 


= +                                (6) 

where 
2 1 1

1

( ) exp LY  


  
−

  −
 = + 

 
,  

( ) ( )0

s

r

d    =  , and 0

1

( ) exp



 

 
 = − 

 
.   

According to Eq. (6), the following relationship holds: 

 

( )

( ) ( )

( ) ( )

0

1

1 0 0

2 1 1
0 0

1

( )
1

1
1 exp

s

r

L

d

s r

Y
s r


 

 



 

  
−

 
 =  + 

 

 −   
= −

 
+ −     −         



,          (7) 

 

where  denotes 
1 2 − as seen in Eq. (7).                                          

 

In the next step, Eq. (5) is proven using Banach’s fixed-

point theorem [33] to verify the existence and uniqueness of 

the ARL solution for the extended EWMA control chart 

applied to the trend SAR(P)L process. The procedure is 

outlined as follows and further detailed in the Appendix. 

Once the uniqueness of the ARL has been confirmed, new 

variables can be added to Eq. (7) to change it. The exact 

ARL for the extended EWMA control chart under the trend 

SAR(P)L model can therefore be represented by rearranging 

the equation, as shown in Eq. (8) below. 

 

( ) ( ) ( )

( ) ( )

0 0 0

2 1 1
0 0

1

( ) 1

exp L

s r

Y
s r


 

 

  
−

      −   
= −

 
  − +    −       

 

. (8)                                                                          

 

In addition to Eq. (8), assigning 0
 =  corresponds to the 

in-control condition, while 1 0
(1 )   = = +  may be 

interpreted as representing the out-of-control situation. 

 

 

 C. Methodology of ARL by NIE Techniques under Trend 

SAR(P)L Model 

 

At this point, the Numerical Integral Equation (NIE) 

method is employed to analyze the Trend SAR(P)L model. 

According to Equation (5), the Average Run Length (ARL) 

of the extended EWMA control chart is numerically 

approximated by solving a system of m linear equations. 

The resulting ARL estimates, denoted by ( )  correspond 

to the use of classical quadrature techniques, such as 

Midpoint ( ( )
M

  ), Simpson’s ( ( )
S

  ), and Trapezoidal 

( ( )
T

  ) rules, respectively. These quadrature techniques 

are applied over the integration domain, as described in [14]. 

Moreover, these methods are defined by a set of nodes 

 , 0,1, 2,...,jc j m=  , which are generated by partitioning 

the integration interval  ,r s  into m subintervals, together 

with a corresponding set of weights  , 0,1, 2,...,
j

w j m=  

Typically, the integral is approximated using the following 

expression:  

 

1

( ) ( ) ( )

s m

j j

jr

W c f c dc w f c
=

  . 
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The quadrature method leads to the result shown below. 

 

2 1 1

11 1

1
( ) 1 ( ) , 1, 2,..., .

m
j i L

i j j

j

c c Y
c w c f i m


  

 

−

=

−  + 
 = +   − = 

 


 

The resulting system consists of m linear equations and can 

be represented as a vector 
1

1 1( ) 1m m m m mQ I R
−

  = − =   

 

where 1 1 2[ ( ) ( ) ... ( )]
T

m mQ c c c  
  = . 

 

Let m m
R

  be a matrix and define the 𝑚 to 𝑚𝑡ℎ as elements of 

matrix 𝑅 as follows, 

 

2 1 1

1 1

1
[ ] .

j i L

ij j

c c Y
R w f




 

−
−  + 

 − 
 

 

 

In conclusion,   is used instead of c  the numerical 

formulation for approximating ( )   is given by 

 

2 1 1

11 1

1
( ) 1 ( )

m
j L

j j

j

c Y
w c f

 
   

 

−

=

−  + 
 = +  − 

 
 .     (9) 

 

The details of various composite quadrature rules, including 

the locations of nodes and their corresponding weights, are 

presented based on equal subinterval widths ( ) /h s r m= − , 

and are summarized in Table I. below. Also, the expression 

for 
j

M , defined as: 
2 1 1

1

j L
c Y 




−
−  +

−   listed in the same 

table. 

 

TABLE I 

THE COMPOSITE QUADRATURE RULES 
 

Rules Formulas 

 

Midpoint ( )
11

1
( ) 1 ( )

m

M j j j

j

w c f M  
 =

 = +   

Node ( jc ) ( 0.5)r j h+ −  

Weight ( j
w ) h  

 

Simpson’s ( )
2

01

1
( ) 1 ( )

n

S j j j

j

w c f M  
 =

 = +  ,  

where 2m n=   

Node ( jc ) r jh+  

Weight ( j
w ) 4 2

; 0, 2 , ; 1,..., 2 1, ;
3 3 3

2,..., 2 2

h h h
j n j n

j n

= = −

= −

 

 

Trapezoidal ( )
01

1
( ) 1 ( )

m

T j j j

j

w c f M  
 =

 = +  ,  

Node ( jc ) r jh+  

Weight ( j
w ) 

; 0, , ; 1,..., 1
2

h
j m h j m= = −  

 

 

III. EXPERIMENTAL RESULTS AND PERFORMANCE 

EVALUATION OF CONTROL CHART 

 This section compares the explicit ARL formula from the 

Fredholm integral equation with the NIE-based ARL using 

composite quadrature rules including Midpoint, Simpson’s, 

and Trapezoidal rules under the extended EWMA control 

chart with 1,000 nodes. The trend SAR(P)L model is used 

for data analysis. Let ( )  and ( )   represent the ARL 

values derived from the NIE technique and the explicit 

formula via Eq. (8) and (9), respectively. The absolute 

percentage relative error or APRE(%)  between them is 

measured using Eq. (10).  

 

 ( ) ( )
APRE(%) 100%

( )

   

 

−
=                                    (10) 

 

The ARL estimation using the NIE method was 

performed with 1,000 division points. The details of 

the ARL evaluation are presented in Table II below. 

 

TABLE II 

THE PROCEDURING OF ARL EVALUATION  
 

Input: Provide the following input values to run the 

program: 

 Set parameters of trend SAR(P)L model: 

, ,  and 
t

 in Eq. (3). 

Set parameters of control charts: 

1
0.05,0.10,0.15 = , 

2
0.015,0.03,0.045 =  

for extended EWMA chart, 
2

0 =  for 

EWMA chart. 
 

 

Set  the lower control limit (LCL) equal to r . 

 

Set 
0

370ARL =  for simulated data, whereas 

real-world data were set to 370 and 500. 
 

Set 
0

 = for in-control, set 
0

1 =  when 

using simulated data, whereas set 0
  equal to 

the exponential mean ( )( )
t

Exp   when 

using a real-world data. 
 

Set 1 0
(1 )   = = + for out-of-control, and 

 equal 

0.0005,0.001,0.002,0.005,0.01,0.03,0.1,0.5 . 
 

Output: 

 

The output generated by the program is as 

follows:  

 The Upper Control Limit (UCL) of the control 

chart under various parameter settings is 

defined based on a specified in-control ARL. 

The ARL under the out-of-control condition is 

calculated by setting the UCL according to the 

specified criteria above. 
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 These results, summarized in Table III, are based on the 

trend SAR(1)4, trend SAR(2)4, and trend SAR(3)4 models. 

All computations were performed on a Windows 10 (64-bit) 

platform with an Intel Core i5-8250U processor (1.60–1.80 

GHz) and 4 GB of RAM. In all scenarios, the absolute 

percentage relative error is minimal, approaching 0%, which 

indicates that both approaches provide comparable accuracy. 

In particular, Simpson’s method yields errors ranging from 

10-10 to less than 10-13, demonstrating its high precision. 

However, the explicit formula yields results almost 

instantaneously across all cases. In contrast, ARL values 

generated using the NIE method with the three quadrature 

rules exhibit varied response times. Under the Midpoint and 

Trapezoidal rules, the system responds within 5 to 6 

seconds, while with Simpson’s rule, the response time 

ranges from 21 to 23 seconds. All computations were 

performed using the extended EWMA control chart with 

parameters set at UCL = r = 0. This suggests that the 

difference in computation time between the explicit formula 

and the NIE technique using the three quadrature rules is 

relatively small. While the explicit solution remains 

unaffected by CPU specifications, the computation time 

required by the NIE method is influenced by the processor’s 

performance. 

 

Next, the ARL based on the explicit formula for different 

extended EWMA settings was then compared to the 

traditional EWMA chart. The simulated data is typically 

generated 
0

370ARL =  to represent the in-control condition. 

The initial parameters used for the study are specified in 

Table II referenced above. Besides, to evaluate the 

efficiency of control charts, the Average Extra Quadratic 

Loss (AEQL) is employed as a supporting metric. The 

method for calculating AEQL is shown in Eq. (11) [26]. 

( )max

min

021
AEQL 1

i

i

G

G G



 




=

     
=  −     +  

  ,                 (11)   

where  

G  denotes 

1 0 0 1 0 0

exp exp ,
( ) ( )i i

s r

       

   
− − −   

+ +   

 

 

G  denotes 2 1 1

1 0 0 0 0

exp
( )

L

i i

Y 

      
−

 
  − 

+ + 

, and  

 

G denotes 

1 0 0 1 0 0

exp exp
( ) ( )i i

s r

       

      
− − −   

+ +   

. 

 

i  indicates the process shift magnitude monitored by the  

      control chart 

 

 

  represents the total number of shift values ranging from 

point 
min  to point 

max . In this study,   was defined as 8 

incremental steps, uniformly distributed from 0.0005 to 0.5. 

 

Among the evaluated charts, this control chart produces 

the lowest AEQL, suggesting its higher capability in 

detecting process shifts. Also, the Performance Comparison 

Index (PCI) is calculated based on the AEQL values of each 

control chart. Specifically, PCI is defined as the ratio of a 

control chart’s AEQL to the minimum AEQL among all 

charts under consideration. This provides a standardized 

basis for comparing the performance of different control 

charts. PCI can be mathematically expressed in Eq. (12) as:  

 

Lowest
PCI = AEQL AEQL                                                   (12) 

 

PCI value of 1 typically signifies optimal control chart 

performance, characterized by rapid detection of process 

shifts and a low rate of false alarms. 

Table IV presents the results corresponding to the trend 

SAR(1)4 and trend SAR(2)4 models, and the lower and upper 

control limits are analyzed within the intervals [0, s] for the 

extended EWMA chart and [0, s ] for the traditional EWMA 

chart, respectively. This study determined the coefficient 1  

to be 1 0.05,0.10, = and 0.15 , whereas 2 was determined 

as 2 0.015,0.03, =  and 0.045 . The findings revealed that the 

explicit ARL achieved by the extended EWMA control chart 

outperforms that of the traditional EWMA chart under 

various settings of the smoothing parameters. Notably, the 

extended EWMA chart with a fixed 1 0.05 =  exhibited 

superior performance. When comparing each case separately 

based on the value of 1 , the extended EWMA chart with a 

fixed 2 0.045 = exhibited the lowest ARL1 value compared 

to both the extended EWMA charts with other fixed 

2 0.03 = and 2 0.015 = , as well as the traditional EWMA 

chart with a fixed 2 0 = . Moreover, a decrease in 2 , 

particularly when it approaches zero, is associated with a 

reduction in ARL1, indicating enhanced sensitivity in 

detecting shifts in the process mean. The results remained 

equivalent in all scenarios. Furthermore, the extended 

EWMA control chart with 2 0.045 =  achieved the lowest 

ARL1 across all levels of shift. Its PCI value was equal to 1, 

confirming the superior performance of the extended 

EWMA chart in all cases under both the SAR(1)4 and 

SAR(2)4 models. 

 

Table V presents the results corresponding to the trend 
SAR(3)4 model, and the lower and upper control limits are 

analyzed within the intervals [r, s] for the extended EWMA 

chart and [r, s ] for the traditional EWMA chart, 

respectively. The findings revealed that the explicit ARL 

obtained from the extended EWMA control chart with fixed 

1 0.05 =  and 2 0.045 = values resulted in the lowest ARL1 

across all levels of the lower control limit (LCL), or r from 0 

to 0.1. values, when compared to the traditional EWMA 

chart with fixed 1 0.05 =  and 2 0 = . The corresponding 

AEQL and PCI values further support the superior 

performance of the extended EWMA control chart.  
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TABLE III 

COMPARING ARL VALUES OF EXPLICIT FORMULAS AGAINST THE NIE TECHNIQUES USING THREE 

QUADRATURE RULES ON EXTENDED EWMA CONTROL CHART BASED ON THE TREND SAR(P)L MODELS 

GIVEN 
1 20, 0.5, 0.05, 0.03r   = = = =  

 
 

 

 

Models 

 

 

 

Shift sizes 

(  ) 

 

 

Explicit Formula 

(CPU Time) 

 

 

 

NIE techniques  

(CPU Time, APRE(%) ) 

 

Midpoint 

 

Simpson’s 

 

Trapezoidal 

 
 

 

 

 

 

 

 

 

Trend SAR(1)4 

1

0.15,

0.1,

0.0123306s





=

=

=

 

0 

370.09538109175 

(<0.1) 

370.09538000105 

(5.359, 2.947E-07) 

370.09538109179 

(21.828, 9.722E-12) 

370.09538327327 

(5.438, 5.894E-07) 

0.0005 

247.18794895004 

(<0.1) 

247.18794825758 

(5.640, 2.801E-07) 

247.18794894989 

(22.140, 5.947E-11) 

247.18795033451 

(5.341, 5.601E-07) 

0.001 

185.67418795099 

(<0.1) 

185.67418744526 

(5.406, 2.724E-07) 

185.67418795113 

(21.844, 7.972E-11) 

185.67418896287 

(5.281, 5.450E-07) 

0.002 

124.12037309129 

(<0.1) 

124.12037276322 

(5.547, 2.643E-07) 

124.12037309119 

(21.734, 8.298E-11) 

124.12037374713 

(5.375, 5.284E-07) 

0.005 

62.526592053656 

(<0.1) 

62.526591895028 

(5.562, 2.537E-07) 

62.526592053667 

(22.235, 1.791E-11) 

62.526592370943 

(5.453, 5.074E-07) 

0.01 

34.516446386304 

(<0.1) 

34.516446301791 

(5.531, 2.449E-07) 

34.516446386305 

(22.422, 8.646E-13) 

34.516446555333 

(5.437, 4.897E-07) 

0.03 

12.826801839586 

(<0.1) 

12.826801811186 

(5.422, 2.214E-07) 

12.826801839585 

(22.063, 3.905E-12) 

12.826801896384 

(5.422, 4.428E-07) 

0.1 

4.5624952480772 

(<0.1) 

4.5624952406044 

(5.359, 1.638E-07) 

4.5624952480771 

(22.125, 1.752E-12) 

4.562495263022 

(5.453, 3.276E-07) 

0.5 

1.6617302103017 

(<0.1) 

1.6617302095562 

(5.484, 4.486E-08) 

1.6617302103017 

(21.922, <1.000E-13) 

1.661730211793 

(5.406, 8.972E-08) 

 

 

 

 

 

 

Trend SAR(2)4 

1

2

0.15,

0.1,

0.3,

0.02251843s







= −

=

= −

=

 

0 

370.025432811 

(<0.1) 

370.02542912226 

(5.391, 9.969E-07) 

370.02543281023 

(21.953, 2.021E-10) 

370.02544018616 

(5.437, 1.993E-06) 

0.0005 

262.642475051 

(<0.1) 

262.64247255658 

(5.514, 9.497E-07) 

262.64247505142 

(21.734, 1.736E-10) 

262.64248004111 

(5.391, 1.900E-06) 

0.001 

203.669229490 

(<0.1) 

203.66922760956 

(5.546, 9.234E-07) 

203.66922949028 

(22.047, 2.946E-11) 

203.66923325170 

(5.406, 1.847E-06) 

0.002 

140.697292251 

(<0.1) 

140.69729099369 

(5.578, 8.935E-07) 

140.69729225082 

(22.015, 9.939E-12) 

140.69729476508 

(5.719, 1.787E-06) 

0.005 

73.305662416 

(<0.1) 

73.305661789383 

(5.609, 8.548E-07) 

73.305662416011 

(22.610, 5.211E-11) 

73.305663669266 

(5.906, 1.710E-06) 
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0.01 

41.084095633 

(<0.1) 

41.084095294179 

(5.500, 8.243E-07) 

41.084095632838 

(22.203, 2.653E-11) 

41.084096310156 

(5.547, 1.649E-06) 

0.03 

15.411499219 

(<0.1) 

15.411499103308 

(5.469, 7.502E-07) 

15.411499218926 

(21.953, 3.239E-12) 

15.411499450162 

(5.516, 1.500E-06) 

0.1 

5.451637637 

(<0.1) 

5.4516376055193 

(5.547, 5.716E-07) 

5.4516376366793 

(22.609, 3.747E-13) 

5.4516376989992 

(5.391, 1.143E-06) 

0.5 

1.902762467 

(<0.1) 

1.9027624634711 

(5.500, 1.783E-07) 

1.9027624668635 

(22.297, 5.251E-13) 

1.9027624736481 

(5.516, 3.566E-07) 

 

 

 

 

 

 

Trend SAR(3)4 

1

2

3

0.1,

0.1,

0.2,

0.3,

0.01433248s









=

=

=

= −

=

 

0 

370.05374463466 

(<0.1) 

370.05374315876 

(5.937, 3.988E-07) 

370.05374463619 

(21.860, 4.132E-10) 

370.05374759106 

(5.468, 7.989E-07) 

0.0005 

250.92364263122 

(<0.1) 

250.92364167851 

(5.640, 3.797E-07) 

250.92364263131 

(21.953, 3.228E-11) 

250.92364453690 

(5.453, 7.595E-07) 

0.001 

189.92569984580 

(<0.1) 

189.92569914401 

(5.531, 3.695E-07) 

189.92569984547 

(22.454, 1.753E-10) 

189.92570124841 

(5.500, 7.385E-07) 

0.002 

127.94162791314 

(<0.1) 

127.94162745499 

(5.829, 3.581E-07) 

127.94162791306 

(22.329, 6.019E-11) 

127.94162882921 

(5.329, 7.160E-07) 

0.005 

64.947406406113 

(<0.1) 

64.947406182968 

(5.547, 3.436E-07) 

64.947406406084 

(21.813, 4.542E-11) 

64.947406852316 

(5.484, 6.870E-07) 

0.01 

35.973206677521 

(<0.1) 

35.973206558256 

(5.796, 3.315E-07) 

35.973206677514 

(22.266, 1.807E-11) 

35.973206916030 

(5.469, 6.630E-07) 

0.03 

13.394110054708 

(<0.1) 

13.394110014486 

(5.407, 3.003E-07) 

13.394110054709 

(21.829, 1.119E-11) 

13.394110135157 

(5.453, 6.006E-07) 

0.1 

4.7563141836773 

(<0.1) 

4.7563141730306 

(5.516, 2.238E-07) 

4.7563141836771 

(21.907, 3.156E-12) 

4.7563142049701 

(5.468, 4.477E-07) 

0.5 

1.7133089357708 

(<0.1) 

1.7133089346850 

(5.406, 6.337E-08) 

1.7133089357708 

(21.922, <1.000E-13) 

1.7133089379422 

(5.500, 1.267E-07) 
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TABLE IV 

COMPARING ARL1 VALUES ON EXTENDED EWMA AND EWMA CHARTS FOR TREND SAR(P)L MODELS 

GIVEN 
0 1 21, 0, 0.35, 0.15,r   = = = = =  0 =   FOR TREND SAR(1)4 , 0.1 =  FOR TREND SAR(2)4 , AND 

ARL0 = 370 

 
 

Trend SAR(1)4 

 

 

1  

 

CC 

 

2  

 

UCL 
1

   

AEQL 

 

PCI 
1.0005 1.001 1.002 1.005 1.01 1.03 1.1 1.5 

 

 

0.05 

Extended 

EWMA 

0.015 0.02835617 269.33 211.82 148.57 78.69 44.44 16.75 5.92 2.03 0.074 1.251 

0.03 0.01796331 256.67 196.59 134.05 68.89 38.37 14.34 5.08 1.80 0.065 1.105 

0.045 0.01141779 245.12 183.37 122.09 61.26 33.76 12.53 4.46 1.64 0.059 1.000 

EWMA 0 0.05016143 284.39 231.04 168.14 92.87 53.55 20.48 7.20 2.37 0.087 1.472 

 

 

0.10 

Extended 

EWMA 

0.015 0.0725189 277.97 222.67 159.43 86.41 49.34 18.74 6.59 2.20 0.080 1.159 

0.03 0.0572857 270.36 213.07 149.80 79.54 44.97 16.96 5.98 2.04 0.074 1.071 

0.045 0.04539605 263.46 204.65 141.63 73.93 41.47 15.56 5.50 1.91 0.069 1.000 

EWMA 0 0.0922101 286.69 234.08 171.37 95.33 55.16 21.14 7.41 2.42 0.088 1.276 

 

 

0.15 

Extended 

EWMA 

0.015 0.1199609 282.50 228.55 165.52 90.89 52.24 19.92 6.99 2.30 0.084 1.124 

0.03 0.1019086 276.72 221.05 157.77 85.20 48.56 18.41 6.47 2.17 0.079 1.056 

0.045 0.08681223 271.37 214.34 151.05 80.41 45.52 17.18 6.05 2.05 0.075 1.000 

EWMA 0 0.14170883 289.05 237.24 174.76 97.94 56.88 21.84 7.64 2.46 0.090 1.208 

 

Trend SAR(2)4 

 

 

 

0.05 

Extended 

EWMA 

0.015 0.0220325 262.33 203.28 140.32 73.05 40.92 15.34 5.43 1.89 0.069 1.222 

0.03 0.01397751 250.30 189.21 127.29 64.53 35.72 13.30 4.72 1.70 0.061 1.095 

0.045 0.00889054 239.15 176.75 116.29 57.68 31.63 11.72 4.19 1.56 0.056 1.000 

EWMA 0 0.0348984 276.12 220.17 156.82 84.49 48.11 18.24 6.43 2.17 0.079 1.404 

 

 

0.10 

Extended 

EWMA 

0.015 0.0560806 270.20 212.78 149.46 79.28 44.80 16.89 5.95 2.03 0.074 1.137 

0.03 0.0444095 263.11 204.22 141.22 73.65 41.30 15.49 5.47 1.90 0.069 1.062 

0.045 0.0352529 256.82 196.67 134.08 68.90 38.37 14.33 5.07 1.80 0.065 1.000 

EWMA 0 0.071057 277.81 222.38 159.09 86.14 49.16 18.66 6.56 2.19 0.080 1.231 

 

 

0.15 

Extended 

EWMA 

0.015 0.0922742 273.88 217.47 154.17 82.61 46.91 17.74 6.24 2.10 0.076 1.103 

0.03 0.0786297 268.79 211.10 147.84 78.16 44.10 16.60 5.85 2.00 0.073 1.048 

0.045 0.067142 263.96 205.22 142.16 74.28 41.68 15.64 5.52 1.91 0.069 1.000 

EWMA 0 0.1085702 279.53 224.64 161.44 87.86 50.27 19.10 6.70 2.22 0.081 1.170 
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TABLE V 

COMPARING ARL1 VALUES ON EXTENDED EWMA (
1 20.05, 0.045 = = ) AND EWMA (

1 0.05 = ) CHARTS 

FOR TREND SAR(3)4 MODELS UNDER DIFFERENT LCL interval ( r = r ) and , AND GIVEN 

0 1 3 21, 0.5, 0.2, 0.25     = = = = = = −  WHEN ARL0 = 370 

 
 

 

Trend SAR(3)4 

 

 

LCL 

 

CC 

 

UCL 
1

   

AEQL 

 

PCI 1.0005 1.001 1.002 1.005 1.01 1.03 1.1 1.5 

r = 0 Extended 

EWMA 0.01113566 244.55 182.71 121.50 60.89 33.54 12.45 4.43 1.63 0.059 1.000 

EWMA 0.0439062 283.66 229.96 166.93 91.94 52.93 20.22 7.11 2.35 0.087 1.472 

r = 0.0005 Extended 

EWMA 0.0116365 243.82 181.85 120.72 60.40 33.25 12.34 4.40 1.62 0.058 1.000 

EWMA 0.0444294 282.94 229.08 166.06 91.30 52.52 20.06 7.06 2.34 0.085 1.463 

r = 0.005 Extended 

EWMA 0.0161438 236.25 173.61 113.62 56.11 30.74 11.43 4.14 1.59 0.057 1.000 

EWMA 0.0491389 277.49 221.92 158.61 85.82 49.00 18.66 6.63 2.27 0.082 1.452 

r = 0.075 Extended 

EWMA 0.08624068 113.46 67.37 37.50 16.57 9.00 3.76 1.89 1.23 0.042 1.000 

EWMA 0.1224766 167.39 108.45 63.97 29.20 15.78 6.24 2.77 1.55 0.053 1.276 

r = 0.1 Extended 

EWMA 0.11127125 78.74 44.47 24.13 10.66 5.93 2.71 1.57 1.17 0.039 1.000 

EWMA 0.14871647 126.95 77.00 43.44 19.35 10.51 4.37 2.17 1.41 0.048 1.221 

 

 

TABLE VI 

TREND SAR(P)L MODEL ESTIMATION, MODEL FITS, AND WHITE NOISE TEST OF RESIDUALS FOR GOLD 

AND SILVER PRICES SERIES 

 
 

 

Series 

 

Models 

 

Variables 

 

Estimate 

 

SE. 

 

t 

 

Sig. 

Model fits 

RMSE MAPE 

 

 

 

 

Gold prices 

 

Trend 

SAR(1)12 

Constant ( ) 10.396 0.773 13.444 <0.001  

 

2.338 

 

 

11.349 
SAR(1) (

1 ) 0.582 0.105 5.523 <0.001 

Trend (  ) 0.085 0.010 8.490 <0.001 

 

Trend 

SAR(2)12 

Constant ( ) 9.924 0.638 15.548 <0.001  

 

 

2.298 

 

 

 

10.829 

SAR(1) (
1 ) 0.822 0.124 6.648 <0.001 

SAR(2) (
2 ) -0.404 0.107 -3.787 <0.001 

Trend (  ) 0.087 0.009 10.247 <0.001 

 

 

 

 

Silver prices 

 

Trend 

SAR(1)12 

Constant ( ) 17.104 1.022 16.729 <0.001  

 

4.167 

 

 

16.242 
SAR(1) (

1 ) 0.412 0.087 4.728 <0.001 

Trend (  ) 0.058 0.012 4.840 <0.001 

 

Trend 

SAR(2)12 

Constant ( ) 16.416 0.885 18.546 <0.001  

 

 

4.140 

 

 

 

15.664 

SAR(1) (
1 ) 0.488 0.098 4.969 <0.001 

SAR(2) (
2 ) -0.242 0.091 -2.661 0.009 

Trend (  ) 0.063 0.011 5.870 <0.001 
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 TABLE VII 

WHITE NOISE TEST OF RESIDUALS FOR COMMODITY GOLD AND SILVER COMMODITY PRICES SERIES 

 
Series Exponential Mean (

0
 ) Kolmogorov-Smirnov Z   Sig. 

Gold prices  2.03917 0.596 0.087 

Silver prices 3.96541 0.904 0.388 

 

 

TABLE VIII 

COMPARING ARL1 VALUES ON EXTENDED EWMA AND EWMA CHARTS FOR TREND SAR(2)12 MODEL USING 

GOLD (UNIT: 1,000 USD) AND SILVER (UNIT: USD) COMMODITY PRICES SERIES GIVEN ARL0 OF 370 AND 500 

 
 

 

 

Gold prices series with parameters 
1 1 22.03917(1 ), 9.924, 0.087, 0.822, 0.404     = + = = = = −  under ARL0 OF 370 

 

 

 

1  

 

CC 

 

2  

 

UCL 
   

AEQL 

 

PCI 0.0005 0.001 0.002 0.005 0.01 0.03 0.1 0.5 

 

 

 

0.05 

Extended 

EWMA 

0.015 0.01357723 232.23 169.33 109.99 53.90 29.41 10.87 3.90 1.49 0.053 1.351 

0.03 0.00296934 199.60 136.80 84.12 39.30 21.07 7.76 2.88 1.25 0.044 1.116 

0.045 0.00071203 173.72 113.66 67.36 30.58 16.25 6.02 2.32 1.14 0.039 1.000 

EWMA 0 0.0641467 272.65 215.90 152.59 81.50 46.21 17.47 6.16 2.09 0.076 1.927 

 

 

 

0.10 

Extended 

EWMA 

0.015 0.05904694 251.85 190.99 128.90 65.56 36.34 13.53 4.80 1.72 0.062 1.298 

0.03 0.02711693 232.55 169.66 110.26 54.06 29.50 10.90 3.91 1.49 0.053 1.117 

0.045 0.01254158 215.21 151.84 95.72 45.66 24.66 9.08 3.31 1.35 0.048 1.000 

EWMA 0 0.130267 274.22 217.91 154.62 82.94 47.12 17.83 6.27 2.12 0.077 1.610 

 

 

 

0.15 

Extended 

EWMA 

0.015 0.1160131 259.71 200.17 137.39 71.09 39.71 14.85 5.24 1.84 0.066 1.242 

0.03 0.0685221 245.71 184.00 122.62 61.58 33.95 12.60 4.48 1.64 0.059 1.101 

0.045 0.0407197 232.82 169.95 110.50 54.20 29.59 10.93 3.92 1.49 0.053 1.000 

EWMA 0 0.1986 275.90 220.02 156.72 84.43 48.07 18.20 6.39 2.14 0.078 1.458 
 

Silver prices series with parameters 
1 1 23.96541(1 ), 16.416, 0.063, 0.488, 0.242     = + = = = = −  under ARL0 OF 500 

 

 

 

 

0.05 

Extended 

EWMA 

0.015 0.00766377 240.16 158.18 94.18 42.83 22.70 8.28 3.04 1.29 0.045 1.193 

0.03 0.00211138 208.44 131.82 76.15 33.87 17.84 6.54 2.48 1.17 0.041 1.071 

0.045 0.000635135 183.62 112.62 63.69 27.93 14.67 5.42 2.13 1.10 0.038 1.000 

EWMA 0 0.0286126 280.50 195.03 121.35 57.19 30.69 11.19 3.99 1.51 0.054 1.424 

 

 

 

0.10 

Extended 

EWMA 

0.015 0.02950032 259.38 175.26 106.49 49.21 26.22 9.55 3.45 1.38 0.049 1.149 

0.03 0.01523762 240.27 158.28 94.25 42.87 22.72 8.28 3.04 1.29 0.045 1.063 

0.045 0.0079021 223.34 143.96 84.32 37.88 20.01 7.31 2.72 1.22 0.043 1.000 

EWMA 0 0.0573313 281.08 195.59 121.79 57.43 30.83 11.24 4.00 1.51 0.054 1.270 

 

 

 

0.15 

Extended 

EWMA 

0.015 0.0552604 266.62 181.93 111.43 51.83 27.68 10.08 3.62 1.42 0.051 1.115 

0.03 0.0354824 252.97 169.46 102.24 46.98 24.99 9.10 3.30 1.35 0.048 1.051 

0.045 0.0228216 240.40 158.39 94.33 42.90 22.74 8.29 3.04 1.29 0.045 1.000 

EWMA 0 0.0862591 281.61 196.13 122.21 57.67 30.96 11.29 4.02 1.52 0.054 1.197 
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Fig. 1. ARL1 values on Extended EWMA with different 2  and EWMA charts for trend SAR(2)12 model when given ; (A) 

1 = 0.05 , (B) 1 = 0.10 ,  and (C) 1 = 0.15  using Gold prices series from January, 2013 to Apirl, 2025 under ARL0 = 370 
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Fig. 2. ARL1 values on Extended EWMA with different 2  and EWMA charts for trend SAR(2)12 model when given ; (A) 

1 = 0.05 , (B) 1 = 0.10 ,  and (C) 1 = 0.15  using Silver prices series from January, 2013 to Apirl, 2025 under ARL0 = 500 
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Fig. 3. AEQL and PCI values on Extended EWMA with different   and EWMA charts for trend SAR(2)12 model by using 

(A) Gold commodity prices when given ARL0 of 370 , and (B) Silver commodity prices when given ARL0 of 500 

 

To be more specific, lower AEQL values show that the 

chart creates fewer false alarms while retaining a high 

detection rate. This results in an improvement in the 

economic efficiency of process monitoring. Additionally, 

PCI values that are close to or equal to 1 provide further 

evidence that the process continues to operate well within 

the constraints of the specification while being controlled by 

the extended chart. Additionally, a rise in the lower control 

limit (LCL) results in a minor enhancement of the chart's 

sensitivity, which is represented in the AEQL and PCI 

metrics. The chart becomes more responsive to small shifts 

as the LCL is increased, which enables the detection of 

subtle process changes to occur more quickly without 

considerably increasing the number of false alarms 

encountered. 

IV. APPLICATIONS TO REAL-WORLD DATA 

Due to the fact that they serve as dependable stores of 

value, gold and silver are vital components of the 

international monetary system. This is especially true during 

times of economic turbulence. Their market prices are 

influenced by a wide variety of economic and geopolitical 

events, including variations in interest rates, currency 

movements, and trends in inflation. In order to protect 

themselves from potential financial losses, investors and 

institutions frequently make use of these metals as hedging 

strategies.  

 

 

 

 

A consequence of this is that fluctuations in their pricing 

have the potential to impact decisions about monetary 

policy, investment behavior, and the overall stability of the 

economy. The result of this is that price series of gold and 

silver are utilized as input data for the purpose of monitoring 

variations through the utilization of control chart 

approaches. 

Two commodity price series were the primary focus of 

the investigation. These were gold (measured in units of one 

thousand US dollars) and silver (measured in US dollars). 

A real data analysis was conducted using monthly 

observations fitted to trend SAR(P)L models. Two case 

studies were examined, both employing the extended 

EWMA control chart and comparing its performance to that 

of the traditional EWMA control chart.  

The dataset consists of 148 monthly observations of gold 

and silver prices, covering the period from January 2013 to 

April 2025. These time series were retrieved from the 

website   https://th.investing.com/commodities. 

Table VIII presents the findings from the analysis of the 

real data. Fitting the trend SAR model was accomplished 

with the help of SPSS, and the calculated coefficients of the 

model are shown in Table VI. The model that gave the 

lowest values for both of these criteria was selected as the 

winner. The Root Mean Squared Error (RMSE) and the 

Mean Absolute Percentage Error (MAPE) were the two 

metrics that were utilized in the selection process. To 
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determine whether the residuals follow an exponential 

distribution, researchers evaluated and applied the 

Kolmogorov–Smirnov (K–S) test. The goodness-of-fit test 

yielded the following findings, as presented in Table VII. 

As a result of the aforementioned test, the model was 

derived as follows: 
 

Dataset I : Gold Prices series 

It was determined as trend SAR(2)12 model, its equation is  

expressed as follows: 
 

 

12 24
9.924 0.087 0.822 0.404

t t t t
Y t Y Y 

− −
= + + − +   

where (2.03917)t Exp  
 

Dataset II : Silver Prices series 

It was determined as trend SAR(2)12 model, its equation is  

expressed as follows: 
 

 

12 24
16.416 0.063 0.488 0.242

t t t t
Y t Y Y 

− −
= + + − +   

where (3.96541)t Exp  

 
Table VIII presents the ARL1 results from fitting the trend 

SAR(2)12 model to the gold price series (with an initial ARL0 

set at 370) and the silver price series (with an initial ARL0 

set at 500). The analysis of lower and upper control limits 

was performed over the interval [0.0001,UCL], with s and 

s  representing the upper limits for the extended EWMA 

and conventional EWMA charts, respectively. The findings 

demonstrate that the extended EWMA control chart with a 

fixed value of 1 0.05 =  consistently outperformed the 

alternatives. When evaluated individually by 1 , the 

extended EWMA chart with the optimal fixed 2 0.045 =  
yielded the lowest ARL1, outperforming both other extended 

EWMA configurations and the conventional EWMA chart. 

Furthermore, a reduction in 2 , particularly as it approaches 

zero, was associated with a decrease in ARL₁. In light of this, 

it appears that the responsiveness in detecting shifts in the 

process mean has been improved. Across all of the scenarios 

that were investigated, these tendencies were consistently 

seen. An illustration of the ARL1 values that match the 

different shift magnitudes can be found in Figures 1 and 2. 

This set of graphs provides a visual representation of the 

performance of various configurations of the extended 

EWMA control chart under a variety of different 

circumstances. 

 The findings demonstrate that the extended EWMA chart 

with a fixed value of 1 0.05 = consistently outperformed 

other alternatives. When evaluated individually by 1 , the 

configuration with the optimal fixed value of 2 0.045 =  and 

1 0.05 =  resulted in distinctly lower ARL₁ values across all 

shift magnitudes, indicating faster detection of process 

changes. In contrast, when using 1 0.10 =  or 1 0.15 = , the 

ARL₁ values across various scenarios tended to converge and 

showed minimal variation, implying lower sensitivity. This 

was particularly evident for 1 0.15 = , where the ARL₁ 

curves were closely clustered, regardless of shift size. In 

summary, the configuration with 1 0.05 =  demonstrated 

superior detection performance and sensitivity, making it a 

more effective choice for monitoring small to moderate 

process shifts.     

 It is important to note that EEWMA_1, EEWMA_2, and 

EEWMA_3 correspond to 2 values of 0.015, 0.03, and 

0.045, respectively. Upon examining the AEQL and PCI 

values, the results demonstrate the effectiveness of the 

extended EWMA chart (with fixed 1 0.05 =  and 2 0.045 = ) 

as it consistently yields the lowest AEQL values and a PCI 

score of 1 for every 1 based on both two dataset. The 

effectiveness of the control chart is supported by the AEQL 

and PCI values, as shown in Fig.3. Besides, the results were 

also consistent with those obtained from the simulated data. 
This finding is consistent with the results of Karoon et al. 

[29], who previously investigated control charts under a 

SAR(P)L model without incorporating the trend component 
 Accordingly, Fig. 4 illustrates the performance of the 

control charts in detecting process shifts during monitoring, 

based on the dataset I: the gold prices series, by plotting the 

control chart graphs. The results show that the extended 

EWMA control chart (with fixed 1 0.05 =  and 2 0.045 = ), 

developed using the trend SAR(2)12 model and with an 

initial in-control ARL set at 370, signaled the first out-of-

control condition at the 92nd observation. In contrast, the 

traditional EWMA control chart (with fixed 1 0.05 =  and 

2 0 = ) signaled the first out-of-control condition at the 

140th observation. These results are illustrated in Fig. 4 (A). 

Similarly, for Dataset II: the silver price series, the control 

chart graphs were plotted to evaluate monitoring 

performance. The extended EWMA control chart (with 

fixed 1 0.05 =  and 2 0.045 = ), developed using the same 

trend SAR(2)12 model as previously described but initialized 

with an in-control ARL of 500, detected the first out-of-

control signal at the 1st observation. In contrast, the 

traditional EWMA chart (with fixed 1 0.05 =  and 2 0 = ) 

detected the shift later, at the 143rd observation. These 

results are illustrated in Fig. 4 (B). The results of this study 

highlight the superior responsiveness of the extended 

EWMA control chart in detecting small process shifts more 

promptly than the traditional EWMA chart, particularly in 

datasets exhibiting autocorrelation. 

V. CONCLUSION 

 The performance of the control charts was assessed using 

the Average Run Length (ARL). The explicit formulas serve 

as an effective alternative for evaluating the ARL in trend 

SAR(P)L processes applied to extended EWMA control 

charts. Although the ARL values obtained from the explicit 

formulas closely match those derived from the Numerical 

Integral Equation (NIE) method, with Absolute Percentage 

Relative Error (APRE) values approaching zero, the explicit 

formulas provide a significant advantage in terms of reduced 

computational time. For small shift sizes, the ARL obtained 

from the explicit formulas on the extended EWMA control 

chart with fixed 1
 = 0.05 demonstrates a high level of 

sensitivity, enabling earlier detection of process changes 

compared to other configurations.  
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Fig. 4. Performance of Extended EWMA () and EWMA charts for detecting changes based on trend SAR(2)12 model by 

using (A) Gold prices series , and (B) Silver prices series, covering the Period from January 2013 to April 2025
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 Moreover, A decrease in ARL1 correlated with a decrease 

in 2
  , especially as it gets closer to zero, suggesting 

increased responsiveness in identifying changes in the 

process mean. These patterns were consistently observed 

across all scenarios examined under the trend SAR(P)L 

model. In addition, AEQL and PCI were utilized to check 

the effectiveness of ARL when it was running on the 

extended EWMA chart (with fixed 1
 = 0.05). A decrease in 

2
 , particularly as it approaches zero, was found to further 

enhance detection capability. When compared to the 

traditional EWMA chart, the extended EWMA control chart 

persistently exhibits higher sensitivity in identifying process 

shifts. All the tested scenarios, including shifts of varying 

degrees of magnitude, demonstrate this. The capacity of this 

system to assign greater weight to new observations while 

keeping memories of previous data is the reason for its 

improved performance. This feature makes it particularly 

useful in contexts that are dynamic or trending. When 

applied to data from the actual world that follows a pattern, 

the findings also suggest that the explicit formula method is 

effective. The results that are produced by the Seasonal 

Autoregressive model of order P and seasonal lag L 

(SAR(P)L) are extremely similar to the results that are 

created by simulated datasets. This consistency highlights 

the resilience and practical application of the analytical 

technique that has been provided, particularly in real-world 

situations such as economics, energy, and environmental 

monitoring, where seasonal trends and autocorrelation are 

present with respect to the data.  

 Using real-world time series data for gold and silver 

prices, this study further evaluated the efficiency of control 

charts in detecting shifts in process means. The data was 

collected from the market. According to the findings of the 

analysis, the expanded EWMA control chart, in particular 

when it is implemented with the explicit analytical formula, 

displays a considerable improvement in both the sensitivity 

and speed of detecting tiny mean shifts in comparison to the 

regular EWMA control chart. There are several applications 

that involve financial and economic indicators, such as 

commodity market surveillance, investment risk monitoring, 

and economic trend forecasting, where the early 

identification of minor changes can be vital. This 

improvement is especially relevant in these applications. 

 The empirical findings have demonstrated the practical 

applications of the suggested method in the field of financial 

time series analysis. This underscores the method's potential 

for broader application in fields typified by non-stationary, 

seasonal, and autocorrelated data structures. The approach 

could be extended to include more financial variables such 

as crude oil prices, exchange rates, and inflation indices in 

the future research directions. This would allow for an 

evaluation of the generalizability, scalability, and robustness 

of the model regardless of the market conditions that are 

present. Even further, the incorporation of adaptive control 

charts or other time-series-based modeling techniques has 

the potential to significantly improve the real-time 

responsiveness and dependability of change detection 

mechanisms, particularly in situations that are volatile and 

dynamic. 

 

 Nevertheless, researchers examined the efficiency of 

control charts in identifying shifts in process methods by 

utilizing actual data from gold and silver price series. When 

compared to the conventional EWMA chart, the results 

demonstrate that the extended EWMA control chart, 

particularly when strengthened by the explicit formula 

approach, provides a higher level of sensitivity and a more 

rapid discovery of even minute shifts. This research is 

especially useful for monitoring financial and economic 

indicators in situations when early identification is essential, 

such as in the trading of commodities, the evaluation of 

investment risk, and the forecasting of economic conditions. 

For the purpose of determining the generalizability and 

robustness of the strategy, it is possible that future research 

will extend this approach by applying it to other financial 

time series. These time series could include crude oil prices, 

currency rates, and inflation indices. Utilizing adaptive 

control charts or another time series-based model may 

further enhance the capability to identify changes in real 

time within dynamic and unpredictable environments. 

APPENDIX 

This study applies Banach’s Fixed Point Theorem [33] to 

demonstrate the existence and uniqueness of the ARL 

solution for the extended EWMA control chart under the 

trend SAR(P)L process. The procedure is outlined as 

follows. Define the operator T on the space of continuous 

functions such that its fixed point corresponds to the desired 

ARL solution, as presented in Eq. (13) below. 

( ) ( ) 2 1 1

1 1

1
( ) 1 .

s

L

r

Y
T f d

  
     

 

−
 −  +

= + − 
 

     (13) 

 

If the operator T is a contraction mapping, then the             

fixed-point equation ( )( ) ( )T    =  admits a unique 

solution. The theorem can be applied as follows to 

demonstrate the existence of Eq. (13) and its unique solution 

[34,25]. 

 

Theorem 1 Banach’s Fixed-point Theorem: Let Y be a 

complete metric space and :T Y Y→  be a contraction 

mapping with contraction constant [0,1)k   such that 

( ) ( )1 2 1 2( ) ( ) ( ) ( )T T k       −  − , 
1 2( ) , ( ) Y     .  

Then there exists a unique ( ) Y    such that 

( )( ) ( )T    = , i.e., a unique fixed-point in Y  . 

 

Proof: Let T defined in (13) is a contraction mapping 

for
1 2( ) , ( ) [ , ]r s     . 

1 2( ( ) ) ( ( ) )T T   


−
1 2

[ , ]

sup ( ) ( )
r s

   


= −  

( ) ( )( ) ( )( )[ , ] 01 2

1

( )
sup

s

r s

r

d


     

 



= −    

( ) ( )( ) ( )( )[ , ] 01 2

1

( )
sup

s

r s

r

d


     

 



= −    

( ) ( ) ( ) ( )( )[ , ] 0 01 2
sup ( ) ( ) ( )r s T T s r      

 −   −   
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