

Abstract—Current multi-modal recommendation techniques

often integrate various modal attributes into item ID
embeddings to improve item representation, yet it is difficult to
identify possible semantic structural relationships among items.
Therefore, this paper proposes a multi-modal recommendation
algorithm based on graph structure learning. Initially, the
algorithm independently discerns item interconnections for
each modality via a modal perception structure learning layer,
then consolidates various modalities to form a latent item graph.
Following this, the graph structure optimizer is employed to
remove noise from the user-item interaction graph, and the
relationship among higher-order items is integrated into the
item representation via graph convolution. Ultimately, the
detailed representations of items are integrated into the
cooperative filtering framework and merged with Content ID
contrastive learning activities to realize synergistic benefits
between content and ID. Experimental data from three real
datasets indicate a notable enhancement in the recommendation
performance of this algorithm.

Keywords: recommendation algorithm, multi-modal, graph
structure, contrastive learning

I. INTRODUCTION

n recent years, graph-based recommendation systems [1,2]
have integrated advanced connectivity into the embedding

procedure to enhance representation learning, leading to
significant success. Lately, there have been numerous efforts
to amalgamate diverse modal content within graph-oriented
recommendation frameworks. MMGCN [3] establishes
user-item interaction graphs for different modalities, obtains
user preferences for different modalities, and models user and
item representations more accurately. Following MMGCN,
GRCN [4] employs a variety of features to enhance the graph
of user-item interactions, pinpointing incorrect positive
responses and reducing related noise edges. LATTICE [5]
employs the advanced interaction semantics inherent in the
user-item graph along with the potential semantics of item
content derived from the item's structure. HUIGN [6]
developed an interactive graph of items, with edges
representing item pairs engaged by a single user. HUIGN is
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capable of extracting user intentions at various stages by
segmenting the item graph.

Despite the success of earlier efforts, current research
has not been able to thoroughly simulate the relationships
between items, a crucial aspect in recommendation systems
[7]. Particularly, the co-occurrence of high-order items, users,
and items is the sole factor taking into account cooperative
relationships [8]. However, the semantic relationships that
reflect item content information have not been explicitly
modeled. In addition, most recommendation systems
typically use ID to represent users and items, which poses a
cold start problem. Considering the association between
items and rich multi-modal content features in multimedia
recommendation, there are rich semantic relationships in
multi-modal content, which helps recommendation models to
comprehensively discover candidate items. Therefore, by
learning the underlying semantic item-item structure and
content ID (C-ID) contrastive learning task behind
multi-modal content, more content embeddings and broader
ID embeddings can be obtained, further improving
recommendation performance.

Compared with other multi-modal recommendation
algorithms, the main contributions of the multi-modal
recommendation algorithm based on graph structure learning
proposed in this paper include:

1) The modal perception structure learning layer enables
independent learning of item relationships for each modality,
followed by aggregating various modalities to form a latent
item graph that captures the hidden semantic structural
connections among items.

2) By performing graph convolution operations, the
affinity between high-order items is explicitly injected into
the item representations. These rich item representations are
embedded into existing collaborative filtering models and
combined with Content ID contrastive learning tasks to
achieve complementary enhancement.

3) The tests was performed on three publicly accessible
datasets, revealing that the algorithm introduced in this study
exhibits commendable recommendation efficacy.

II. RELATED WORK

A Contrastive learning

Self-supervised learning, a nascent technology, acquires
representations via self-defined supervised signals from
unprocessed data, independent of annotated labels [9].
Contrastive Learning (CL) has evolved into a significant
segment of self-supervised learning, focusing on creating
strong and distinct representations by clustering positive
samples nearer and negative ones more distantly [10]. In
order to generate negative samples of visual data, a
hierarchical enhancement process was employed, which
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includes operations such as color jitter, random flipping,
cropping, rotation, and resizing [11]. Recent advancements
have broadened the scope of self-supervised learning to
include graph representation learning. Velickovic and others
[12] presented a goal-oriented function to assess the mutual
information (MI) linking global graph embeddings with local
node embeddings. GraphCL [13] and GRACE [14] suggested
a contrastive goal at the node level to streamline earlier
studies. Furthermore, Zhu and colleagues [15] suggested a
method for adaptive enhancement contrast, integrating
different prior assumptions in the graph's topology and
semantics. Broadly, the majority of CL studies are distinct
from one another regarding the creation of negative samples
and contrasting targets.

B Graph structure learning

GNN have shown remarkable proficiency in the analysis
of graph-structured data and are extensively utilized across
diverse graph analysis areas, such as classifying nodes,
predicting links, retrieving information, among others.
Nonetheless, the majority of GNN techniques are acutely
attuned to graph structure quality, often necessitating an ideal
graph structure, a challenge to develop in real-world
scenarios [16]. The iterative nature of GNN, which
accumulates data recursively from a node's vicinity to
determine its embedding, leads to a cascading impact. Minor
disturbances within the graph will spread to adjacent nodes,
influencing the embeddings of numerous other nodes.
Furthermore, numerous practical uses exist where the
original graph configuration is absent. Lately, there's been a
surge in literature focusing on the core concept of Graph
Structure Learning (GSL), targeting the collective learning of
refined graph frameworks and their respective
representations. Three varieties of GSL techniques exist:
metric learning, probabilistic modeling, and direct
optimization approaches. Within some suggestions, despite
the inherent ability of user-item interactions to create
two-part graphs, the exploration of item-item connections
remains infrequent. This study utilizes a metric learning
approach to depict edge weights as indicators of distance
between two endpoint nodes, effectively modeling the item
relationship. This method is ideal for multimedia
recommendation due to its capacity to hold detailed content
information for assessing the semantic connection between

two items.

III. SYMBOL DEFINITION

In this paper, 𝑈,𝐼(|𝐼|=𝑁) symbolizes sets of users and
items, respectively. Every user 𝑢 ∈ 𝑈 is linked to a group of
items 𝐼𝑢 , each receiving positive responses, signifying a
preference rating 𝑦𝑢𝑖 = 1 for 𝑖 ∈ 𝐼𝑢. 𝑥𝑢, 𝑥𝑖 ∈ ℝ𝑑 represents the
input ID embedding for u and i, with d being the dimension of
embedding. Beyond the interaction between users and items,
multi-modal attributes also function as informational content
for items. Depict the modal attributes of item i as ei

m ∈ ℝdm ,
with 𝑑𝑚 symbolizing the feature dimensions, 𝑚 ∈ 𝑀 is the
modality, and M is the collection of modalities. Multi-modal
recommendation aims to prioritize user choices based on the
anticipated preference score yොui, thereby precisely forecasting
user preferences. This paper focuses solely on the visual and
textual formats depicted by M = v, t .

IV. METHODOLOGY

The recommendation algorithm based on latent item
graph structure learning (LIGSL) proposed in this paper is
divided into five parts: latent structure graph construction
module, graph structure optimizer module, graph convolution
module, feature information fusion module, and downstream
collaborative filtering method. The structure of the algorithm
is shown in Figure 1.

A Construction of potential structural graph

Features with multiple modes offer detailed and
significant information about the content of items. Initially,
for every modality m, the initial kNN modality perception
map Sm is created using the original characteristics.
Assuming that items with similarities tend to interact more
than those with dissimilarities, the semantic link between two
items is measured by their similarity. Widely used techniques
for assessing node resemblance encompass cosine similarity,
kernel-based functions, and mechanisms of attention. In this
paper, a simple cosine similarity without parameters was
chosen. The similarity matrix Sm ∈ ℝN×N is shown in
equation (1):

𝑆𝑖𝑗
𝑚 =

𝑒𝑖
𝑚 ⊤

𝑒𝑗
𝑚

∥𝑒𝑖
𝑚∥∥𝑒𝑗

𝑚∥
(1)

Fig. 1. LIGSL Framework Diagram
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where Sij
m represents the i-th row and j-th column of

matrix Sm ∈ ℝN×N. Additionally, apply kNN sparsification to
convert the weighted Sm into an unweighted matrix S෠ ij

m , as
depicted in the equation(2). In other words, for every item i,
solely the linkage of its most similar edges is preserved.

𝑆෠𝑖𝑗
𝑚 =

1,     𝑆𝑖𝑗
𝑚 ∈ top-𝑘(𝑆𝑖

𝑚)

0,     otherwise
(2)

Every component in S෨m can be either 0 or 1, with 1
symbolizing a possible link between two elements.
Normalize the discretized adjacency matrix S෨m to S෨m =

(Dm)−
1
2S෠m(Dm)−

1
2 , where Dm ∈ ℝN×N is the diagonal matrix

of S෨m and 𝐷𝑖𝑖
𝑚 =

𝑗
𝑆෠𝑖𝑗
𝑚∑ . By employing the derived

modality-aware adjacency matrix, a prospective item-item
graph is formed through the aggregation of each modality's
structure, as depicted in the equation (3):

S =
𝑚∈𝑀

𝛼𝑚𝑆෨
𝑚∑ (3)

where S ∈ ℝN×N, 𝛼𝑚 represents the crucial score for the
modality, while M denotes the collection of modalities. One
can ascertain the significance score using parameter
functions. In this instance, we simplify the model's
parameters by incorporating a hyperparameter (symbolizing
the significance of visual modality in the creation of S), as
depicted in the equation:

𝛼𝑡 = 1 − 𝛼𝑣 (4)
If user u interacts with item i, set the value of each entry

𝐴𝑢𝑖 in A to 1, otherwise set the value of 𝐴𝑢𝑖 to 0.

B Diagram Structure Optimization

Drawing inspiration from reference [17], optimizing
graph structure involves reducing the graph's size by
eliminating surplus edges based on probabilities sensitive to
degree. Depict the user-item diagram using G = (V,E), with
V representing the set of nodes and E the set of edges. In the
user-item graph, the count of users and items stands at M and
N, respectively, M + N = |V| , with ⋅ indicating the set's
cardinality. Formulate a balanced adjacency matrix R ∈
ℝM×N using the user-item interaction matrix E, as depicted in
the equation (5):

𝐴 =
0 𝑅
𝑅⊤ 0

(5)

Given a specific edge ek ∈ E , calculate its probability

pk =
1

ωi ωj
, wherein ωi and ωj represent the degrees of nodes

i and j in graph G. Typically, cut a specific percentage of
edges within the graph. Consequently, select edges from a
polynomial distribution characterized by index n and

parameter vector 0 1 1, , , Ep p p p < > . Thereby significantly

reducing the likelihood of sampling highly connected nodes'
edges in the graph. In other words, there's a higher probability
of trimming these edges in G. Subsequently, sample these
edges to form a symmetric adjacency matrix Aρ. In line with
the earlier proposed item-item graph, a normalization process
was applied to Aρ , yielding result A෡ρ . Echoing DropEdge
[18], LIGSL adjusts the user-item graph and progressively
standardizes the sampled adjacency matrix throughout each
training phase. Yet, for deducing models, the initial
normalized adjacency matrix A෡ = D−1/2AD−1/2 is employed.

C Graph Convolution

Once the potential structure is established, graph
convolution is executed by integrating item affinity into the

embedding space, enhancing the learning of item
representations. The process of graph convolution may be
viewed as the dissemination and compilation of messages.
Through the dissemination of item representations from
adjacent items, an item is capable of consolidating data in its
immediate vicinity. Furthermore, the arrangement of several
graph convolutional layers enables the capture of complex
item-item relationships.

Utilizing straightforward message dissemination and
grouping techniques, bypassing feature alteration and
non-linear activation, proves to be both efficient and
computationally sound [19]. Within the l ayer, the equation
illustrates how messages are transmitted and aggregated(6):

ℎ
𝑖
(𝑙)

=
𝑗∈𝑁(𝑖)

 ෍ 𝐴𝑖𝑗ℎ𝑗
(𝑙−1) (6)

In this context, N(i) represents the item next to, and ℎi
(l)

denotes the l-th layer's depiction of item i. Envision input
item ℎi

(0) as its respective ID embedding vector 𝑥𝑖. Using item
ID embedding as input representation instead of multimodal
features, given that graph convolution directly measures
item-item affinity. Post layering L layers, the encoding of
complex item-item relationships derived from diverse modal
data proves advantageous for subsequent collaborative
filtering techniques.

D Feature information fusion

Employing an attention mechanism to merge various
item embedding modalities 𝐻(𝐿)

𝑚 , excluding the index (L), and
utilizingℎi

m to depict the i-th row of H(L)
m , representing the

graph convolution's output embedding for item i. The
significance of each modality linked to item i is depicted in
the equation(7):

𝑤𝑖
𝑚 = 𝑞⊤tanh (𝑊ℎ𝑖

𝑚 + 𝑏) (7)
where in q ∈ ℝd symbolizes the attention vector, W ∈

ℝd×d and b ∈ ℝd denote the weight matrix and the bias vector.
All modalities are subject to these specified parameters. Once
the significance of various modalities is determined,
standardize them to derive weight coefficients, as illustrated
in the equation(8):

𝛼𝑖
𝑚 =

exp (𝑤𝑖
𝑚)

𝑚=1

|𝑀|
 ෍ exp (𝑤𝑖

𝑚)
(8)

Then, the multi-modal fusion embedding of item i is
shown in equation (9):

ℎ𝑖 = 𝑚=1
𝑀 𝛼𝑖

𝑚ℎ𝑖
𝑚∑ (9)

E Combining collaborative filtering

LIGSL obtains representations of items via various
modal features and amalgamates them with ensuing
cooperative filtering methods to mimic user-item interactions.
The flexibility of this model enables it to serve as a
ready-to-use element in diverse collaborative filtering
methods.

Depict the results of user and item embeddings using
joint filtering techniques as x෤u, x෤i ∈ ℝd , and augment these
embeddings by incorporating normalized multi-modal fusion
item embeddings ℎi, as illustrated in the equation (10):

𝒙ෝ𝑖 = 𝒙෥𝑖 +
𝒉𝑖

∥𝒉𝑖∥2
(10)

Determine the preference score between user and item
by computing the inner product of user and enhanced item
embedding, as depicted in the equation(11):

𝑦ො𝑢𝑖 = 𝑥෤𝑢
⊤𝑥ො𝑖 (11)
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F Joint optimization

Employing Bayesian Personalized Ranking (BPR) loss
for determining pairwise rankings promotes the prediction of
observed items above those not observed. The BPR loss is
shown in equation (12):

ℒBPR =−
𝑢∈𝒰

 ෍
𝑖∈ℐ𝑢

 ෍
𝑗∉ℐ𝑢

 ෍ ln 𝜎 𝑦ො𝑢𝑖 − 𝑦ො𝑢𝑗 (12)

where 𝐼𝑢 represents observation items related to user u,
(𝑢, 𝑖, 𝑗) represents paired training triplets, where i ∈ Iu

represents a positive element and j ∉ Iu a negative element
derived from unseen interactions. The sigmoid function is
denoted as σ( ⋅ ).

To compensate for the cold start deficiency in ID
embedding by contrastive learning tasks with content ID,
given item i, first select several important ID embeddings and
connect them as 𝑖𝑑𝑖. Next, linearly transform the multi-modal
content embedding ℎi and the ID embedding 𝑖𝑑𝑖 into the same
vector space, as shown in equations (13) and (14):

𝐶𝑖 = 𝑓 ℎ𝑖 (13)

𝐼𝑖 = 𝑓'(id𝑖) (14)

where 𝑓 and 𝑓' are fully connected layers, while 𝐶𝑖 and 𝐼𝑖
are output embeddings with the same dimension. In the
following contrastive learning, they are positive samples of
each other. Randomly select H negative samples for each 𝐶𝑖
and 𝐼𝑖 from the training batch, defined as 𝐶𝑖

− =
{𝐶𝑖1

− ,𝐶𝑖1
− , . . . , 𝐶𝑖𝐻

− } and 𝐼𝑖
− = {𝐼𝑖1

− , 𝐼𝑖1
− , . . . , 𝐼𝑖𝐻

− } . Subsequently,
apply the negative logarithmic likelihood function to enhance
the resemblance of each positive pairs while reducing the
likeness of negative pairs, as demonstrated in equations (15)
and (16):

𝐿C2I =−
1

𝐵 𝑖=1

𝐵

 ෍ log 
exp 𝑠 𝐶𝑖,𝐼𝑖 /𝜏

exp (𝑠(𝐶𝑖,𝐼𝑖)/𝜏)+
𝑗=1

𝐻
 ෍ exp (𝑠(𝐶𝑖,𝐼𝑖𝑗

−)/𝜏)

(15)

𝐿I2C =−
1

𝐵 𝑖=1

𝐵

 ෍ log 
exp 𝑠 𝐼𝑖,𝐶𝑖 /𝜏

exp (𝑠(𝐼𝑖,𝐶𝑖)/𝜏)+
𝑗=1

𝐻
 ෍ exp (𝑠(𝐼𝑖,𝐶𝑖𝑗

−)/𝜏)

(16)

where s( ⋅ ) represents cosine similarity and 𝜏 is
temperature parameter. Finally, add their average to the
ranking loss, and the overall loss function is shown in
equation (17):

𝐿 = 𝐿BPR + 0.5𝛼 ⋅ (𝐿𝐶2𝐼 + 𝐿𝐼2𝐶) (17)

V. EXPERIMENTS

A Experimental datasets

Experiments using the Baby, Sports, and Clothing
categories from Amazon's publicly accessible dataset were
carried out to validate the algorithm's efficacy as suggested in
this study. Previous studies have extensively utilized the
Amazon review dataset [20, 21]. Each dataset's unprocessed
data undergoes preprocessing through a 5-core configuration
for both items and users. Table Ⅰ displays the statistical details
of these datasets.

B Evaluation indicators

The experiment employs Recall and NDCG techniques
to assess the algorithm's performance in recommending.

1) Recall
Formally, Recall@K is defined as shown in equation

(18):

Recall@𝐾 =
1

𝑈𝑇 𝑢∈𝒰𝑇
 ෍ 𝑖=1

𝐾
 ෍ 𝐼 𝐼𝑢

𝑟 𝑖 ∈𝐼𝑢
𝑡

𝐼𝑢
𝑡 (18)

where UT represents the user set included in the test data,
and Iu

r i symbolizes the i-th item recommended suggested
by the user u. The instruction function I · serves to
determine the quantity of suggested items within the set Iu

t ,
which represents the items in the test data that interact with
user u.

2) NDCG
NDCG@K is defined as shown in equation (19):

NDCG@𝐾 =
DCG@𝐾

IDCG@𝐾
= 𝑖=1

𝐾
 ෍
2𝑟𝑒𝑙𝑖−1

log2 𝑖+1

𝑖=1

𝑅𝐸𝐿𝐾
 ෍
2𝑟𝑒𝑙𝑖−1

log2 𝑖+1

(19)

where NDCG@K represents the ideal ranking scenario
where the item interacting with the user is located at the top.

C Comparison Models

The effectiveness of LIGSL is demonstrated through a
comparison with various recommendation models, such as
the universal CF recommendation model and the multi-modal
recommendation model.

1) BPR: A model for matrix factorization refined using
Bayesian pairwise ranking loss.

2) VBPR: Enhanced the traditional MF structure by
integrating visual elements into the BPR loss process.
Following earlier studies, merge the item's multi-modal
attributes to create its visual characteristics, utilizing these
elements for learning user preferences.

3) LightGCN: Presented here is a streamlined graph
convolutional network, exclusively executing linear
propagation and aggregation among adjacent nodes.
Calculate the mean of the hidden layer embeddings to
ascertain the ultimate anticipated user and item embeddings.

4) GRCN: Educating enhanced graphs through the lens
of user and item depictions. Following the enhancement of
the graph, graph convolution is executed to derive depictions
of users and items.

5) DualGNN: Develop a supplementary user-user
correlation chart to improve user depiction in GCN.

6) LATTICE: Employing the structure of graphs to
uncover hidden semantic connections among items,
explicitly understood through their multi-modal attributes.

7) SLMRec: Incorporating autonomous learning into
suggestions for multimedia. The proposal includes three
varieties of data enhancement to uncover diverse patterns in
data, aiding in contrastive learning.

8) BM3: Introduced a new contrastive learning method
to guide multi-modal recommendation of user and item
representations, eliminating the need for negative samples.

9) MMGCN: Merges the various representations created
by GCN across different item modalities for the purpose of
recommendation.

D Experimental setup

Based on PyTorch to implement the algorithm in this
paper, in order to ensure fair comparison, Xavier was used to
initialize parameters and Adam was used to optimize the
model [21]. Set the regularization coefficient to λ = 10−3, Set
the C-ID contrastive learning temperature parameter to τ =
0.5 and look for the edge trimming ratio ρ sensitive to degree,
ranging from {0.8, 0.9}. Regarding convergence, the initial
halt and the overall epoch are set at 20 and 1000.
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TABLE Ⅰ
STATISTICAL INFORMATION OF THE DATASETS

Dataset User Item Interaction Quantity Data Density

Baby 19,445 7,050 160,792 99.88%

Sports 35,598 18,357 296,337 99.95%

Clothing 39,387 23,033 278,677 99.97%

E Experimental results and analysis

Comparisons were made between the LIGSL and other
models using the Baby, Sports, and Clothing datasets, with
the findings presented in Table Ⅱ. The data in Table Ⅱ reveals
that LIGSL markedly outperforms alternative techniques.
Specifically, LIGSL has improved the evaluation metrics
Recall and NDCG in the Clothing, Sports, and Baby datasets.
This method first learns the relationships between items
independently for each modality through a modal perception
structure learning layer, and aggregates multiple modalities
to construct a latent item graph, which can learn rich semantic
relationships in multi-modal content. Subsequently, the graph
structure optimizer is used to denoise the user-item
interaction graph, and the affinity between high-order items
is injected into the item representation through graph
convolution, which can obtain high-order relationships
between items. Finally, the rich item representations are
embedded into the collaborative filtering model and
combined with Content ID contrastive learning tasks to
achieve complementary advantages between content and ID.
The experimental results also demonstrate the effectiveness
of the proposed method for joint loss optimization through
learning potential item-item relationships and contrastive
learning tasks.

F Ablation experiment

To investigate how various elements of LIGSL influence
performance, these versions of LIGSL were created to
analyze their impact via ablation experiments, using
LightGCN as the standard collaborative filtering technique in
this study:

1) LIGSL-cl: Remove C-ID and only use BPR loss for
contrastive learning task.

2) LIGSL-g: Remove the graph structure optimizer
module and use random edge dropout.

3) LIGSL-m: The downstream collaborative filtering
method is MF.

4) LIGSL-n: The downstream collaborative filtering
method is NGCF.

Figure 2 and Figure 3 displays the ablation experiment.
The illustration reveals that the content-aware approach
typically outperforms the collaborative filtering technique in
performance. This suggests that features involving multiple
modes offer detailed content insights about the item,
enhancing the precision of recommendations. On three
datasets, GRCN surpasses other baseline models due to its
ability to identify and reduce incorrect positive connections
in graphs depicting user-item interactions. Even with its
intricate design process, GRCN remains less effective than
LATTICE, underscoring the need for precise recording of
item-item connections. Current recommendation models,
cognizant of content, depend greatly on the multi-modal
features' representativeness to attain varying results across
diverse datasets.

The Clothing dataset, along with VBPR, MMGCN, and
GRCN, essential for uncovering item characteristics via
visual attributes, surpass all CF techniques, LightGCN
included. In the case of the remaining two datasets, where
multi-modal attributes might not directly disclose item
characteristics, these content aware methods have yielded
only minor enhancements. The efficacy of VBPR and
MMGCN falls short when compared to the cooperative
filtering technique of LightGCN. Unlike current
content-aware techniques, LIGSL distinguishes itself by
identifying possible item relationships in multi-modal
features instead of directly utilizing them as supplementary
data. The likelihood of item relationships is reduced based on
the representativeness of multi-modal attributes, thereby
enhancing performance. Compared with other variant models,
LIGSL consistently maintains the best recommendation
performance.

TABLE Ⅱ
PERFORMANCE COMPARISON

Algorithm
Baby Sports Clothing

R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20
BPR 0.0357 0.0575 0.0192 0.0249 0.0432 0.0653 0.0241 0.0298 0.0206 0.0303 0.0114 0.0138
VBPR 0.0423 0.0663 0.0223 0.0284 0.0558 0.0856 0.0307 0.0384 0.0281 0.0415 0.0158 0.0192

LightGCN 0.0479 0.0754 0.0257 0.0328 0.0569 0.0864 0.0311 0.0387 0.0361 0.0544 0.0197 0.0243
VBPR 0.0423 0.0663 0.0223 0.0284 0.0558 0.0856 0.0307 0.0384 0.0281 0.0415 0.0158 0.0192
GRCN 0.0532 0.0824 0.0282 0.0358 0.0599 0.0919 0.0330 0.0413 0.0421 0.0657 0.0224 0.0284

DualGNN 0.0513 0.0803 0.0278 0.0352 0.0588 0.0899 0.0324 0.0404 0.0452 0.0675 0.0242 0.0298
LATTICE 0.0547 0.0850 0.0292 0.0370 0.0620 0.0953 0.0335 0.0421 0.0492 0.0733 0.0268 0.0330
SLMRec 0.0521 0.0772 0.0289 0.0354 0.0663 0.9900 0.0365 0.0450 0.0442 0.0659 0.0241 0.0296
BM3 0.0564 0.0883 0.0301 0.0383 0.0656 0.0980 0.0355 0.0438 0.0422 0.0621 0.0231 0.0281

MMGCN 0.0421 0.0660 0.0220 0.0282 0.0401 0.0636 0.0209 0.0270 0.0227 0.0361 0.0120 0.0154
LIGSL 0.0642 0.1020 0.0339 0.0436 0.0721 0.1107 0.0390 0.0489 0.0640 0.0946 0.0344 0.0426
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Fig. 2. Recall@20 in ablation experiments

Fig. 3. NDCG@20 in ablation experiments

G Effects of parameters

This part delves into the impact of hyperparameters
within LIGSL on its recommendation performance.
Adjacency number 𝑘

In order to prevent the dispersion of messages from
disparate items, a diagram depicting the relationship between
items was created using just k items that were most alike.
Research indicates that k=10 typically represents the optimal
figure for the count of neighboring items, as depicted in
Figure 4, Figure 5 and Figure 6. While the ideal k value might
differ based on the situation, opting for lower values can
diminish interference from non-related neighbors.
Regularization coefficient 𝜆

LIGSL utilizes unprocessed text and visual features to
create possible item-item graphs. Initially, a experiment study
aims to clarify how multi-modal data affects LIGSL’s
efficiency by methodically altering the input of visual
elements from 0 to 1.0 throughout the creation of the graph. A
ratio of 0 signifies that item-item graph creation is solely
dependent on textual elements, while a ratio of 1.0 indicates

that the graph's construction depends exclusively on visual
aspects. On three datasets Baby, Sports, and Clothing, the
experimental results of Recall@20 and NDCG@20 are
shown in Figure 7 and Figure 8. The results indicate that
when constructing effective item-item graphs, textual
features contain more information than visual features.

VI. CONCLUSIONS

In this paper, a recommendation algorithm LIGSL based
on graph structure learning is proposed. The multi-modal
structure learning framework initiates with a modality-aware
graph learning layer that autonomously extracts intra-modal
relational patterns among items, subsequently synthesizing a
latent heterogeneous graph through cross-modal aggregation.
Subsequently, a graph topology refinement module is applied
to the user-item interaction network, implementing noise
suppression mechanisms to enhance the model's resilience
against sparse and noisy observational data. On this basis, the
model explicitly injects the affinity between high-order items
into the item representation through graph convolution
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operation. Finally, this method embeds these rich item
representations into existing collaborative filtering models
and combines them with content ID contrastive learning tasks
to leverage the representation advantages of content and ID,
achieving complementary enhancement. This algorithm has
certain theoretical significance and practical value. The
recommendation algorithm proposed in this paper does not

utilize the implicit information in knowledge graphs and
social networks. Future research will consider mining
relationships between items through knowledge graphs,
analyzing relationships between users through social
networks, and using knowledge graphs and social networks
to model users and items more accurately, in order to improve
the performance of recommendation algorithms.

Fig. 4. Performance comparison of different adjacency number k in dataset Baby

Fig. 5. Performance comparison of different adjacency number k in dataset Sports

Fig. 6. Performance comparison of different adjacency number k in dataset Clothing
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Fig. 7. Recall@20 of different visual feature proportions λ

Fig. 8. NDCG@20 of different visual feature proportions λ
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