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Abstract—Many studies have examined deep learning (DL) 

algorithms for IoT cyber threat detection. Time-sensitive Criti-

cal Infrastructures (CIs) using IoT must quickly detect cyber 

threats near limited equipment to avoid service delays.   Deep 

learning detects intrusions better than shallow machine learn-

ing. Communication overheads from huge IoT data and model 

processing needs hinder deep learning model application to 

constrained devices.  Traditional intrusion detection systems 

are shallow learning or not trained on IoT datasets and not fog-

cloud-ready. We offer a fog and cloud-based IoT intrusion de-

tection framework to address these difficulties. Distributed 

processing segments the dataset by attack type and identifies 

time-series IoT properties. Attack detection deep learning re-

current neural network using Simple RNN and Bi-directional 

LSTM follows. The high-dimensional BoT-IoT dataset supplied 

massive amounts of realistic IoT attack traffic to evaluate the 

approach. Under computational constraints, feature selection 

algorithms reduced dataset size by 90% without affecting at-

tack detection. Smaller dataset models demonstrated higher 

recall rates than full-featured models without affecting class 

distinction. Simple RNN and Bi-LSTM models fit well in the 

restricted feature space. The deep learning-based intrusion 

detection system performs well in fog-clouds and with massive 

IoT data. 
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I. INTRODUCTION 

HE widespread use of the Internet of Things (IoT) is 

opening the door to a world where everything is linked, 

which has many positive effects on people's lives. But, the 

expansion has also caught the eye of malicious actors, who 

are always looking for new ways to breach security 

measures. One indicator of this is the dramatic rise in 

cyberattacks targeting susceptible smart gadgets [1]. Particu-

larly when linked to Critical Infrastructures (CI), these types 

of assaults might have a negative impact on networks that 

are enabled by the Internet of Things (IoT). For instance, CI 

system service level and safety can be drastically impacted 

by delays in smart grids, eHealth systems, transportation, 

and manufacturing. The Internet of Things (IoT) is vulnera-

ble to intrusions, yet there is a need for better Intrusion De-

tection Systems (IDS) that can identify suspicious network 

connections based on traffic characteristics rather than attack 

signatures alone.  This issue has prompted the development 

of several intrusion detection systems (IDS) based on Deep 

Learning (DL) [2], which outperform more conventional ML 

methods like Support Vector Machines (SVM) [3] in terms 

of detection accuracy. While DL approaches do offer better 

performance, they are computationally heavy and are typi-

cally implemented in cloud or centralized infrastructures [4]. 

Because of the necessity to pool data from numerous IoT 

devices to a central location in order to train DL models, 

detection delays are also caused by this [5], [6]. Therefore, 

intrusion detection in CIs that are delay sensitive cannot be 

achieved using such methods.  One solution to this problem 

is the use of distributed edge-cloud or fog-based architec-

tures, which can detect assaults closer to the edge network 

and avoid important delays in detecting malicious actions in 

IoT devices. By efficiently offloading computation work-

loads from a centralized cloud node, fog nodes can achieve 

improved scalability with massive deployments of IoT de-

vices and respond rapidly to threats. 

 For the fog layer, current DL-based intrusion detection 

systems either necessitate a huge number of fog nodes [7] or 

redirect edge traffic to central nodes for DL algorithm train-

ing [8], [9], both of which can lead to a rise in communica-

tion overhead.  Fog nodes aren't practical for effective intru-

sion detection because of the connection cost and the in-

creased compute and memory requirements of the resulting 

DL models. Several approaches suggested using advanced 

deep learning algorithms like Long Short-Term Memory 
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Encoder (LAE) to decrease the dimensionality of the IoT 

dataset's features [10]. On the other hand, training and de-

ployment times can be lengthened by using such intricate 

feature selection methods based on back propagation algo-

rithms. We suggest a two-stage procedure to streamline the 

deployment of DL-based intrusion detection systems for fog 

nodes, which will enhance the performance of a delay sensi-

tive system. This is accomplished by first converting the 

multi-class problem to a binary class problem, and then di-

viding the time-series data from the IoT network according 

to the attack class.  Next, in order to decrease the data size 

for training the DL models, simple feature reduction ap-

proaches including Chi-Square Statistic, Group Method of 

Data Handling (GMDH), and Mutual Information (MI) are 

applied.  After the datasets have been reduced, they are 

transferred to a cloud node where the DL algorithm is 

trained. After that, the edge or fog nodes receive an opti-

mized DL model for detecting assaults on the Internet of 

Things.  By following these procedures, DL workloads can 

be distributed, and computation time and network latency 

can be reduced.  The BoT-IoT dataset [11] was used to as-

sess this strategy because it includes both regular and IoT 

attack traffic.  The key takeaways from this study are: A 

decentralized intrusion detection system (IDS) architecture 

that uses fog technology to identify attacks in delay-sensitive 

networks. 

 

II. RELATED WORK 

Attack detection in IoT networks has been the subject of 

multiple proposals. To train and categorize assaults for a 

BoT-IoT dataset, we previously used a Feed-forward Neural 

Network (FNN) in our work. With a high F1 score and 99% 

accuracy, the FNN model was able to recognize multiple 

types of attacks.  On the other hand, for specific types of IoT 

threats, the trained FNN model produced lower recall and 

precision scores. A group of two shallow ML algorithms, C5 

and LIBSVM, plus a feature selection stage that relies on 

information gain were suggested by Khraisat et al. [12] as an 

ensemble hybrid IDS. According to the experimental results 

for the BoT-IoT dataset, the performance of the shallow 

classifiers was low when used alone, but it improved signifi-

cantly when combined with other classifiers. In comparison 

to the 99.9 percent accuracy attained by ensemble classifiers, 

the C5 and LIBSVM classifiers only managed 93% and 92% 

accuracy, respectively. The suggested method outperformed 

competing feature reduction approaches while also reducing 

memory usage.  On the other hand, feature selection tech-

niques that rely on deep learning might be computationally 

intensive. Cloud network training and classification was car-

ried out by Alkadi et al. [13] using a bidirectional LSTM 

deep learning method.  When tested on the UNSW-NB15 

and BoT-IoT datasets, the suggested method successfully 

classified DoS and DDoS attack traffic with a detection rate 

ranging from 95% to 99%. On the other hand, the model 

failed miserably at identifying reconnaissance assaults and 

data theft, which are not considered denial-of-service at-

tacks. 

 In order to enhance the multi-head attention (MHA) 

technique, which augments an RNN model in identifying 

intrusions for Industrial Internet of Things (IIoT) traffic, a 

deep learning based forensic model named Deep-IFS was 

suggested in [14]. To depict industrial IoT network traffic on 

a local and global scale, the suggested architecture employed 

a gated RNN unit in conjunction with an MHA layer. When 

compared to centralized DL IDS approaches, their suggested 

approach significantly improved performance in experiments 

performed on fog nodes. To improve detection accuracy, the 

suggested distributed model necessitates a large number of 

fog nodes; yet, its performance may degrade under heavy 

traffic conditions. 

 A hybrid method for intrusion detection in fog-based In-

ternet of Things (IoT) environments was suggested by De 

Souza et al. [15]. The two-stage detection mechanism they 

used was initially a combination of Deep Neural Networks 

(DNN) and K-Nearest Neighbor (kNN) for binary traffic 

classification in the network.  Before processing each input, 

a DNN model determines if it is invasive or not. After DNN 

incorrectly classifies an instance, it is passed on to kNN, 

which assigns the correct class based on the degree of simi-

larity between them using Ecludian distance. The major is-

sue with this approach is that it needs to be tested on IoT 

datasets to see how effective it is. Previously, it was tested 

on non-IoT datasets like NSL-KDD and CICIDS2017.  Fur-

thermore, picking the right value of k is crucial to the kNN 

method [16]. 

 A distributed method for detecting anomalies in edge 

networks using ensemble learning was suggested by Mousta-

fa et al. [8]. In order to identify Internet of Things (IoT) as-

saults utilizing an IoT-edge-cloud architecture, their sug-

gested method use the Gaussian mixture-based correntropy. 

The approach's limitations include the need for feature engi-

neering, the use of shallow ML techniques, and the evalua-

tion of the proposed model on datasets that do not pertain to 

the Internet of Things. Using a fog-cloud architecture, Ku-

mar et al. [17] suggested an ensemble learning method for 

detecting cyberattacks in the IoMT.  For ensemble learning, 

their method employs three shallow ML algorithms and ne-

cessitates a laborious feature engineering phase during algo-

rithm training. According to the current research, there are a 

lot of obstacles to using deep learning models for Internet of 

Things intrusion detection.  The key obstacles include pro-

cessing complexity, time delay, bandwidth needs, and effi-

ciently distributing the detection workload to numerous 

worker nodes.  As a result, we begin by dividing the multi-

class BoT-IoT dataset into several binary class datasets ac-

cording to the packet arrival time.  Additionally, in order to 

decrease the size of the dataset, feature selection is executed 

on separate binary class datasets.  Finally, we use deep 

learning models to determine if the instance is normal or an 

assault. 

 

III. PRESENTED ARCHITECTURE 

Full names of authors are preferred in the author field, but 

are not required. Put a space between authors’ initials. Here, 

we introduce our fog-cloud based framework for identifying 

malicious activity in Internet of Things (IoT) communica-
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tions. In order to build models that can identify IoT threats, 

the framework goes through a number of stages, as shown in 

Figure 1. These stages involve collecting raw network pack-

ets, pre-processing them, selecting features, training, validat-

ing, and testing them using deep learning methods.  There 

are three levels to the framework: The Internet of Things 

devices, the fog layer, and the cloud layer.  On the most fun-

damental level, IoT devices communicate and function.  At 

the fog layer, tools like TCP dump can be used to capture 

raw network packets from these IoT devices.  Furthermore, 

the packets will be transformed into time-series data during a 

pre-processing stage. The majority of attacks have been rec-

orded at certain timestamps, while normal data occurs 

throughout all time periods, according to an analysis of the 

timestamps identified in the BoT-IoT dataset utilized in this 

study. Because of this, we suggest dividing the dataset into 

subcategories based on the locations of attacks.  On this ba-

sis, we also employ a dataset partitioning method based on 

time stamps for training, testing, and validation.  In addition 

to facilitating remote dataset processing, this strategy em-

ploys an additional feature selection methodology to signifi-

cantly shrink datasets in preparation for training on cloud 

instances.  Prior to uploading to the cloud computing layer, 

feature selection is executed at the fog layer to decrease the 

dataset size. Deep learning models can be taught and as-

sessed by utilizing the computation resources available at the 

cloud layer. At last, the fog layer is used to install optimal 

DL models for assault detection. 

Group Method of Data Handling (GMDH) [18], Mutual 

Information (MI) [19], and Chi-Square statistic approaches 

[20] were selected as dimensionality reduction algorithms to 

be compared. In this study, we compared the attack classifi-

cation performance of two RNN types: Simple RNN and Bi-

directional LSTM. The sections that follow provide a de-

tailed explanation of the feature selection techniques and DL 

methods that were utilized in this study. Selecting the most 

relevant features and deleting those that do not help to class 

separation is a crucial step in establishing an effective 

framework for network intrusion detection. To significantly 

decrease the dataset size and processing needs of a deep 

learning model, the feature selection phase can be imple-

mented prior to training the model. The following sections 

provide a more detailed explanation of the three feature se-

lection strategies that were examined in this work. 

Real-time neural networks (RNNs) make it possible for 

data to remain persistent by utilizing feedback loops that 

connect the current state to its predecessors. Because of the 

temporal correlations between network events [21], RNNs 

may use the past state of the network's traffic to predict its 

current state, making them ideal for detecting intrusions.  

Each cell in an RNN takes in data and stores a single hidden 

state that is passed down from one iteration to the next.  Ac-

tivation of the hidden layers transfers certain data from one-

time step to another. In order to process the input data en-

tirely, RNNs primarily include two primary phases: compu-

ting the parameters of a single time step and looping across 

time steps. In a single RNN cell design, the input data is 

taken from the current state and stored in the previous hid-

den state. As shown in Figure 2, there is one RNN cell de-

sign. 
 

 
 

Fig. 1. Framework Workflow 
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Fig. 2. A single RNN cell using a single input and the concealed state. 

 

An upgraded form of RNN, LSTM accounts for long-term 

dependencies when predicting the output class. Therefore, 

LSTM can make better selections since they can remember 

information for a longer length.  Since there is a lengthy lag 

between the input time and the decision time, RNNs are un-

able to learn long-term dependencies adequately due to the 

vanishing gradient problem [22]. This limitation is circum-

vented by LSTM through the use of gates, which allow for 

the transfer of data to any cell as needed [23] and the reten-

tion of contextual information for extended durations.  

LSTMs are taken to the next level when they are fed infor-

mation in both the forward and backward directions using a 

bi-directional hidden layer [24], [25]. 

 

IV. RESULTS AND ANALYSIS 

In order to build the Simple RNN and bidirectional LSTM 

modules, the Tensor Flow and Keras libraries were utilized. 

With 64% going toward training, 16% toward validation, 

and 20% toward testing, the dataset was partitioned in a 64-

16-20 fashion. The 80/20 ratio, which the Pareto principle 

follows, provided the basis for this splitting method, which 

divides the dataset into training and testing sets. Separately, 

the training set is split into 64% for training and 16% for 

validation. In addition to helping with hyper parameter ad-

justment, the validation set gives an objective assessment of 

the trained models. This study uses the top ranking features 

to build a model using the Keras version of RNN (Simple 

RNN).  Since the attack category influences the input shape, 

it determined the number of parameters for the RNN model. 

The service attack category, for instance, has 91 input fea-

tures, 128 trainable parameters in the first layer, a three-

second window, and so on. 

The Bi-directional LSTM model, like the Simple RNN, 

was constructed using the Keras deep learning package.  The 

dense layer in both Simple RNN and Bi-LSTM used a soft-

max activation function, while the hidden layer in both mod-

els used a tanh activation function. With Adam Optimiser, 

we settled on accuracy as our measure and sparse categorical 

cross-entropy as our loss value.  Figure 3 shows the different 

levels of our DL architecture that is built on RNNs. 

 A windowed dataset was initially applied to the time-

series BoT-IoT dataset; this type of dataset systematically 

moves through each window, picking a specified amount of 

time samples at a time, until the complete time-series is cov-

ered.  You can specify the number of time samples to use in 
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a window by using the argument.  The next component of 

the design is an input layer that receives the features as in-

put. The computation is done by a hidden layer of many neu-

rons, and the instances are classified as normal or assault in 

the output layer. Throughout the training phase, the weights 

that connect the three layers of the deep learning network 

were determined and fine-tuned until they found an optimal 

solution. The back propagation algorithm is used for this 

purpose; it iteratively updates and selects the interconnection 

weights that result in the lowest loss. 

The results show that adding more hidden layers to Sim-

ple RNN improves the model's performance. However, after 

adding three hidden layers, the performance did not continue 

to improve, therefore that's why we stuck with three in this 

work.  Because it produced the best results across all classes, 

128 neurons were the optimal number to use.  No additional 

tuning was done because the dropout rate had no impact on 

the model's performance. Adam optimizer’s learning rate 

had a significant effect on performance; the optimal value 

was 0.0001, thus that's what the model was trained with. The 

model's performance was unaffected by increasing the epoch 

count since the majority of iterations terminated before 20 

epochs. To further avoid over-fitting, we used a 5-iteration 

patience condition to promptly terminate training if the vali-

dation loss is unchanged or increases with each subsequent 

iteration. 

Batch size affects learning speed and stability when work-

ing with big datasets. The results demonstrated that a batch 

size of 128 enhanced the model's accuracy for Simple RNN. 

A windowed dataset is created by adjusting the window size; 

among the values between 2 and 5, a window size of 3 

demonstrated the highest performance. The same set of hy-

per parameter values were picked for Bi-LSTM since they 

improved the model's performance. But instead of 20, the 

batch size for Simple RNN was raised to 50. 

Here we offer the evaluation results, which show how 

Simple RNN and bi-directional LSTM models fared, as well 

as the features that the feature selection algorithms used.  In 

order to assess the efficacy of the feature selection process, 

we display the features chosen by each feature selection al-

gorithm and the percentage of data size reduction achieved 

by using the best features. By calculating the confusion ma-

trices for each sub-dataset, we can see how well the model 

classified normal and attack classes, which is useful for as-

sessing the network traffic classification. Aside from accura-

cy and recall, precision and F1 score are also utilized to 

evaluate performance. Specifically, in order to assess the 

effectiveness of the detection, the following metrics were 

computed. 

 

 

 
 

Fig. 3. Architecture of the RNN model 
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TABLE 6 

THE PERCENTAGE OF MEMORY DECREASE FOR EACH SUBCATEGORY USING THREE FEATURE SELECTION TECHNIQUES 

 

Category 
GMDH-lr-

cov 
GMDH-lr MI Chi-Sqr 

Service 89.24 89.24 87.09 87.09 

OS 89.28 86.9 85.71 85.71 

Data Exfiltra-

tion 
90.27 90.27 83.33 83.33 

Keylogging 90.9 93.5 84.41 84.41 

DDoS-HTTP 90.66 93.33 83.99 83.99 

DDoS-TCP 87.49 86.11 83.33 83.33 

DDoS-UDP 82.85 84.28 82.85 82.85 

DoS-HTTP 91.99 93.33 83.99 83.99 

DoS-TCP 87.49 87.49 83.33 83.33 

DoS-UDP 84.28 89.99 82.85 82.85 

Average 88.45 89.44 84.09 84.09 

 

 

 
 

 

Fig. 4. Bi-LSTM training loss (a) and validation loss (b) for all attack dataset types 

 

 

 
 

Fig. 5 The training loss (a) and validation loss (b) achieved using Bi-LSTM for the detection of service-scan attacks 
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Fig. 6. SimpleRNN and Bi-LSTM attack detection recall rate on BoT-IoT dataset compared to prior work 

 

 

 
 

Fig. 7. Area Under the Curve (AUC) Comparison of Suggested Simple RNN for Different Types of Attacks. 

 

 

As seen in Table 6, a significant reduction in data size was 

achieved by feature selection utilizing the three techniques.  

In terms of Mega Bytes (MB), the subcategory for service 

scans saw the largest drop in data size. Within this subcate-

gory, the reduced data for GMDH, MI, and Chi-Sqr con-

sumed 107, 128 and 997 MB of storage space, respectively, 

as opposed to the full dataset's 997 MB requirement.  The 

GMDH-lr and GMDH-lr-cov approaches reduced data size 

for data theft, keylogging, DDoS-HTTP, and DoS-HTTP by 

more than 90% in percentage terms. The data size was re-

duced by 80%-90% when 10 characteristics were chosen for 

MI and Chi-Sqr. The results show that the selected feature 

selection approaches successfully remove unrelated and ir-

relevant characteristics, therefore reducing the data needed 

to train and evaluate the deep learning models. 

In Figure 4, we can see that the Bi-LSTM training and 
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validation procedure took more than 20 epochs, but for the 

majority of sub-datasets, it ended before 50 epochs.  All 

assault sub-categories saw a training loss decrease below 0.2 

after the third epoch. The validation loss also dropped below 

0.1 across the board, with the exception of DoS_HTTP and 

DoS UDP, where it varied between 0 and 0.05. The Bi-

LSTM model outperformed the Simple RNN models in gen-

eral because it takes long-term time dependencies into ac-

count when making judgments. 

Models trained on a smaller feature space were also more 

resistant to the problems of overfitting and under fitting, 

which plague intrusion detection systems. The training and 

validation losses with full and restricted feature space from 

one attack category are compared in Figure 5. The models 

with reduced feature space did not overfit or under fit, as 

shown by the training and validation losses being within 0 

and 0.05 after the first 15 epochs. 

We conducted a comparison of our proposed approach 

against the results obtained from the deep blockchain 

framework (DBF) introduced, which utilized Bi-LSTM for 

the classification of attack traffic within the BoT-IoT da-

taset. Figure 6 illustrates the recall rate across different at-

tack sub-categories, juxtaposed with the findings reported.  

Our proposed approach demonstrated superior performance 

compared to their method, achieving higher recall rates in 

the detection of attack traffic. Particularly in areas like ser-

vice scanning, operating system fingerprinting, data exfiltra-

tion, and keylogging. 

Findings from both the feature selection process and the 

deep learning based categorization demonstrate that the for-

mer enhances the latter's ability to detect assaults based on 

the Internet of Things (IoT).  Feature selection is a powerful 

tool in deep learning because it allows us to drastically 

shrink the dataset without sacrificing any of the crucial in-

formation that distinguishes between the input and output 

classes. When compared to other feature selection methods, 

the ones used by the MI algorithm improved performance 

across multiple types of attacks. Figures 7 indicate that this 

is the case for all of the subcategories when looking at the 

area under the curve metric. The accuracy of the model's 

class predictions is directly proportional to its area under the 

curve (AUC).  For simplicity's sake, we just show the final 

AUC score in the plot, since there are various types of at-

tacks. 

V. CONCLUSION 

The use of deep learning (DL) methods in intrusion detec-

tion systems has proven to be effective in identifying pat-

terns of attacks. Deploying DL-based IDS closer to the IoT 

devices is necessary to shorten the time delay in detecting 

such intrusions and to combat complex assaults that target 

the IoT paradigm. Deploying DL-based IDS near the edge 

IoT devices may be hindered by issues like massive amounts 

of IoT data and the complicated computing demands of DL 

approaches. Therefore, we suggested a fog-cloud architec-

ture-effective DL-based IDS framework for the Internet of 

Things in this study. Datasets are partitioned in the suggest-

ed architecture based on the arrival time of attack flow. In 

addition, the high-dimensional BoT-IoT dataset has features 

that aren't relevant removed during a feature selection stage.  

Two RNN algorithms, Simple RNN and Bi-LSTM, are 

trained and evaluated on the reduced dataset to determine 

which occurrences constitute attack traffic and which are 

considered regular traffic. The outcomes demonstrate the 

effectiveness and resilience of our suggested framework in 

the face of over- and under-fitting issues. By reducing the 

dataset size by 90% during the feature selection process, the 

network latency can be efficiently lowered while sending 

huge amounts of IoT data to the cloud network for deep 

learning tasks. When compared to the complete feature set 

and the DBF reported, the Simple RNN and Bi-LSTM mod-

els trained on the smaller set of features likewise exhibited 

an improved recall rate. Training DL models used less 

memory and computed less as a result of the feature selec-

tion process. To identify cyberattacks on IoT devices in CI, 

the suggested deep learning based fog-cloud IDS approach 

combines a dataset splitting method with feature selection to 

reduce dataset size, low computation requirements of trained 

models, and superior detection capability. 
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