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Abstract—To address the bottleneck problem of surface
defect detection of mechanical parts in industrial low-light
environments, this paper presents an improved EnlightenGAN
image enhancement algorithm that integrates an attention-
convolution dual-path module (ACmix) and a four-way split
excitation layer (SaE). Traditional detection systems face three
major challenges in low-light scenarios: the high reflective
nature of mechanical parts leads to the coexistence of local
overexposure and shadow occlusion, complex geometric struc-
tures cause multi-scale pseudo-edge interference, and high-
frequency confusion between sensor noise and defect texture.
Although the existing deep learning methods can improve the
detection accuracy under standard illumination, their perfor-
mance significantly declines in low light conditions due to
feature confusion and channel response attenuation. This paper
innovatively constructs a grayscale guided multi-scale feature
fusion architecture, and realizes the dynamic balance between
the local gradient sensitivity of the convolutional path and
the global semantic correlation of the attention path through
the ACmix module. Effectively distinguish real defects from
background textures in complex areas such as gear grooves
and bearing raceways. Meanwhile, the SaE module is designed
to decouple the channel features into the four-dimensional
subspaces of texture, gradient, morphology and luminance, and
enhance the channel response intensity of micron-level defects
through cross-domain interaction. Experiments show that the
improved model achieves a PSNR of 37.69 dB and an SSIM of
0.7737 on the self-built industrial dataset, increasing by 4.06%
and 2.06% respectively compared with the baseline model.
The recall rate of the YOLOv11 detection model trained with
enhanced data has increased by 14.7%, and the mAP50:95
metric has increased by 16.5%, which is significantly superior
to the traditional enhancement methods. This method provides
a highly robust solution for industrial quality inspection under
complex lighting and has significant application value in intel-
ligent quality inspection in fields such as automotive parts and
precision machine tools.

Index Terms—EnlightenGAN, mechanical parts defect de-
tection, image enhancement, attention-convolution dual-path
module, four-way split excitation layer.

I. INTRODUCTION

ENGPARstartIn the field of industrial automation quality
inspection, surface defect detection of mechanical parts plays
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a crucial role in ensuring product quality. Its accuracy di-
rectly affects equipment safety and production efficiency [1].
Traditional inspection systems rely on high-precision optical
equipment and stable lighting conditions to identify defects
such as cracks, scratches, and pits, using high-frequency tex-
ture analysis and local contrast enhancement [2]. However, in
real industrial environments, several constraints often arise.
Limited installation space can create optical blind spots on
certain component surfaces, while complex production con-
ditions frequently result in uneven illumination. Moreover,
the three-dimensional geometric structures of mechanical
parts—such as gear grooves and bearing raceways—and the
highly reflective nature of metal surfaces further complicate
optical imaging [3]. For instance, under low-light conditions,
insufficient photon flux often causes a significant increase
in sensor quantum noise [4]. This non-uniform illumination,
combined with the reflective properties of metal surfaces,
leads to nonlinear luminance distortions: local overexposed
areas suffer from highlight overflow, which obscures tex-
ture details, while underexposed regions experience shadow
masking and noise interference, resulting in fragmented
gradients at defect boundaries [5]. Such photoelectric signal
degradation causes systematic shifts in the grayscale distribu-
tion of geometric features, making it difficult for traditional
threshold-based segmentation algorithms to distinguish pol-
ishing textures from actual scratches. This severely limits
the intelligent upgrading of industrial quality inspection
processes [6].

In recent years, advances in deep learning have allowed
convolutional neural networks (CNNs) to demonstrate sig-
nificant advantages in defect detection tasks under standard
lighting conditions, owing to their powerful feature abstrac-
tion capabilities [7]. However, under low-light scenarios and
in the presence of complex industrial part characteristics,
existing models still encounter major challenges [8]. The
interaction between highly reflective surfaces and point light
sources under low-light conditions causes specular reflec-
tions, resulting in extremely nonlinear luminance distri-
butions that invalidate the texture patterns learned during
model training. In addition, shadows cast by complex three-
dimensional structures can lead to topological distortions,
which undermine the multi-scale feature fusion mechanism
of Feature Pyramid Networks (FPNs)[9], preventing effective
aggregation of semantic information in the presence of
pseudo-edges. More critically, the coupling of quantum and
circuit noise introduces artifact patterns that closely resemble
real defects in the high-frequency domain, making it difficult
for Region Proposal Networks (RPNs)[10] to distinguish
semantic boundaries between noise disturbances and micron-
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level defects in architectures such as YOLO and Faster R-
CNN [11], [12]. These issues often result in localization
inaccuracies and a simultaneous drop in classification confi-
dence [13].

To address these challenges, this paper proposes
an EnlightenGAN-based framework (Enlighten-
GAN+AcMix+SaE), which integrates the AcMix and
SaE modules. The main contributions are summarized as
follows:

1) We design a dual-path dynamic fusion architecture
(ACMix) that combines attention and convolution
mechanisms. By balancing local gradient sensitivity
with global semantic correlation through learnable
weights, it effectively mitigates the feature confusion
problem inherent in traditional single-path models
when processing the complex texture backgrounds of
metal parts.

2) We construct a four-channel parallel subspace split
excitation module (SaE), which decouples channel
features into physical attribute dimensions such as tex-
ture, gradient, and morphology. By performing cross-
domain interactions, it significantly enhances the re-
sponse strength of defect-related channels in low-light
scenes.

3) Extensive experiments demonstrate that the proposed
method offers significant improvements in both image
enhancement and defect detection tasks. In terms of
image quality, the enhanced model—integrating both
modules—shows superior noise suppression and detail
restoration compared to the baseline and single-module
variants, with objective evaluation metrics consistently
outperforming benchmark methods. In downstream in-
spection tasks, the inspection model trained on the
enhanced data achieves systematic improvements in
accuracy, recall, and generalization ability, validating
the effectiveness of the proposed enhancement strategy
for industrial quality inspection.

II. RELATED WORK

As a core component of intelligent manufacturing, the
development level of industrial defect detection technology
directly impacts product quality control as well as the safe
operation and maintenance of equipment. In recent years, re-
searchers have explored three innovative directions to address
technical bottlenecks in various scenarios: data augmentation
and generative methods, specialized physical field detection
techniques, and deep learning model optimization. While
these approaches have improved detection accuracy, they also
reveal inherent technical limitations, highlighting common
challenges that urgently need to be addressed in the field
of industrial quality inspection. Table I summarizes the
main technical focuses of representative studies on industrial
defect detection.

In scenarios where samples are scarce and image quality
is poor, generative adversarial networks (GANs) and cross-
domain transfer learning have become key technologies for
overcoming data bottlenecks. To address the problem of
insufficient crack samples in the fluorescent penetrant in-
spection of automotive steering knuckles, article [14] synthe-
sized crack images using a Deep Convolutional Generative

Adversarial Network (DCGAN), expanding the dataset scale
and significantly improving the classification accuracy of
ResNet. However, deviations between the microscopic stress
distribution of the synthetic cracks and that of actual damage
may lead to overfitting of the model in industrial applications.
Article [14] further proposed an innovative decoupled gener-
ation strategy for railway fastener inspection: it separately
modeled the defect foreground and background and used
a skeleton mapping algorithm to control crack morphology
directionally, achieving high classification accuracy despite
a lack of real defect samples. However, this method relies
on manually defined geometric rules, which are insufficient
to capture the morphological diversity of complex defects
such as oxidation and corrosion, resulting in limited cov-
erage for multiple types of composite defects. In addition,
article [16] addressed the problem of blurred imaging of
underwater concrete cracks by adopting unsupervised cross-
domain transfer technology to transfer crack features from
clear water conditions to turbid water areas, thereby optimiz-
ing image quality metrics. However, the adaptability of this
approach to more complex underwater conditions, such as
algal attachment and suspended particle interference, has not
yet been verified. Article [17] introduced transfer learning for
ultrasonic testing of nuclear power plant containment vessels,
leveraging pre-trained parameters from natural images to
alleviate data scarcity and improve the segmentation accuracy
of U-Net. Nonetheless, significant domain differences exist
between the acoustic features of ultrasonic images and the
visual features of natural images. These studies show that
although generative methods can help overcome data volume
limitations, the quality of generated data is constrained by the
stability of adversarial training, and cross-scenario general-
ization capabilities remain unproven at the industrial level.
The consistency between synthetic data and real physical
mechanisms still needs to be strengthened.

In specialized detection fields such as optics, acoustics,
and thermodynamics, multi-physics field coupling analysis
is driving the expansion of technical frontiers. Article [18]
focused on indentation detection for bearing dust covers,
integrating multi-source features such as Scale-Invariant Fea-
ture Transform (SIFT), Visual Bag-of-Words (BoVW), and
gray-level co-occurrence matrix to build a fusion frame-
work combining handcrafted features with machine learn-
ing, achieving relatively high detection accuracy. However,
traditional feature extraction is time-consuming and cannot
meet the real-time requirements of high-speed production
lines, while feature redundancy reduces model training ef-
ficiency. Article [19] innovatively developed light reflection
enhancement technology: using a spiral stripe model, a 5 µm-
level height difference on the inner wall of a small-diameter
bearing sleeve was converted into a light emphasis signal,
which, combined with a high dynamic imaging system,
achieved a high online detection rate. However, the cost
of the customized optical platform is high, and oil stains
on the workpiece surface can distort the reflection fringes,
increasing the false detection rate. Article [20] addressed
the debonding issue in concrete structures by proposing
a synergistic excitation strategy combining hydration heat
and water spray cooling. The infrared thermal contrast was
enhanced using a temperature difference matrix algorithm,
surpassing the sensitivity limits of traditional methods. How-
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TABLE I
FOCUS AREAS OF RELATED WORKS

[14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25]

Data Generation Y Y

Cross-Domain Transfer Y Y

Physical Field Coupling Y Y Y

Model Optimization Y Y Y Y Y

ever, external water spray may alter the curing rate of
concrete, posing a risk of reduced structural strength, and the
nonlinear relationship between thermal excitation parameters
and defect size increases process control complexity. Al-
though such technologies exhibit outstanding performance in
specific scenarios, their hardware dependency, environmental
sensitivity, and lack of interpretability restrict large-scale
applications. The development of multimodal data fusion
algorithms has thus become key to breaking this bottleneck.

Finally, some researchers have focused on improving de-
tection network architectures to enhance defect recognition
under complex operating conditions, which also inspires the
approach proposed in this paper. For example, article [21]
addressed the challenge of detecting microcracks on turbine
blade surfaces, where traditional algorithms struggle to si-
multaneously achieve defect classification. By introducing
the Bidirectional Feature Pyramid Network (BiFPN) and
employing data augmentation to build a dedicated dataset,
the detection accuracy reached 97.4%. However, this model
relies heavily on a large amount of labeled data and does
not resolve the image distortion caused by high-temperature
creep. Article [22] designed a channel-aware aggregation
module (CAA) to improve small target feature extraction
for detecting overlooked defects in industrial parts, yet the
positioning accuracy for defects smaller than 5 µm remains
inadequate. Article [23] suppresses background interference
in railway fastener images through a Convolutional Block
Attention Module (CBAM), but the increased model com-
plexity degrades time performance. Moreover, article [24]
innovatively employs U-Net for multi-task transfer learning,
achieving an accuracy of 97.57% under occlusion scenarios.
However, micro-crack features may be mistakenly removed
during the denoising process. Article [25] introduced inverse
filtering and super-resolution scaling preprocessing to ad-
dress motion blur in unmanned aerial vehicle (UAV) images,
yet it did not consider the impact of wind speed variations
on image stability, and the false alarm rate remains high in
dynamic environments.

From the above-mentioned related work, it is evident that
although researchers have proposed various solutions for
defect detection, performing defect detection on mechanical
parts in low-light environments still faces two main chal-
lenges. On the one hand, low illumination conditions sig-
nificantly increase image noise and reduce effective feature
contrast; the highly reflective nature of metal parts further
exacerbates the uneven distribution of light intensity, blurring
the edges of defects such as scratches and microcracks.
On the other hand, the complex geometric structures of
mechanical parts and the subtle physical characteristics of
tiny defects make it difficult for conventional optical imag-
ing to capture detailed features under low-light conditions.
Moreover, although data augmentation using generative ad-

versarial networks can expand the sample size, the reflective
characteristics of synthesized images are distorted under low
light, reducing the model’s generalization performance in
real-world applications. While multimodal fusion methods
can mitigate the limitations of visible light, they entail
high equipment costs and strict requirements for surface
cleanliness, making them impractical for many real-world
scenarios. Improved YOLO models rely on high-contrast
feature extraction, but in low-light conditions, channel per-
ception modules are prone to noise interference and may
misinterpret background textures as defects.

Based on the above research progress and the remain-
ing challenges, this paper proposes an improved Enlight-
enGAN image enhancement algorithm that integrates an
attention–convolution dual-path module (ACMix) and a four-
way split excitation layer (SaE). By combining a lightweight
design with a cross-modal feature collaboration mechanism,
this method significantly improves the quality of low-light
images while maintaining low computational resource con-
sumption, providing an efficient enhancement solution for
micron-level defect detection of mechanical parts under
complex lighting conditions. The algorithm uses the ACMix
module to dynamically balance local detail perception and
global semantic association and combines the SaE module’s
four-dimensional subspace channel excitation strategy to
specifically strengthen the high-frequency feature responses
of defects such as microcracks and scratches, offering an
innovative technical pathway for real-time, high-precision
defect identification in industrial quality inspection.

III. PROPOSED DEFECT DETECTION SYSTEM

A. Overall architecture of the model

In the industrial quality inspection scenario, the inspection
of mechanical parts in low-light environments has long faced
severe challenges. Due to the complex and variable lighting
conditions in the production workshop, the surfaces of metal
parts are prone to strong reflections or shadow shading,
resulting in problems such as low contrast, excessive noise
interference, and difficulty in identifying minor defects (such
as micron-level scratches and rust) in the collected images.
Traditional detection methods rely on manual supplementary
lighting or image enhancement algorithms. However, supple-
mentary lighting equipment is costly and difficult to cover
complex structures (such as the inner walls of bearings and
gear clearances), while traditional algorithms are sensitive
to low-light noise. After enhancement, detail loss or arti-
facts often occur, failing to meet the requirements of high-
precision quality inspection. In response to this pain point in
the industry, this paper presents an improved EnlightenGAN
model, an intelligent enhanced detection system specifically
designed for low-light industrial scenarios.
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Fig. 1. Architecture diagram of the improved EnlightenGAN model

The improved EnlightenGAN model, as shown in Figure 1,
first transforms the input image into multiple levels of
grayscale through an original grayscale information extrac-
tion module. These grayscale not only contain the original
luminance distribution, but also capture structural features at
different scales through five downsamplings. In the encoding
stage, the model performs channel fusion of the color image
with the corresponding level of grayscale image, enabling
the network to learn both color information and geometric
structures simultaneously, such as the annular patterns on the
inner wall of the bearing and the groove distribution of the
gear. The attention-convolution Mix module at the end of the
encoder adopts a dual-channel parallel design of ”Attention +
Convolution”: The attention path focuses on suspected defect
areas (such as discontinuous textures) through the location-
aware mechanism, while the convolutional path stably ex-
tracts local features (such as scratched edges). After the
dynamic fusion of the two, it not only retains the global
correlation but also strengthens the local details.

The decoder part introduces a cross-level feature calibra-
tion mechanism. During the sampling process on each Layer,
the decoder not only receives the high-dimensional features
of the previous layer, but also performs spatially aligned
weight fusion with the features output by the corresponding
layer of the encoder. Among them, the Split and Excite layer
divides the feature channels into four groups for indepen-
dent analysis, respectively learning the response patterns of
different defect types (such as corrosion corresponding to
low-frequency features and scratches corresponding to high-
frequency features), and then highlighting the key channels
through adaptive weighting.

B. Attention-convolution hybrid module

In the task of surface defect detection of industrial parts,
the visual confusion problem between complex texture back-
grounds and tiny defects has long existed. Especially when

the defect sizes such as scratches and pits are small, the tra-
ditional single-path feature extraction network is difficult to
balance local detail sensitivity and global morphological cor-
relation. To address this issue, the improved EnlightenGAN
model combines spatial dynamic sensing with local inductive
bias by constructing an attention-convolution two-stream co-
architecture, thereby enhancing the representation of minor
defect features while suppressing background interference.

The architecture of the attention-convolution module is
shown in Figure 2.

In the stage of feature projection and channel decoupling
of the attention-convolution module, the input feature map
X ∈ RH×W×C undergoes three groups of 1×1 convolution
to generate three groups of independent features:

Q = WqX, K = WkX, V = WvX (1)

Each group of features is split into N attention heads
(corresponding to the 3N feature maps in the figure), with
each head having a dimension of C

N Ṫhe dual-path feature
fusion stage is divided into two paths, namely the quasi-
convolutional path and the attention path. Among them, in
the quasi-convolutional path, the fully connected weighted
fusion is carried out first. The features at different shift
positions are weighted and summed through the learnable
weight W ∈ RK2×N to generate the quasi-convolutional
features:

Fconv =

K2∑
k=1

Wk · F ′
k (2)

Among them, K = 3 is the size of the convolution kernel.
Subsequently, a cyclic shift operation is carried out, per-

forming cyclic shifts on the features of each attention head to
simulate the local receptive field of the convolution kernel.
For example, for the feature map FK of the k-th head:
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Fig. 2. Architecture diagram of the attention-convolution module

F ′
k(x, y) = Fk(x+∆xk, y+∆yk) (∆xk,∆yk ∈ {−1, 0, 1})

(3)
For the attention path, spatial attention calculation is

carried out first, and the weight matrix is generated by scaling
the dot product attention:

Att = Softmax

(
QKT

√
d

)
V (d =

C

N
) (4)

Among them, the Softmax operation is carried out along
the spatial dimension to capture the global dependencies
across regions (such as the crack extension direction), and
then the inter-head feature concatenation is performed, that
is, the outputs of N attention heads are concatenated along
the channel axis to restore the original dimension C.

Subsequently, the outputs of the two paths are dynamically
fused through the learnable parameter α, β:

Fout = α · Fconv + β ·Att (α+ β = 1) (5)

From the above content, it can be seen that the ACmix
module adopts a dual-path collaborative architecture, effec-
tively integrating the local inductive bias of convolution and
the global correlation advantages of attention, significantly
improving the detection accuracy of minor defects in in-
dustrial scenarios. Its workflow is divided into three key
stages: Firstly, the input features are decoupled into multiple
query, key and value projections through three independent
one-dimensional convolution groups, and fine-grained feature
expressions are formed through a multi-head splitting mech-
anism; Subsequently, two heterogeneous processing methods
are executed in parallel - the quasi-convolutional path uses
cyclic displacement operations to simulate the local per-
ception characteristics of traditional convolutional kernels,
captures the gradient mutation features of micrometer-level
defects through nine preset offset modes, and at the same
time, the attention path establishes a cross-regional long-
range dependency relationship to accurately identify complex
morphological patterns such as crack extension directions;

Finally, the dual-path output is dynamically balanced through
the adaptive weight fusion mechanism, which not only
retains the spatial invariance advantage of convolution for
regular textures, but also enhances the response intensity of
attention to abnormal regions.

C. Splitter and excite layer

The SaE (Splitter and Excite) layer is a multi-branch
channel attention mechanism. As shown in Figure 3, this part
is improved to address the limitations of the single excitation
path in the traditional SENet. The SaE layer achieves four-
way parallel subspace excitation and hierarchical feature
reorganization. Enhance the fine-grained modeling ability of
the model for the channel characteristics of minor defects on
the surface of industrial parts.

Fig. 3. Architecture diagram of the split excitation layer

First, perform global feature compression. Global feature
compression X ∈ RB×C×H×W compresses the spatial
dimension through adaptive average pooling and extracts
channel-level global information:

y = AdaptiveAvgPool2d(X) ∈ RB×C (6)

Here, spatial information is encoded as channel descrip-
tors, providing a basis for subsequent multi-branch excita-
tion.

Subsequently, the multi-subspace splitting excitation
achieves feature decoupling and subspace learning through
four independent fully connected layers:
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
y1 = ReLU(W1y) ∈ RB×C/2

y2 = ReLU(W2y) ∈ RB×C/2

y3 = ReLU(W3y) ∈ RB×C/2

y4 = ReLU(W4y) ∈ RB×C/2

(7)

Among them, W1,W2,W3,W4 ∈ R(C/2)×C are learnable
parameter matrices. Each group of parameters learns dif-
ferent feature subspace expressions, enabling the module to
capture the differentiated responses of part surface defects in
different physical characteristic dimensions (such as texture,
gradient, brightness).

Finally, the excitation weights are broadcast back to the
original feature map size to perform channel-level feature
enhancement:

Xout = X ⊗ yexcite ∈ RB×C×H×W (8)

Among them, ⊗ represents channel-by-channel multiplica-
tion. This operation enhances the response to defect-sensitive
channels (such as gradient change channels in scratch areas)
and supholds background texture interference.

From the above description, it can be known that the SaE
(Split Excitation) layer plays a core role in the refinement
enhancement of channel features in the industrial defect
detection model. Under the condition of surface imaging
of parts in low light and high noise, this module decou-
ples the global channel features into differentiated physical
attribute subspaces such as texture, gradient, morphology,
and brightness through a four-channel parallel subspace
excitation mechanism. The multi-dimensional feature decou-
pling expression of micron-level defects has been achieved.
Specifically, the module first compresses spatial redundancy
information through adaptive average pooling to generate
channel-level global descriptors; Subsequently, four groups
of independent fully connected layers are utilized to respec-
tively learn the nonlinear mapping relationships of different
attribute subspaces, overcoming the feature coupling problem
caused by a single excitation path; Ultimately, through cross-
subspace feature fusion and channel recalibration, a response
intensity several times that of the background is generated
in typical defect areas such as gear tooth surface scratches,
while suppressing the activation values of interference fac-
tors such as metal reflection to provide robust feature en-
hancement support for high-precision quality inspection in
complex industrial environments.

IV. EXPERIMENTAL ANALYSIS

A. Experimental design

The design of the experiment focused on verifying the
performance improvement of the EnlightenGAN model that
combines ACmix and SaE modules. A two-stage validation
framework of ablation experiments and contrast experiments
was adopted to systematically evaluate the contribution of
the modules and the advancement of the overall approach.
The dataset selected for this study included a real dataset of
1,885 defect images of mechanical parts. The data source
is the publicly available aluminum profile surface defect
identification dataset by Tianchi. The training set and test
set are divided in an 8:2 ratio. The dataset contains single-
defect images, multi-defect images, and defect images under

low light. The total number of defect types contained in the
images is 10, namely: Non-conductive, scratches, exposed
base at corners, orange peel, exposed base, spray, paint bub-
bles, pits, discoloration, dirt spots. The configuration table of
the experimental equipment is shown in Table II. In terms of
hardware configuration, the graphics processing unit consists
of a parallel computing array composed of four NVIDIA
GeForce RTX3090 graphics cards. Each card is equipped
with 24GB GDDR6X video memory, and the total capacity
of the video memory reaches 96GB, supporting multi-task
concurrent training and large-scale tensor operations. The
central processing unit adopts the Intel Xeon Platinum 8280L
professional-grade server CPU with a main frequency of
2.60GHz and a 56-core 112-thread architecture to ensure
the efficient execution of CPU-intensive preprocessing tasks.
The system memory is configured with 32GB DDR4 ECC
at a frequency of 2933MHz, effectively supporting high-
throughput data stream processing. At the software envi-
ronment level, a stable computing ecosystem is constructed
based on the Linux operating system. Anaconda3 is adopted
for dependency management and environment isolation. The
deep learning framework selects PyTorch version 1.10 to be
compatible with CUDA 11.3 for accelerated computing, and
the training process is visually monitored through Tensor-
board.

TABLE II
EXPERIMENTAL EQUIPMENT CONFIGURATION TABLE

Name Disposition

GPU 4 x NVIDIA GeForce RTX3090

CPU Intel(R) Platinum 8280L CPU @ 2.60GHz

Video memory 24G x4

Internal memory 32G

Operating system Linux

Training framework Pytorch1.10

Package management tool Anaconda3

Visual tool Tensorboard

Detection results of YOLOv11 on augmented images are
shown in Figure 4.

Each image in it is labeled with the original file name
and the detected defect category. The detection box adopts
a multi-color annotation strategy to visually distinguish the
recognition results of different defects.

The indicators of the experiment take PSNR (Peak Signal-
to-Noise Ratio) and SSIM (Structural Similarity) as the core
indicators. These two indicators are respectively used to
quantify the noise suppression ability and the detail fidelity.

Among them, PSNR is used to measure the quality of
image reconstruction and is expressed as:

PSNR = 10 · log10
(
MAX2

MSE

)
(9)

Here, MAX represents the maximum possible value of the
pixel value of the evaluated image. For example, the pixel
value of an 8-bit image is generally 255, while that of a
normalized image is 1. MSE (Mean Square Error) is used to
represent the mean square of the difference in pixel values
between the original image x and the evaluated image y:
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Fig. 4. Detection results

MSE =
1

MN

M∑
i=1

N∑
j=1

(xij − yij)
2 (10)

M and N represent the width and height of the evaluated
image respectively.

SSIM measures image similarity from three aspects:
brightness, contrast and structure. The value range is [−1, 1].
The closer the value is to 1, the more similar it is, which is
expressed as:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(11)

Among them, µx and µy respectively represent the mean
pixel values of images x and y; σx and σy represent the pixel
standard deviations of images x and y respectively, and σxy

is the covariance of images x and y; C1 and C2 are stable
constant, defined as:

C1 = (k1L)
2, C2 = (k2L)

2 (12)

Among them, L represents the dynamic range of pixel
values.

For the defect detection task, four indicators, namely Pre-
cision (accuracy rate), Recall (recall rate), mAP50 (average
accuracy with an IoU threshold of 0.5), and MAP50:95 (com-
prehensive accuracy with multiple thresholds), are adopted
to comprehensively measure the positioning accuracy and
robustness of the detection model.

The ablation experiment focuses on the module-level
performance contribution, taking the image enhancement
quality (PSNR/SSIM) as the evaluation dimension. Through
the comparison of four groups of progressive models (basic
model, single-module enhancement, and dual-module com-
bination), To quantify the independent gain and synergy
effect of the ACmix and SaE modules. ACmix enhances the

local detail recovery ability through convolution - attention
dual-path fusion, while SaE optimizes the cross-regional
feature consistency through multi-subspace channel excita-
tion. When the two modules are combined, the nonlinear
superposition of performance gain is achieved to verify the
design logic of complementary enhancement between the
modules. Subsequently, in order to further verify the quality
of image enhancement, the same YOLOv11 detector was
trained respectively on the low-light original data and the
enhanced data. Moreover, four indicators, namely Precision
(precision rate), Recall (recall rate), mAP50 (average preci-
sion with an IoU threshold of 0.5), and MAP50:95 (com-
prehensive precision with multiple thresholds), are adopted
to comprehensively measure the positioning accuracy and
robustness of the detection model after training with different
data. The comparative experiments verify the advancement
of the method at the task level. Taking YOLOv11 as the
detection baseline, multiple advanced image enhancement
schemes are first adopted to enhance the pictures respectively.
Then, the performance advantages of the image enhancement
method proposed in this paper are verified according to four
indicators.

B. Ablation experiment

Fig. 5. Ablation experiment diagram (SSIM index)

As can be seen from the comparison of the training process
curves and the final metrics in Figure 5, the Enlighten-
Gan+AcMix+SaE model with both AcMix and SaE modules
shows a significant performance advantage, and its SSIM
metric shows a steady upward trend with increasing training
steps. And reached the maximum value (0.7737) after 10,000
steps of training, which was 2.06% higher than the baseline
model EnlightenGan (SSIM 0.7531). Although the single-
module improvement of EnlightenGan+SaE (SSIM 0.7641)
and EnlightenGan+ACmix (SSIM 0.7626) correspond to
independent optimizations of SaE and ACmix respectively,
However, the performance of both still lags behind that of the
complete model of the dual-module joint optimization (with
a difference of 0.0096 and 0.0111), verifying the synergistic
enhancement effect between the modules. The dual-module
model did not significantly deteriorate in terms of training
efficiency. Its training duration was 28.98 minutes, which was
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12.9% less than that of the baseline model (33.33 minutes)
and better than the 33.78 minutes of the SaE single-module
model. This indicates that the optimization of computational
efficiency in the parallelized design effectively offset the
increased parameter burden of the module.

Fig. 6. Ablation experiment diagram (PSNR index)

As can be seen from the PSNR metric analysis in Figure 6,
EnlightenGan+AcMix+SaE, which integrates both AcMix
and SaE modules, leads significantly with a peak signal-to-
noise ratio of 37.69. An improvement of 4.06% from the
baseline model EnlightenGan (PSNR 36.22), which validates
the effectiveness of the two-module co-optimization. The
progressive modular ablation experiments indicated that the
individual integration of ACmix (PSNR 36.93) and SaE
(PSNR 37.13) brought gains of 1.96% and 2.51%, respec-
tively. When the dual-module joint optimization is carried
out, the improvement amplitude of PSNR (4.06%) exceeds
the arithmetic superposition of the independent gains of the
two (1.96%+2.51%=4.47%), revealing the nonlinear comple-
mentary effect between the two modules. ACmix enhances
local detail recovery through the convolution - attention
dual-path. It provides a more robust feature input for the
multi-subspace channel excitation of SaE, while the channel
recalibration of SaE further optimizes the feature selection
process of ACmix.

Subsequently, this paper summarizes the indicator infor-
mation of the two graphs, as shown in Table III.

TABLE III
SUMMARY TABLE OF ABLATION EXPERIMENT RESULTS

Method PSNR SSIM

EnlightenGan 36.22 0.7531

EnlightenGan+AcMix 36.93 0.7626

EnlightenGan+SaE 37.13 0.7641

EnlightenGan+AcMix+SaE 37.69 0.7737

Subsequently, the same YOLOv11 detector was trained on
the original low-light data and the enhanced data respectively.
The experimental results of the low-light data and the en-
hanced data are shown in Table IV and Table V respectively.

Subsequently, this paper summarizes and analyzes the
experimental result information of the two figures, as shown
in Table VI.

TABLE IV
EXPERIMENTAL RESULTS OF LOW-LIGHT DATA

Class Instances Box (P) R mAP50:95

All 661 0.676 0.573 0.358

Rust 23 0.659 0.826 0.762

Dirt 172 0.682 0.128 0.248

Non-conductive 179 0.776 0.704 0.782

Dent 12 0.348 0.058 0.170

Pore 76 0.592 0.526 0.638

Pit 33 0.854 0.909 0.913

Coating Crack 22 0.922 0.955 0.979

Local Defect 50 0.777 0.760 0.779

Scratch 58 0.546 0.362 0.431

TABLE V
EXPERIMENTAL RESULTS OF ENHANCED DATA

Class Instances Box (P) R mAP50:95

All 661 0.681 0.657 0.417

Rust 23 0.603 0.739 0.748

Dirt 172 0.655 0.267 0.315

Non-conductive 179 0.797 0.749 0.789

Dent 12 0.806 0.695 0.732

Pore 76 0.626 0.566 0.627

Pit 33 0.730 0.848 0.845

Coating Crack 22 0.821 1.000 0.988

Local Defect 50 0.750 0.800 0.792

Scratch 58 0.461 0.328 0.381

TABLE VI
PERFORMANCE COMPARISON OF YOLOV11 IN LOW-LIGHT RAW DATA

AND ENHANCED DATA

Method Precision Recall mAP50 mAP50:95

Low-light data 0.676 0.573 0.626 0.358

Enhance data 0.681 0.657 0.680 0.417

The experimental results show that the YOLOv11 model
trained with EnlightenGAN+ACmix+SaE enhanced data
achieves systematic performance improvement in industrial
defect detection tasks. Compared with directly using the
original data in dim light, the enhanced data significantly
increased the recall rate of the detection model by 14.7%
(0.573→0.657), and mAP50 and MAP50:95 increased by
8.6% (0.626→0.680) and 16.5% (0.358→0.417), respec-
tively. The accuracy rate also increased slightly by 0.74%
(0.676→0.681). This data reflects the multi-dimensional op-
timization of the model performance by the enhancement
strategy: The leap in recall rate indicates that the enhanced
data effectively improves the identifiability of minor defects
in low-light environments, significantly reducing the missed
detection rate of the model. The significant improvement
of mAP50:95 (with an average accuracy of 0.5-0.95 for
the comprehensive IoU threshold) verifies the positive effect
of the enhanced data on the positioning accuracy of the
detection frame. That is, by suppressing the interference of
low-light noise and restoring the defect edge gradient, the
detection stability of the model under strict IoU thresholds
(such as 0.75-0.95) is enhanced, which is particularly impor-
tant for high-precision industrial quality inspection scenarios.
From the analysis of task correlation, the asymmetric gains of
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mAP50 and MAP50:95 (+8.6% vs +16.5%) indicate that the
enhanced data has a more significant improvement for high-
threshold detection tasks. This is attributed to the precise
modeling of defect geometricia by the convolution - attention
collaboration mechanism of the ACmix module. And the
directional enhancement of abnormal channel features by the
SaE module.

C. Comparative experiment
To evaluate the performance of the proposed Enlighten-

GAN+ACmix+SaE image enhancement method in mechan-
ical parts defect detection task, five representative low-light
image enhancement methods were selected as comparison
objects in this paper. It covers different categories such
as lightweight networks based on traditional visual pri-
ors, Retinex theoretical models, and Transformer structures.
GCA-Net [26] achieves global perception of defect regions
and multi-scale feature aggregation under the lightweight
coder-decoding framework by introducing the deep self-
attention mechanism and the channel reference attention
module, effectively enhancing the representation ability in
complex backgrounds. The KinD [27] method, based on the
Retinex theory, decomposes the image into two subspaces:
illumination and reflection. It models illumination and noise
reduction respectively to enhance the image brightness while
suppressing noise and artifacts. Retinexformer [28] intro-
duces an illumination-guided Transformer structure based
on the traditional Retinex framework to achieve non-local
modeling and corrosion recovery among different illuminated
areas, improving the consistency and detail restoration ability
of low-illumination image enhancement; Zero-DCE [29]
achieves adaptive adjustment of the pixel dynamic range
through a no-reference depth curve estimation strategy with-
out the need for paired training samples, and has strong
generalization ability and real-time performance. CPGA-
Net [30] integrates the dark/bright channel prior and the
gamma correction strategy to construct a lightweight network
architecture, achieving excellent enhancement effects with
extremely low computational overhead, and further comre-
ducing the model size through knowledge distillation. In the
comparative experiments, all methods will conduct multi-
stage index evaluations under a unified training configuration,
including the analysis of the changing trend of pixel loss
during the training process, the quantitative comparison of
the enhancement results in terms of structural similarity
Index (SSIM) and peak signal-to-noise ratio (PSNR). In
addition, by inputting different enhancement results into
the YOLOv11 defect detection model, The PR curve of
the detection performance was further plotted to analyze
the promotion degree of each enhancement method on the
downstream detection tasks.

Figure 7 shows the trend of Pixel Loss of various image
enhancement methods on low-illumination images during the
training process varying with the number of training steps,
reflecting the optimization efficiency and stability of each
model in terms of the pixel accuracy of reconstructed images.
From the overall trend of the curve, except for Zero-DCE, the
Pixel losses of the other methods all show obvious typical
training convergence characteristics of a rapid decrease at
first and then gradually stabilizing. The loss value of Retinex-
former in the initial stage is as high as approximately 180,

Fig. 7. The discrimination loss of the generated image

which is much higher than that of other methods. However,
the decline rate is the fastest, and it has dropped to about
10 by step=1000. This indicates that although the initial
convergence of its Transformer structure is slow, it has a
strong global modeling ability and can significantly compress
the reconstruction error in the short term. The initial Pixel
Loss of KinD is approximately 50 and rapidly decreases
to about 10 within 1000 steps, demonstrating the effective-
ness of the Retinex decomposition mechanism in modeling
the illumination structure of low-illumination images. The
initial loss of GCA-Net and EnlightenGAN+ACMix+SaE
was about 30-35, and the decline was relatively smooth.
Eventually, after Step=4000, it stabilized and converged to
about 8-9. It is indicated that its local attention and edge
feature perception module has a good promoting effect on
the restoration of image texture details. The initial loss
of CPGA-Net is slightly lower than that of GCA-Net, but
the decline rate is slightly slower. Eventually, it stabilizes
at approximately 9, which is basically comparable to the
aforementioned two methods. This indicates that it has
achieved better performance relying on channel correction
and gamma estimation strategies in a lightweight structure.
Zero-DCE shows the worst convergence trend throughout
the training process: the initial loss is approximately 145,
and it still remains between 25 and 30 when step=10000.
The curve oscillates significantly, indicating that although its
unsupervised optimization strategy has strong generalization
and flexibility, it has obvious limitations in precise pixel
recovery and is difficult to approach the low-loss state.

Combining the above results, Retinexformer performs best
in both the rate of loss reduction and the final convergence
value, while EnlightenGAN+ACMix+SaE achieves a final
pixel loss comparable to or even lower than GCA-Net and
CPGA-Net while keeping the structure simple. The effective-
ness of its edge perception module and attention enhance-
ment strategy in low-illumination image enhancement was
verified. In contrast, the performance of Zero-DCE shows its
insufficiency in the ability to restore pixel accuracy, making
it difficult to meet the requirements of subsequent high-
precision vision tasks.

Figure 8 shows the changes in the Structural Similarity
Index measure (SSIM) for each method during training. En-
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Fig. 8. Comparative Experiment Diagram (SSIM Index)

lightenGAN+AcMix+SaE consistently maintained the lead in
SSIM, rising from the initial 0.72 to 0.775, reflecting its supe-
riority in image structure preservation. CPGA-Net performed
steadily, with the final SSIM reaching 0.76, slightly lower
than EnlightenGAN, but significantly better than GCA-Net
(0.735) and Retinexformer (0.70). KinD’s performance was
relatively limited, and the increase in SSIM was small, rising
only from 0.515 to 0.585. The SSIM curve of Zero-DCE is
almost horizontal and stable at around 0.47, indicating that it
has significant deficiencies in the ability to reconstruct image
structure information.

Fig. 9. Comparative Experiment Diagram (PSNR Index)

Figure 9 shows the variation trend of the peak signal-to-
noise ratio (PSNR) during the training process. Enlighten-
GAN+AcMix+SaE performed best at all stages, with PSNR
increasing significantly from an initial 35.6 to 37.7. CPGA-
Net steadily improved and finally reached 37.0, closely
following. Although Retinexformer was slightly lower in
the early stage, the upward trend was stable and finally
reached 36.9, which was superior to GCA-Net (36.2) and
KinD (36.3). Zero-DCE performed the worst. The PSNR
remained around 31.2 all the time with almost no significant
improvement, indicating its limited ability to suppress image

noise.

TABLE VII
SUMMARY TABLE OF COMPARATIVE TEST RESULTS

Method PSNR SSIM

EnlightenGan+AcMix+SaE 37.69 0.7737

CPGA-Net 37.02 0.7618

GCA-Net 36.28 0.7351

Retinexformer 36.92 0.7036

KinD 36.39 0.5854

Zero-DCE 31.25 0.4709

As can be seen from Table VII, Enlighten-
GAN+AcMix+SaE achieved the best results in both
PSNR and SSIM, demonstrating its combined advantage
in luminance enhancement and structure preservation.
The CPGA-Net proposed in this paper follows closely in
two indicators, demonstrating excellent image restoration
ability and stability, and verifying the effectiveness of its
multi-scale perception and global guidance mechanism.
GCA-Net and Retinexformer perform relatively stably, but
are slightly lacking in detail reconstruction. The overall
improvement of KinD is limited and its ability to maintain
the structure is relatively weak. However, Zero-DCE, as an
unsupervised method, performs the worst in two indicators
and is difficult to be competent for the task of high-quality
image enhancement.

Fig. 10. Precision - Recall curve

The final precision-recall curves of YOLOv11 enhanced
by EnlightenGAN+AcMix+SaE are shown in Figure 10.
From the experimental results, the model performs well in
several key defect categories, demonstrating a significant
advantage. Coating Crack achieved nearly perfect recognition
with an accuracy of 0.988, indicating that the model has an
extremely strong ability to capture its texture changes. The
accuracies of Pit (0.845) and Non-conductive (0.789) both
exceed the industry benchmark, demonstrating the stable
detection ability of the model for regular shape defects.
Moreover, Rust (0.748) and Dent maintain high accuracy at
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a medium recall rate and have good balance. This is appli-
cable to application requirements that are sensitive to false
detection rates in actual scenarios. Overall, the high-precision
performance of the model in the main defect categories has
verified its practicality and reliability in industrial quality
inspection.

Fig. 11. F1-Confidence curve

The F1-Confidence curves of YOLOv11 enhanced by
EnlightenGAN+AcMix+SaE are depicted in Figure 11. It can
be observed that the model maintains high F1 scores across a
wide range of confidence thresholds, which demonstrates its
robustness and reliability under varying detection strictness.
Specifically, the F1 scores for Coating Crack remain close
to the maximum over nearly the entire confidence interval,
indicating excellent consistency between precision and recall
for this category. For Pit and Non-conductive defects, the F1
scores also stay at relatively high levels without significant
drops, reflecting the model’s stable balance in detecting regu-
lar shape anomalies even when stricter confidence thresholds
are applied. Although Rust and Dent show slight declines
in F1 score with increasing confidence, they still achieve
stable plateaus within practical confidence ranges, which is
favorable for industrial applications that require adjustable
trade-offs between false positives and false negatives. Over-
all, the F1-Confidence analysis further corroborates that the
proposed improvements enable the model to sustain high de-
tection accuracy and robustness, ensuring dependable defect
recognition in complex real-world scenarios.

V. CONCLUSION AND FUTURE WORK

This paper addresses the challenge of accurately detecting
surface defects on mechanical parts in low-light industrial
conditions. It proposes an improved EnlightenGAN image
enhancement algorithm that incorporates an attention con-
volution dual-path module (ACmix) and a four-way split
excitation layer (SaE). A grayscale-guided multi-scale fea-
ture fusion framework is constructed to combine five-level
grayscale downsampling with color channel information,
enhancing both local gradient sensitivity and global semantic

correlation. The ACmix module simulates diverse local per-
ception through cyclically shifted deformable convolutions
and models global context with multi-head attention, improv-
ing feature fusion in complex areas such as gear grooves
and bearing raceways. The SaE module decouples channel
features into texture, gradient, morphology, and luminance
subspaces, and improves the SSIM contrast of micron-level
defects through cross-domain interaction.

Experiments show that the improved model achieves a
PSNR of 37.69 dB and an SSIM of 0.7737, with improve-
ments of 4.06% and 2.06% over the baseline. The YOLOv11
detection model trained with enhanced data achieves a 14.7%
increase in recall and a 16.5% improvement in mAP50:95,
outperforming traditional methods. This approach offers a
robust solution for industrial quality inspection under com-
plex lighting and holds application potential in areas such
as automotive parts and precision machinery. Future work
will explore temporal modeling for video-based defect track-
ing, few-shot and unsupervised learning for limited-sample
scenarios, and cross-modal enhancement using infrared and
ultrasound for multi-channel defect detection.
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