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Abstract—Density Peak Clustering (DPC) is a density-
based clustering algorithm that exhibits superior performance
through its innovative cut-off distance concept. It effectively
adapts to clusters of arbitrary shapes and sizes, free from
geometric constraints. The fundamental principle involves iden-
tifying cluster centers by assessing the local density and
relative distance of data points, followed by subsequent point
allocation. However, DPC has inherent limitations: in datasets
with substantial inter-cluster density variations, local density
calculations lack precision, resulting in incorrect selection of
cluster centers. Additionally, the point assignment strategy may
trigger a ”domino effect,” influencing the allocation of adjacent
points. To address these challenges, this paper introduces K-
DPC, a hybrid clustering algorithm that integrates K-nearest
neighbor (K-NN) and an enhanced point assignment strategy.
K-DPC utilizes the average distance of K-NN and its N-times
standard deviation for noise point identification and filtering.
By redefining local density using K-mutual nearest neighbors
and K-NN, it improves the accuracy of initial cluster center
identification. Furthermore, the concept of high-density points
is introduced, leveraging the direct density reachability of K-
NN points for point assignment. For non-dense data, secondary
assignment is performed via cumulative weight calculation.
Experimental results on diverse datasets indicate that K-
DPC surpasses state-of-the-art clustering methods in terms of
accuracy. Notably, it demonstrates robust noise resistance and
reduces sensitivity to the domino effect. The proposed method
highlights its potential as an effective clustering solution for
complex datasets.

Index Terms—Cluster analysis, k-nearest neighbor, density
peak clustering, k-mean distance, standard deviation.

I. INTRODUCTION

LUSTERING, as an unsupervised learning method [1],

partitions datasets into groups (clusters) where intra-
cluster similarity is maximized and inter-cluster dissimilarity
is emphasized. As fundamental tools, clustering techniques
facilitate data preprocessing and exploratory analysis, en-
abling efficient pattern discovery.These algorithms have been
widely applied across diverse domains, including image pro-
cessing [2], [3], document classification [4], intelligent trans-
portation systems [5], and smart grid optimization [6], [7].
Clustering methodologies are typically classified into four
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main categories: partition-based, hierarchical, grid-based,
and density-based approaches [8]. Partition-based methods
primarily comprise centroid-based techniques such as K-
means [9] and K-medoids [10], while hierarchical clustering
is commonly implemented through algorithms like CURE
[11]. Density-based approaches are dominated by three sem-
inal methods: DBSCAN for spatial data clustering [12],
Density Peak Clustering (DPC) for multi-center detection
[13], and Mean-Shift for mode-seeking [14]. For grid-based
clustering, the STING algorithm [15] remains a benchmark
solution for spatial data partitioning. The DPC algorithm is
widely acknowledged for its simplicity, efficiency, avoidance
of iterative objective function optimization, and capability to
identify multi-shaped clusters. It exhibits robust performance
in detecting cluster structures within complex datasets. How-
ever, a critical limitation resides in its exclusive dependence
on local sample distribution to define local density. This
approach may inaccurately characterize the actual density
of sample points in datasets with substantial inter-cluster
density variations, leading to misselection of cluster centers.
Additionally, its assignment strategy is vulnerable to the
“domino effect,” whereby a single misassigned point can
propagate errors cascadingly. A misassigned point not only
distorts a cluster’s density estimation but also disrupts cluster
center establishment. Given that the DPC algorithm’s alloca-
tion mechanism relies heavily on local density and distance
metrics, such misassignments can trigger a cascading effect
on the attribution of neighboring samples, potentially causing
widespread misclassification. To address these limitations,
researchers have proposed various improvement strategies in
recent years. For example, the DPC-KNN-PCA algorithm
proposed by Du et al. [16] integrates the k-nearest neighbor
concept but exhibits high time complexity. Xie et al. [17]
developed the FKNN-DPC algorithm, which estimates local
density using the exponential kernel of distances to k-nearest
neighbors, thereby enhancing clustering performance on
multi-dimensional datasets. However, this approach demon-
strates suboptimal performance on complex datasets and fails
to resolve issues arising from heterogeneous data density.
The adaptive DPC algorithm proposed by Liu et al. [18],
which leverages k-nearest neighbors and a merging strategy,
mitigates the impact of truncation distance on cluster center
selection but underperforms on datasets with substantial
density variations. Liu et al. [19] also introduced a similarity-
based method featuring a two-stage point assignment strat-
egy, which improves cluster center identification but remains
sensitive to noise and incurs high computational costs. Bai
et al. [20] integrated the DPC algorithm with K-means to
reduce computational complexity, yet this approach inherits
K-means’ limitations, such as susceptibility to local optima.
Jiang et al. [21] enhanced cut-off distance determination by
incorporating the Gini coefficient and using k-nearest neigh-
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bors for center point identification, improving performance
on datasets with large density differences. Nevertheless, its
accuracy in high-dimensional spaces remains constrained,
and it occasionally fails to identify cluster centers accurately.
Yuan et al. [22] developed a k-nearest neighbor density peak
clustering algorithm with an adaptive merging strategy, refin-
ing the k-nearest neighbor approach to improve performance
on complex datasets. Chen et al. [23] proposed the DPC-
NNO algorithm, which combines inverse nearest neighbors
and k-nearest neighbors to define local density, effectively
addressing the initial point assignment problem in datasets
with heterogeneous densities. Zhou et al. [24] utilized mutual
k-nearest neighbors and local kernel density to enhance local
density estimation, addressing the initial point assignment
issue; however, it remains sensitive to outliers, potentially
degrading clustering accuracy.Overall, existing algorithms
such as DPC-KNN-PCA and FKNN-DPC confront chal-
lenges including sensitivity to density disparities, truncation
distance dependency, noise/outlier vulnerability, high com-
putational complexity, and susceptibility to local optima. To
address these limitations, this study proposes enhancements
comprising robust noise/outlier management, optimized lo-
cal density estimation, computational complexity reduction,
local optima avoidance, and integration of high-density point
classification. These improvements collectively enhance both
the clustering performance and algorithmic robustness.

To overcome the limitations of the DPC algorithm and
its current improved versions, this paper puts forward an
enhanced K-DPC algorithm. This algorithm aims to tackle
the difficulties in determining cluster centers and non - center
points, and to alleviate the domino effect resulting from point
assignment. The key innovations of the K - DPC algorithm
are summarized as follows:

1) Noise Point Preprocessing: This study proposes a
density-threshold filtering strategy to effectively identify and
remove low-density noise points during the preprocessing
stage.

2) Cluster Center Optimization: This study proposes a
novel local density reconstruction method that integrates
k-mutual nearest neighbors (kMNN) and k-nearest neigh-
bors (kNN). By applying dual-neighborhood constraints, this
approach alleviates computational biases stemming from
inter-class density disparities. Consequently, it improves the
discriminability of cluster centers in low-density regions
and minimizes misjudgments arising from ambiguous local
density estimations.

3) Non-central Point Assignment: The proposed algo-
rithm incorporates high-density points and direct density
reachability based on k-nearest neighbors to facilitate the
initial classification. For low-density points, a Gaussian ker-
nel weighting model is used to calculate density-sensitive
aggregation weights. This approach effectively resolves the
ambiguity in point assignment within low - density regions
and significantly improves overall clustering performance.

Section II introduces the DPC algorithm and analyzes its
limitations. Section III details the proposed K-DPC algo-
rithm. Section IV evaluates the performance of the improved
K-DPC algorithm against traditional methods using diverse
datasets. Finally, Section V concludes the paper.

II. INTRODUCTION TO THE PRINCIPLE OF RELATED
ALGORITHMS

A. DPC algorithm

The Density Peaks Clustering (DPC) algorithm is a classic
density-based clustering method predominantly applied to
spatial data analysis. It is grounded in two core concepts:
local density and relative distance. Local density denotes the
count of neighboring points surrounding a given point, typ-
ically computed using a Gaussian kernel function. Relative
distance is defined as the distance from a point to its nearest
neighbor with a higher local density; for the point with the
highest local density, its relative distance is calculated as the
distance to the nearest point with the second-highest local
density.

The traditional DPC has two classical methods for the
calculation of the local density, the truncated kernel method
and the Gaussian kernel method, assuming that the data set
X = {zl,22,23...an}, for ¥x;,x; € X, two different local
density calculation formulas are as follows.

Truncation kernel:

p=xld-alx@={ 5 T3]

z>0 D

Gaussian kernel:

b= Y eap l— (Wﬂ @

r;€X

Where x is the indicator function, which is 1 if the
condition is satisfied and O otherwise. djj is the Euclidean
distance between points x; and x;, dcis the truncation
distance, and p; is the local density of point i.

The relative distance is for each point i, traverse all its
neighbors to find the nearest neighbor j whose local density
is higher than p; , and then calculate the distance d;; between
iand ]

Relative distance:

0; = ming.p;>p,dij 3)

If the local density p; of x; is the largest in the dataset X,
the relative distance §; of x; is as follows.

0; = maxd;, i £ j @)

After obtaining the local density and relative distance,
p; and ¢; are used to construct the decision map, where
the abscissa is the local density and the ordinate is the
relative distance. Cluster centers can be selected based on
the decision diagram, and the point with the highest decision
value is usually selected as a candidate for the cluster center.
Because these points usually have high local density and
large relative distance, indicating that they are in the center
of the high-density region and no other points around them
have higher density.

Decision value:

i = pi -0 %)

The main steps of the DPC algorithm are as follows. First,
the local density of each point is computed using Equation
(1) or (2). Then, the pairwise distances between all points
in the dataset are calculated to form a distance matrix D,
and the relative distance of each point is determined using
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Equation (3) or (4). Next, the decision value is computed
using Equation (5), and all points are ranked in descending
order based on this value. The top K points are selected as
cluster centers, and finally, the remaining points are assigned
to the cluster of their nearest neighbor with a higher local
density.

III. THE K-DPC ALGORITHM

Based on an analysis of the classical Density Peak Clus-
tering (DPC) algorithm, this paper proposes an enhanced
version, the K-DPC algorithm. The clustering procedure
involves key steps: first, the dataset is refined by identifying
and removing noise points. Second, the concepts of k-
nearest neighbors (kNN) and k-mutual nearest neighbors
(kMNN) are integrated to optimize local density calculation,
which alleviates bias caused by inter-class density disparities,
improves the accuracy of cluster center selection, and reduces
the risk of misidentifying cluster centers. Additionally, a
point assignment strategy based on kNN density reachability
and a neighbor-weighting model is introduced, effectively
mitigating the domino effect and enhancing the reliability
and accuracy of non-central point assignment. Overall, the
algorithm significantly improves the clustering performance
of complex datasets through the optimization of key pro-
cesses.

A. Removal of noise points

In the classical Density Peaks Clustering (DPC) algorithm,
noise data points are typically not explicitly identified or
processed, which disrupts local density calculations and
cluster center identification, thereby degrading clustering
accuracy. To address this, this paper proposes a density-
threshold-based noise filtering strategy. By quantifying the
local density of each data point, points with densities below
a predefined threshold are identified as noise and eliminated
during preprocessing. This approach yields a cleaner dataset
for subsequent clustering, ultimately enhancing clustering
quality.

Definition 1:

For a given dataset X = {x1, 22, 23...an}, for Vx;,x; €
X, the average distance and standard deviation of x; from
its k-nearest neighbors are as follows.

sz €knng,; dZSt(.’l?“ x])

AvgDist; =
vgDist, e (6)
n 2
. Z (AvgDist;)
1 i=1
= AvgDist, — ———
o — Zzzl vgDist, - (7

knn(x;)is the set of the K nearest neighbors of z;,calculate
the average distance and standard deviation between each
point and its k-nearest neighbors. Noise points typically do
not cluster closely with other points; therefore, the distances
between a noise point and its nearest neighbors tend to be
more dispersed. Consequently, noise points generally exhibit
relatively large average distances and standard deviations.

Thus, points with a larger sum of average distance and
standard deviation are more likely to be noise points.
Definition 2:
For a given dataset X = {z1,22,23...an}, for Vx; € X,
the noise points are:

>ie1 (AvgDist,)
n

In this paper, a specific threshold is used to distinguish
noise points from non-noise points in the dataset. If the av-
erage distance of a data point’s k-nearest neighbors exceeds
the overall average distance of all points’ k-nearest neighbors
plus N times the standard deviation, the point is classified as
noise. When additional noise points are artificially added, N
is set to 2 to improve detection effectiveness. In the absence
of artificially added noise, NV is set to 8.

AvgDist; > + No ®)

B. Selection of cluster centers

The classical Density Peak Clustering (DPC) algorithm
identifies cluster centers by multiplying local density and
density distance. However, its local density calculation is hy-
persensitive to parameters such as the cutoff distance. In low-
density regions, the neighborhood range is often ambiguously
defined, leading to suboptimal cluster center identification.
Additionally, pronounced density disparities between clusters
can induce calculation bias. To address these issues, this pa-
per introduces a local density reconstruction method integrat-
ing K -mutual nearest neighbors (X-MNN) and K-nearest
neighbors (K-NN), optimizing local density calculation via
a dual-nearest-neighbor constraint mechanism. This approach
effectively mitigates bias arising from inter-class density
disparities, enhances cluster center identification in low-
density areas, minimizes misclassification of center points
due to inadequate local density estimation, and elevates the
accuracy of initial cluster center selection.

Definition 3:

For a given dataset X = {z1,22,23...an}, for Vx;,x; €
X ,the k-mutual nearest neighbors of x; are as follows.

KMNN ={z;,z; € X | z; € knn(z;),z; € knn(z;)}
€))

K-Mutual Nearest Neighbors (KMNN),Data z; in data set
X is in the k-nearest neighbor set knn(z;) of x; ,Also z;
is in the set knn(z;) of k-nearest neighbors of z;,then the
data x; and x; are called k-mutual neighbors.

Definition 4:

For a given dataset X = {z1,22,23...an}, for Vx;,x; €
X ,the k-inverse nearest neighbors of z; are as follows.

INN ={z;,z; € X | z; € knn(x;)} (10)

K-inverse nearest neighbor is referred to as INN,If z; in a
dataset X is in the set knn(z;) of x;’s k-nearest neighbors,
we say x; is x;’s k-inverse nearest neighbor.

Definition 5:

Degree of correlation: For a given dataset X =
{z1, 22, 23...zn}, for Vx;,x; € X ,The degree of correlation
between x; and z; is:

xj € knn(z;)

a- (exp(—di;)°
Q ) z; ¢ knn(z;) (b

(k‘-di]‘Jr])

R (xi, xj) = {
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Equation (11) classifies samples into two categories: k-
nearest neighbor samples and non-k-nearest neighbor sam-
ples. For the k-nearest neighbor samples, which are closer to
the target point, their contribution to the target’s local density
is more significant. Therefore, the exponential function is
used to describe the local density of the K nearest neigh-
bor samples, and the weight of the density contribution is
adjusted by multiplying by « to ensure that the density con-
tribution can quickly decay with the increase of distance, and
the value of « is 1/2. However, for non-k-nearest neighbor
samples, since they are far away from the target point, their
contribution to the local density is relatively small, so their
local density is denoted by 1/(k - d;; + 1) , which decays
slowly with the increase of distance. The influence of all
sample pairs, including k-nearest neighbor samples and non-
k-nearest neighbor samples, is comprehensively considered,
so that the k-nearest neighbor local density calculation is
more comprehensive.

Definition 6:

For a given dataset X = {z1,22,23...xn}, for Vx; €
X ,the local density of z; is as follows.

1 n
pi = kmnn; + - ;R(IZ, z;)) (12)

Formula (12) defines the improved local density. DPC
identifies cluster centers by the principle that they have
higher local density than neighbors. This paper enhances
this by incorporating global density distribution via k-MNN
and k-local density.k-MNN integrates k-NN and k-INN, with
density increasing with surrounding points. k-local density
mitigates regional density disparities through adaptive ad-
justments, and combined with Formula (5), identifies cluster
centers in sparse areas.

Algorithm 1:

Input: original dataset, k-nearest neighbor value

Output: denoised dataset, cluster center

Stepl: Data normalization, calculate the sample Euclidean
distance matrix

Step2: Calculate the average distance AvgDist between
each point and its K nearest neighbors according to Equations
(6) and (7), and use the average distance to calculate the
standard deviation o.

Step3: According to Formula (8), find the points whose av-
erage k-nearest neighbor distance is greater than the average
of all k-nearest neighbor distance plus N times the standard
deviation, and mark them as noise points.

Step4: The noise points are removed and the local density
p; 1s calculated according to equations (9) and (12).

StepS: Select the cluster center C by constructing the deci-
sion diagram and calculating ~y; through p; and d; according
to equation (5).

The Local Outlier Factor (LOF) algorithm identifies out-
liers by comparing the local density of each data point with
that of its neighbors. While LOF effectively detects local
outliers in heterogeneous density regions without assuming
global distribution patterns and demonstrates effectiveness
in multidimensional data, it has inherent limitations. Specif-
ically, LOF assesses only local neighborhood relationships
without accounting for global data structure, potentially
failing to identify outliers that substantially deviate from

! .< ! .<

i i

4™ i i 5

_2_2 - "04 ° . | _2_2 - ‘Oc . |
(a)LOF (b)K-DPC

(a)LOF (b)K-DPC

Fig. 1. Comparison of LOF and K-DPC algorithms for noise point detection

the entire dataset (e.g., specific noise points in Figure 1a).
Traditional Density Peak Clustering methods typically utilize
fixed cutoff distances or Gaussian kernel functions for noise
detection, which may struggle to adapt to heterogeneous
data densities. Although recent improvements have enhanced
noise identification capabilities, they still insufficiently incor-
porate global density features. In contrast, the K-DPC algo-
rithm computes the standard deviation of average k-nearest
neighbor distances, enabling noise identification by setting
distance thresholds relative to this deviation. This approach
effectively integrates local and global density information,
adapting to dataset density variations while accurately dif-
ferentiating noise from valid data points. As illustrated in
Figures 1b and 1d, K-DPC precisely identifies noise points
without misclassifying normal data, demonstrating superior
noise recognition performance.

(c)K-DPC

Fig. 2.
dataset

Cluster centers of different density calculation methods on Jain

The figure highlights notable limitations in the traditional
DPC algorithm’s cluster center identification, largely stem-
ming from its strong dependency on local density measures.
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This dependency often results in an inadequate characteriza-
tion of the global data structure, particularly in datasets with
pronounced inter-cluster density variations. In such cases,
local density metrics frequently fail to accurately reflect
the global data distribution, thereby compromising cluster-
ing performance. For instance, when processing datasets
with heterogeneous density distributions, the traditional
DPC algorithm exhibits two critical drawbacks: (1) over-
segmentation of high-density regions into multiple clusters,
and (2) misclassification of low-density points into adjacent
clusters or incorrect labeling as noise. These limitations are
clearly illustrated in Figures 2(a) and 2(b) using the Jain
dataset.

To address these challenges, the K-DPC algorithm inte-
grates a k-mutual nearest neighbor (k-MNN) approach to
redefine local density computation. By incorporating density
information from k-nearest neighbors, K-DPC adaptively
adjusts density estimates, effectively mitigating disparities
between sparse and dense regions. This advanced method
achieves three key improvements: (1) precise cluster center
identification even in low-density regions, (2) elimination of
the constraints imposed by the traditional cutoff distance
parameter, and (3) establishment of a more robust and
flexible cluster center detection framework.

C. Remaining points assignment

This paper proposes an enhanced non-central point as-
signment strategy that integrates k-nearest neighbors and
weight aggregation mechanisms to optimize the clustering
process. The strategy first constructs an initial clustering set
using cluster centers and their k-nearest neighbors. For high-
density points, it identifies classified neighbors within their k-
neighborhood, quantifies the point-cluster association degree
via logarithmic transformation and distance summation, and
assigns points to the cluster with the maximum transformed
distance sum. For non-dense points, a density-weighted
model based on Gaussian kernel functions is developed to ag-
gregate weights within the k-neighborhood, assigning points
to the cluster with the highest cumulative weight sum—this
approach facilitates rational assignment of data points in low-
density regions. By fusing kNN connectivity and weight
aggregation, the method effectively mitigates the domino
effect of single-point misassignment, enhances the robustness
of the assignment process, and significantly improves clus-
tering accuracy for heterogeneous density datasets, offering
an efficient solution for complex data distributions.

Definition 7:

High-density point: For each point, compare its k-nearest
neighbors and k-inverse neighbors. If the number of intersec-
tions between its k-nearest neighbors and k-inverse neighbors
is greater than or equal to K-1, the point is defined as a high-
density point.

H (2;) = Sum (KNN (2;) N NNN (2;)) > K — 1 (13)

Definition 8:

The sum of reciprocal distances is calculated where C;
is the ith cluster. This formula simply calculates the sum of
the reciprocal distances from point p to the points in cluster
C;. Setting distance threshold: In order to remove very small
distance values, define a threshold e,e =1.

dpyy = max (dpg, €) (14)

1
distsum/ (p,c;) = Z log (d’) (15)
gEKNNpyne; pa

Definition 9:

For each point k-nearest neighbor data K =
{k1,k2,k3...kn}, for Vk;, € K different density weights
are set according to the distance from the point.According
to the distance from the point through the Gaussian formula,
the basic weight and additional weight are calculated to set
different density weights.

) dij ?
baseweight = exp (—k (bandwzdth) ) (16)

A7)

addweight = Ty

«; = baseweight; X addweight; (18)

By constructing a distance-sensitive weight mechanism for
neighboring points, those with closer proximity to unassigned
points are assigned higher weights during the assignment
process. Furthermore, a multi-cluster neighborhood influence
factor is introduced to explicitly model heterogeneous mem-
bership probabilities of neighbors, enabling more accurate
point assignment decisions. The strategy of co-constructing
an initial clustering set based on center points and their
k-nearest neighbors effectively reduces the iterative opti-
mization search space. By prestructuring the neighborhood
structure, the search complexity in the subsequent assignment
process is minimized, thus enhancing algorithm efficiency
while ensuring assignment rationality.

Algorithm 2:

Input: Denoised dataset, cluster center

Output: Clustering results

Stepl: Identify dense points using formula (13). Iteratively
classify dense points by integrating formulas (14) and (15).

Step2: For non-dense points, assign each point to the
cluster with the maximum weight sum via formulas (16) ~
(18), and repeat this process iteratively.

Step3: Post-iteration, if a point’s weight distribution is
uniform across clusters, assign it to the cluster containing
its nearest neighbor.

Step4: Output the final clustering results.

Computational time complexity:

Assuming that the total number of samples is N, the time
complexity of K-DPC algorithm consists of the following six
steps:1) The time complexity of calculating the Euclidean
distance between samples is O(N?), 2) perform the cal-
culation of the mean and standard deviation, which is A
linear operation, and its time complexity is O(N), 3) sort
the Euclidean distance and determine the time complexity
of the first K nearest neighbor points of each sample is
O(nlogyn),4) the time complexity of calculating the local
density of K of each sample is O(N?), 5) The time com-
plexity is O(N?) when classifying high density points, and
6) the time complexity of performing density-based weight
and label assignment is O(NV). Therefore, the overall time
complexity of the K-DPC algorithm is O(N?).
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IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experiment Preparation 3

In order to confirm the practicability of K-DPC algo- 0 "'I'., . 0 "
rithm, this study selected data sets with multiple dimensions, ¥
sizes and additional noise for testing, and compared it with : o
eight clustering algorithms including DPC, DBSCAN, K- -2 Sl -2 S

means, mean-shift, NNODPC, KKDPC, and DK-means.The -2 -1 0 1 2 -2 -1 0 1
evaluation criteria are NMI (normalized mutual information)

[25], RI (Rand index) [26], ARI (adjusted Rand index) [26],

AMI (adjusted mutual information) [27] and FMI (Fowlkes- 1
Mallows index) [26]. The ideal value of these indicators is
1, and the closer to 1 indicates the better performance of ":.. ":._
the algorithm.The hardware configuration for the experiments -1 ) . ) .
consisted of using an Intel(R) Core(TM) i7-7700 processor, Wi Wi

8 GB memory, a computer running Windows 11 64-bit ~ 7L 0"' — 2 0 ’ .
operating system, and PyCharm 2023.2 as the programming
environment. TABLE I (c)DBSCAN (d)K-means
ARTIFICIAL DATASETS
1 1

Dataset Number Number Number Literature . ;Z'
of of of 0 0
instances features clusters ._,.-"-

Spiral 312 2 3 28] e '.u -1

Flame 240 2 2 [29] Lo, oo o

Zelink3 266 2 3 [30] -2 Tt -2 Tt

Aggregation 788 2 7 [31] - 0 ! g - 0

Jain 373 2 2 [32]

R15 600 2 15 [33]

Ring 1000 2 2 [22] 1 1

Compound 399 2 6 [35] R R

Pathbased 300 2 3 [36] ol - ol -

TABLE 1T
REAL DATASETS k3
-1 -1 :

Dataset Number Number  Number  Literature N R
of of of _2—'2 -1 0 i 2 _2—'2 -1 0
instances features clusters

Iris 150 4 3 [34] (g)KKDPC (h)D-Kmeans

Wine 178 1 3 [34]

Sonar 208 60 2 [34] Fig. 3. Clustering results on the Zelnik3 dataset

Vihecle 846 18 4 [34]

700 101 17 7 [34]

Abalone 4177 8 3 [34]

Ecoli 326 8 8 [34]

pima 768 8 2 [34]

yeast 1484 8 10 [34]

Parkinsons 195 23 2 [34]

Ionosphere 351 34 2 [34]

dermatology 366 34 6 [34]

Libras 360 91 51 [34] (a)K-DPC (b)DPC

Balancescale 625 4 3 [34]

B. Experimental results on synthetic datasets

This paper introduces K-DPC, a novel clustering algo-

rithm, and evaluates its performance against existing methods

across multiple datasets. K-DPC is systematically assessed
on nine artificial datasets using standard metrics: Normal-

) ° ' (c)DBSCAN
ized Mutual Information (NMI), Rand Index (RI), Adjusted

(d)K-means

Rand Index (ARI), Adjusted Mutual Information (AMI), and
Fowlkes—Mallows Index (FMI). The algorithm is compared
with DPC, DBSCAN, K-means, mean-shift, KNN, KKDPC,
and DK-means to validate its effectiveness under diverse data
distributions. Experimental results provide a comprehensive
comparison, demonstrating K-DPC'’s superior robustness and

accuracy relative to state-of-the-art clustering approaches.

(e)Mean-Shift

(H)NNODPC
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2 2 .
1 "#( 1 :#(
0 %" 0 %
—1q k= _1| T
) )
2 -1 0 i 2 2 -1 0 1 2
(g)KKDPC (h)D-Kmeans (e)Mean-Shift (f)NNODPC
Fig. 4. Clustering results on the Flame dataset 2 2 Py
i L @
2 & o
1 0 0
_1] e -
0 1 1
-2 X -2
-1 -2 -1 0 1 2 -2 2
2 5 (g2)KKDPC (h)D-Kmeans
Fig. 6. Clustering results on the R15 dataset
2
1
0
-1
-2
-2
2
1
0
-1
-2
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Fig. 8. Clustering results on the Pathbased dataset

1) Analysis of experimental results on artificial data sets:

First, the experimental results for the Zelink3, Spiral,
and Pathbased datasets were systematically analyzed. For
Zelink3, characterized by a sparse ring cluster and two
dense clusters, K-DPC, DBSCAN, NNODPC, and KKDPC
achieved precise clustering outcomes, successfully identify-
ing all structural components. In contrast, DPC and K-means
exhibited misclassification issues, erroneously assigning por-
tions of the ring cluster to adjacent dense clusters, thereby
potentially compromising clustering accuracy.

For the Spiral dataset, density-based algorithms such as K-
DPC and DPC exhibited superior performance, effectively
capturing helical structures and accurately classifying data
points. This efficacy arises from their adaptive neighborhood
definitions, which facilitate flexible boundary detection in
non-linear structures. Conversely, K-means, Mean-Shift, and
DK-means performed suboptimally owing to their reliance
on Euclidean distance metrics and parametric assumptions
regarding data distribution. Specifically, K-means and DK-
means, which optimize cluster assignments based on centroid
means and variances, exhibited systematic misclassification
when confronted with the spiral’s non-Gaussian, intertwined
topology—errors that highlighted the limitations of centroid-
based approaches. The Mean-Shift algorithm, which relies
on gradient ascent to find local density maxima, faced
difficulties in resolving overlapping density peaks, resulting
in inconsistent determination of cluster centers.

On the Pathbased dataset, K-DPC achieved optimal results
by integrating k-mutual nearest neighbor (k-MNN) connec-
tivity to characterize hierarchical density landscapes. In con-
trast, the DPC algorithm generated erroneous clustering out-

comes due to its heuristic initial center selection, which failed
to accommodate the dataset’s elongated, path-like structures.
K-means and DK-means exhibited subpar allocation perfor-
mance, as their iterative reallocation strategies—reliant on
global centroid calculations—could not adapt to the dataset’s
local density fluctuations.

Analysis of the Jain, Flame, and R15 datasets revealed
that K-DPC demonstrates superior clustering performance on
Jain—a dataset characterized by two intersecting crescent-
shaped clusters. In contrast, traditional DPC and related
algorithms erroneously assigned cluster centers to the higher-
density lower-half cluster, leading to systematic misclassi-
fications of the sparser upper-half points. KKDPC outper-
formed traditional DPC by integrating kernel-based density
estimation for initial cluster point selection but failed to
effectively capture the Jain dataset’s non-convex geome-
try—highlighting the need for adaptive neighborhood mech-
anisms such as those employed in K-DPC.

For the Flame dataset, both K-DPC and KKDPC demon-
strate robust performance in detecting cluster structures.
Conversely, DBSCAN’s accuracy is compromised by its
sensitivity to noise, while K-means and nnopc exhibit subop-
timal performance requiring improvement. On the artificial
R15 dataset, most algorithms achieve satisfactory results:
DBSCAN accurately identifies the number of clusters despite
noise constraints, whereas K-means and DK-means struggle
with tightly connected clusters, resulting in incorrect point
assignments and diminished performance.

K-DPC achieves significantly higher average scores across
multiple metrics on this artificial dataset—0.9706 (NMI),
0.9905 (RI), 0.9759 (ARI), 0.9701 (AMI), and 0.9830
(FMI)—compared to DPC (0.6435, 0.7992, 0.5733, 0.6272,
0.7676), with performance improvements ranging from 0.191
to 0.402. This underscores its superior capability in handling
artificial data distributions.

Table IV employs the Friedman test, a non-parametric
statistical method, to comprehensively evaluate the perfor-
mance of eight clustering algorithms on artificial datasets.
A lower rank mean (calculated by averaging performance
ranks, where rank 1 denotes the best and rank 8 the
worst) indicates superior performance relative to other meth-
ods. The K-DPC algorithm demonstrates an outstanding
rank mean below 2 across all five metrics—NMI, RI,
ARI, AMI, and FMI—significantly outperforming compar-
ative algorithms. For instance, its rank mean of 1.89 sur-
passes DPC (3.50-3.72), DBSCAN (5.61-5.72), and K-
means (6.00-6.39) by at least 3.39 points, highlighting its
consistent top-tier performance.

2) Analysis of experimental results on real data sets:

Table VI shows K-DPC outperforms classical and state-
of-the-art clustering methods on 14 real-world datasets across
NMI, RI, ARI, AMI, and FMI. Compared to DPC and
DBSCAN, K-DPC demonstrates remarkable superiority, es-
pecially on Iris, Wine, and Parkinsons datasets, where it
achieves the highest scores in all metrics. K-DPC’s mean
values exceed DPC’s by 0.112 to 0.178, confirming its
advantage in dealing with various data distributions.

The performance gain of K-DPC originates from its pre-
cise initial cluster center selection, which effectively miti-
gates the domino effect in point allocation. Although K-DPC
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TABLE III
EXPERIMENTAL RESULTS ON ARTIFICIAL DATASETS
Dataset Metrics K-DPC ~ DPC  DBSCAN K-means Mean-Shift NNODPC KKDPC DK-means Avg
NMI 1.0 0.4779 1.0 0.5405 0.6755 1.0 1.0 0.5348 0.7786
RI 1.0 0.6860 1.0 0.7316 0.8157 1.0 1.0 0.7281 0.8702
Zelink3 ARI 1.0 0.3345 1.0 0.4145 0.5635 1.0 1.0 0.4073 0.7150
AMI 1.0 0.4739 1.0 0.5372 0.6716 1.0 1.0 0.5314 0.7768
FMI 1.0 0.5863 1.0 0.6228 0.6998 1.0 1.0 0.6185 0.8159
Arg- 6 0.15 0.28/6 3 0.28 15 0.3 0.002 -
NMI 0.9630 04131 0.8749 0.3939 0.4267 0.8994 0.9354 0.4267 0.6666
RI 0.9916 0.6639 0.9695 0.7155 0.7324 0.9752 0.9834 0.7324 0.8455
Flame ARI 0.9831  0.3269 0.9388 0.4312 0.4649 0.8990 0.9666 0.4649 0.6844
AMI 0.9628 04112 0.8741 0.3920 0.4249 0.9502 0.9353 0.4249 0.6719
FMI 0.9922  0.6786 0.9712 0.7253 0.7417 0.9768 0.9846 0.7417 0.8515
Arg- 8 0.28 0.3/5 2 0.36 52 0.06 0.085 -
NMI 1.0 1.0 1.0 0.0002 0.0026 1.0 1.0 0.0003 0.6254
RI 1.0 1.0 1.0 0.5541 0.5553 1.0 1.0 0.5541 0.8329
Spiral ARI 1.0 1.0 1.0 -0.0062 -0.0035 1.0 1.0 -0.0060 0.6230
AMI 1.0 1.0 1.0 -0.0057 -0.0033 1.0 1.0 -0.0055 0.6232
FMI 1.0 1.0 1.0 0.3272 0.3290 1.0 1.0 0.3274 0.7479
Arg- 5 0.25 0.3/4 3 0.2 0.25 0.25 0.07 -
NMI 0.9942  0.9942 0.9701 0.9331 0.9942 0.9745 0.9942 0.9580 0.9766
RI 0.9991  0.9991 0.9958 0.9762 0.9991 0.9990 0.9991 0.9870 0.9943
R15 ARI 0.9928  0.9928 0.9651 0.8208 0.9928 0.9727 0.9928 0.8974 0.9534
AMI 0.9938  0.9938 0.9677 0.9282 0.9938 0.9224 0.9938 0.9550 0.9686
FMI 0.9932  0.9932 0.9675 0.8367 0.9932 0.9294 0.9932 0.9050 0.9514
Arg- 15 0.11 0.11/8 15 0.061 15 0.5 0.022 -
NMI 1.0 0.5037 0.9329 0.3443 0.2889 0.5037 0.6508 0.3443 0.6312
RI 1.0 0.7589 0.9897 0.6407 0.5864 0.7589 0.8604 0.6407 0.8091
Jain ARI 1.0 0.5133 0.9783 0.2817 0.2300 0.5026 0.7136 0.2817 0.6229
AMI 1.0 0.5026 0.9324 0.3429 0.2865 0.5026 0.6501 0.3429 0.6311
FMI 1.0 0.7905 0.9916 0.6815 0.5925 0.7905 0.8819 0.6815 0.8270
Arg- 6 0.18 0.31/4 2 0.27 9.2 0.58 0.058 -
NMI 1.0 0.1314 1.0 0.0007 0.3601 1.0 0.2401 0.0006 0.4666
RI 1.0 0.4995 1.0 0.5000 0.6328 1.0 0.5599 0.4999 0.7115
Ring ARI 1.0 0.0007 1.0 0.0035 0.2657 1.0 0.1201 0.0001 0.4238
AMI 1.0 0.0007 1.0 0.0028 0.3592 1.0 0.2394 0.0001 0.4503
FMI 1.0 0.5590 1.0 0.5005 0.6464 1.0 0.6473 0.5010 0.7318
Arg- 6 0.2 0.5/4 2 0.58 55 0.5 0.022 -
NMI 0.9822  0.9957 0.9784 0.8395 0.8120 0.8733 1.0 0.8429 0.9155
RI 0.9958  0.9993 0.9947 0.9190 0.9170 0.9270 1.0 0.9183 0.9589
Aggregation ARI 0.9876  0.9978 0.9843 0.7382 0.7829 0.8716 1.0 0.7357 0.8873
AMI 0.9820  0.9956 0.9780 0.8374 0.8105 0.8030 1.0 0.8407 0.9059
FMI 0.9903  0.9983 0.9877 0.7948 0.8463 0.8561 1.0 0.7928 0.9083
Arg- 7 1.85 0.16/8 7 0.08 13 0.03 0.062 -
NMI 0.8678  0.7335 0.8356 0.6460 0.8585 0.8315 0.8015 0.7490 0.7904
RI 0.9505 0.8414 0.9224 0.8055 0.9337 0.8996 0.9131 0.8417 0.8885
Compound ARI 0.8711  0.5366 0.8087 0.4178 0.8323 0.8252 0.7740 0.5676 0.7042
AMI 0.8642 0.7281 0.8333 0.6388 0.8552 0.7337 0.7970 0.7435 0.7742
FMI 0.9052  0.6417 0.8674 0.5449 0.8804 0.8010 0.8333 0.6721 0.7683
Arg- 5 0.18 0.3/4 6 0.12 7 0.2 0.11 -
NMI 0.9283  0.5417 0.6810 0.5508 0.5485 0.7304 0.5014 0.5508 0.6291
RI 0.9772  0.7445 0.8639 0.7515 0.7497 0.8589 0.7124 0.7515 0.8012
Pathbased ARI 0.9488 0.4574 0.6734 0.4687 0.4658 0.7287 0.4162 0.4687 0.5785
AMI 0.9279  0.5387 0.6745 0.5478 0.5455 0.6846 0.4975 0.5478 0.6205
FMI 0.9659 0.6612 0.7745 0.6656 0.6644 0.7911 0.6558 0.6656 0.7305
Arg- 13 0.22 0.23/3 3 0.2 9 0.05 0.06 -
TABLE IV TABLE V
RANK MEAN OF THE METRICS ON THE ARTIFICIAL DATASET RANK MEAN OF THE METRICS ON THE REAL DATASET
Dataset NMI RI ARI AMI FMI Dataset NMI RI ARI AMI FMI
K-DPC 7.11 7.11 7.11 7.11 7.11 K-DPC 7.57 6.93 7.50 7.64 6.07
DPC 3.72 3.39 3.50 3.61 3.61 DPC 4.21 3.86 4.07 4.79 4.14
DBSCAN 5.61 572 5.61 5.72 572 DBSCAN 471 3.64 3.64 443 4.04
K-means 2.00 2.39 222 2.33 2.00 K-means 3.86 4.39 421 4.36 3.43
Mean Shift  3.78 3.78 4.00 3.89 3.89 Mean Shift  3.82 4.39 3.68 3.18 3.96
NNODPC 5.83 5.61 5.83 5.06 5.61 NNODPC 4.54 3.54 4.46 3.07 4.39
KKDPC 5.33 5.44 533 5.33 5.56 KKDPC 3.75 3.32 3.68 4.29 5.68
DK-means 2.61 2.56 2.39 2.94 2.50 DK-means 3.54 5.39 4.75 4.25 4.21

Volume 52, Issue 10, October 2025, Pages 3891-3904



TAENG International Journal of Computer Science

TABLE VI

EXPERIMENTAL RESULTS OF THE REAL DATASETS

Dataset Metrics K-DPC DPC DBSCAN K-means Mean-Shift NNODPC KKDPC DK-means Avg
NMI 09115  0.6532 0.6618 0.5815 0.6539 0.7822 0.6964 0.6539 0.6993
RI 09641  0.7261 0.7693 0.7149 0.7607 0.8720 0.7598 0.7607 0.7910
Iris ARI 0.9188  0.4531 0.5413 0.4200 0.5350 0.7795 0.5312 0.5350 0.5892
AMI 0.9103  0.6483 0.6564 0.5757 0.6512 0.7159 0.6912 0.6512 0.6875
FMI 0.9455  0.6856 0.7418 0.6565 0.7483 0.8135 0.7440 0.7483 0.7604
Arg- 4 0.41 0.82/2 3 0.35 7 0.6 0.02 -
NMI 0.8659 0.4193 0.5421 0.4288 0.4637 0.8211 0.5522 0.4288 0.5652
RI 0.9543  0.7191 0.7274 0.7187 0.7199 0.9284 0.7075 0.7187 0.7743
Wine ARI 0.8978 0.3715 0.4140 0.3711 0.4507 0.8181 0.4310 0.3711 0.5157
AMI 0.8645  0.4131 0.5252 0.4227 0.4602 0.8380 0.5456 0.4227 0.5615
FMI 0.9323  0.5834 0.5252 0.5835 0.6949 0.8916 0.6872 0.5835 0.6852
Arg- 15 2.12 2.3/2 3 0.3 4 0.1 441 -
NMI 0.8030  0.4673 0.8678 0.7485 0.8331 0.5774 0.8422 0.6325 0.7215
RI 0.9107  0.6689 0.9774 0.8578 0.9158 0.7844 0.9554 0.8022 0.8590
Zoo ARI 0.7231  0.1723 0.9366 0.5644 0.7315 0.3894 0.8765 0.3846 0.5973
AMI 0.7733  0.4046 0.8481 0.7163 0.7863 0.2046 0.8215 0.5845 0.6424
FMI 0.7877  0.3976 0.9513 0.6582 0.7993 0.3441 0.9057 0.5111 0.6694
Arg- 3 0.9 3/2 7 0.08 7 0.1 0.2 -
NMI 0.0772  0.0121 0.0328 0.0053 0.0001 0.0238 0.0201 0.0053 0.0221
RI 0.5260 0.5010 0.4975 0.5002 0.5002 0.4985 0.5018 0.5002 0.5032
Sonar ARI 0.0520  0.0019 -0.0051 0.0004 0.0001 0.0157 0.0032 0.0004 0.0086
AMI 0.0715  0.0084 0.0147 0.0018 0.0001 0.0034 0.0112 0.0018 0.0141
FMI 05172 0.5424 0.5565 0.5055 0.7073 0.6958 0.7016 0.5055 0.5915
Arg- 4 5.30 7/2 2 3 16 0.6 0.03 -
NMI 0.2160  0.1872 0.1587 0.1867 0.3411 0.0456 0.1362 0.1867 0.1823
RI 0.6289  0.6315 0.6319 0.6523 0.7506 0.4392 0.5142 0.6523 0.6126
Vihecle ARI 0.1433  0.1168 0.1154 0.1216 0.0001 0.0378 0.0738 0.1216 0.0913
AMI 0.2126  0.1839 0.1500 0.1835 0.0004 0.0225 0.1310 0.1835 0.1334
FMI 0.4050  0.3733 0.3714 0.3590 0.0033 0.4178 0.4223 0.3590 0.3388
Arg- 16 1.93 1.5/4 8 1.8 7 1.93 0.36 -
NMI 0.6218  0.4014 0.4757 0.5680 0.5884 0.5811 0.5811 0.6136 0.5539
RI 0.8162  0.6742 0.7693 0.7853 0.8336 0.7468 0.7468 0.8702 0.7803
Ecoli ARI 0.5167  0.1736 0.4787 0.3571 0.6177 0.3993 0.3993 0.6543 0.4496
AMI 0.6088  0.3740 0.4628 0.5494 0.5677 0.5628 0.5629 0.5964 0.5356
FMI 0.6407  0.3968 0.6510 0.5012 0.7431 0.5803 0.5803 0.7423 0.6044
Arg- 8 0.85 0.85/5 8 0.3 17 0.6 0.01 -
NMI 0.1655  0.1839 0.1342 0.1258 0.0474 0.1203 0.0720 0.1258 0.1219
RI 0.6076  0.5918 0.5962 0.5969 0.4694 0.6306 0.3857 0.5969 0.5594
Abalone ARI 0.1887  0.1603 0.1024 0.1294 0.0220 0.1181 0.0157 0.1294 0.1082
AMI 0.1651  0.1835 0.1245 0.1254 0.0464 0.1082 0.0713 0.1254 0.1187
FMI 0.5058  0.4911 0.4089 0.4436 0.4718 0.3628 0.5504 0.4436 0.4597
Arg- 35 0.65 0.3/4 3 1.8 38 0.65 0.19 -
NMI 0.0662  0.0146 0.0177 0.0556 0.0091 0.0481 0.0026 0.0299 0.0305
RI 0.5538  0.5231 0.5440 0.5495 0.5487 0.4996 0.5140 0.5513 0.5355
Pima ARI 0.1054  0.0382 0.0165 0.0956 0.0171 0.0449 0.0138 0.0753 0.0509
AMI 0.0652  0.0136 0.0128 0.0547 0.0074 -0.0438 0.0015 0.0288 0.0175
FMI 0.5791  0.5629 0.7061 0.5780 0.0001 0.6129 0.5678 0.6312 0.5298
Arg- 12 0.14 0.13/3 2 0.35 7 0.56 0.04 -
NMI 0.2335  0.0751 0.0600 0.2030 0.0818 0.0117 0.0736 0.0693 0.1010
RI 0.7115  0.4276 0.2554 0.6515 0.2738 0.2567 0.2852 0.4916 0.4192
Yeast ARI 0.1369  0.0375 0.0102 0.1095 0.0206 0.0072 0.0007 0.0406 0.0454
AMI 0.2216  0.0597 0.0487 0.1965 0.0717 -0.0095 0.0570 0.0649 0.0888
FMI 0.3198  0.0001 0.0001 0.3426 0.0001 0.4464 0.4453 0.3410 0.2369
Arg- 6 0.09 0.1/20 10 0.05 5 0.2 0.3 -
NMI 0.3523  0.2516 0.1399 0.1088 0.1848 0.1562 0.0833 0.1253 0.1753
RI 0.7334  0.7027 0.4923 0.5094 0.3761 0.5613 0.5829 0.6154 0.5717
Parkinsons ARI 0.3838  0.2677 0.0728 -0.0965 0.0018 0.1481 0.1489 0.2115 0.1423
AMI 0.3481  0.2464 0.1136 0.1042 0.0274 0.1717 0.0793 0.1215 0.1515
FMI 0.8200 0.8131 0.0001 0.6338 0.0001 0.5819 0.6437 0.6740 0.5208
Arg- 5 0.07 0.3/5 2 0.7 10 0.46 0.12 -
NMI 0.2117  0.0630 0.2803 0.1299 0.0001 0.1652 0.0509 0.1320 0.1291
RI 0.6015  0.4988 0.5716 0.5865 0.5385 0.4892 0.4986 0.5865 0.5464
Tonosphere ARI 0.2024 -0.0315 0.1622 0.1727 0.0001 0.0884 -0.0307 0.1728 0.0921
AMI 0.2100  0.0606 0.2737 0.1280 0.0001 0.0430 0.0486 0.1301 0.1118
FMI 0.6181  0.5939 0.5311 0.6031 0.7338 0.2451 0.5911 0.6028 0.5649
Arg- 7 0.31 0.8/4 2 1 3 0.5 0.35 -
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TABLE VII

EXPERIMENTAL RESULTS OF THE REAL DATASETS (CONTINUE)

Dataset Metrics K-DPC ~ DPC  DBSCAN K-means Mean-Shift NNODPC KKDPC DK-means Avg

NMI _ 0.7777 0.7295 _ 0.5238 0.7076 0.4594 0.4453 0.6538 02124 05637
RI 0.8377 0.8985  0.7495 0.7729 0.8076 0.7996 0.7643 07154  0.7932
Dermatolo ARI 05666 0.6903  0.3132 0.4012 0.0863 0.0015 0.4281 0.0889  0.3220
&Y AMI 07721 0.7234  0.4965 0.7006 0.3231 0.0001 0.6452 0.1951  0.4820
FMI 06810 0.7546  0.4781 0.5557 0.0001 0.0088 0.5976 0.2653  0.4177

Arg- 6 0.35 /12 6 0.2 5 0.3 0.14 -
NMI __ 0.6011 05702  0.5852 0.5319 0.3920 05732 0.5697 05436 0.5459
RI 0.8922  0.8669  0.8591 0.8907 0.8237 0.8715 0.8817 0.8952  0.8726
Libras ARI 03132 02496  0.1128 0.2268 0.1636 0.4883 0.2529 02617  0.2586
: AMI 05442 05125 04076 0.4676 0.3427 0.2366 0.5124 0.4823  0.4382
FMI 03801 03338  0.1908 0.2880 0.0001 0.3151 0.3237 03212 0.2691

Arg- 15 0.08 0.82/2 15 0.8 15 0.37 0.56 .
NMI _ 0.1408 0.0993 _ 0.0001 0.0619 0.0745 0.1109 0.0466 0.0068 0.0676
RI 0.5541 03046  0.1987 0.6179 0.5318 0.2944 0.2633 0.5968 0.4202
Balancescale  ARL  0.0846  0.0084  0.0001 0.0455 0.0628 0.0270 0.0026 -0.0042  0.0284
AMI 01361 0.0927  0.0001 0.0574 0.0720 0.0018 0.0390 20.0048  0.0493
FMI 03752 04143  0.4458 0.2932 0.0001 0.4109 0.4242 0.0001 0.2955

Arg- 5 0.4 0.2/3 3 0.17 8 0.06 0.1 .

generally outperforms algorithms such as NNODPC, certain
metrics on specific datasets may be surpassed by alterna-
tive methods. K-DPC leverages k-mutual nearest neighbor
technology to determine cluster centers and employs an
optimized local density definition for hierarchical density
evaluation, thereby enhancing the accuracy of cluster center
identification. Furthermore, the algorithm integrates k-nearest
neighbor connectivity and weight-sum allocation to replace
the original strategy, incorporating the spatial distribution
characteristics of samples. These design choices enable K-
DPC to deliver exceptional clustering results across both
artificial and real-world datasets, underscoring its strong
generalization capability and broad applicability.

Table V' presents the application of the Friedman test to
comprehensively assess the performance of eight algorithms
on real-world datasets. A higher rank mean reflects superior
performance compared to other methods. As illustrated in
the table, K-DPC achieves a significantly higher rank mean
than all comparative algorithms, showcasing its superiority
across five evaluation metrics NMI, RI, ARI, AMI, and FMI.
The results of the Friedman test further substantiate that K-
DPC exhibits stability and clear advantages when handling
real-world datasets with varying characteristics.

The Friedman test results further validate the robustness
and superiority of K-DPC in managing datasets with di-
verse density distributions. This exceptional performance
is attributed to its innovative density estimation approach
and adaptive neighborhood mechanism, which enable precise
identification of cluster centers even under complex distribu-
tion scenarios. In contrast to algorithms like K-means and
DK-means that struggle with non-Gaussian structures, K-
DPC demonstrates remarkable resilience in defining clus-
ter boundaries and mitigating noise, as evidenced by its
consistently high rank mean across all evaluation metrics.
These findings establish K-DPC as an optimal solution for
clustering tasks that require both accuracy and computational
efficiency

C. Dataset with artificially added noise points

It is common to not specifically include noisy data in reg-
ular datasets.Therefore, we manipulated each of the datasets

listed below, adding an additional 20 disturbing noise data
points to be processed accordingly.
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Fig. 9. Clustering results on the Zelnik3 dataset with noise
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TABLE VIII
EXPERIMENTAL RESULTS OF NOISY DATA SETS

Dataset Metrics K-DPC  DPC  DBSCAN K-means Mean-Shift NNODPC KKDPC DK-means Avg

NMI 1.0 0.6709 0.9294 0.0011 0.0012 0.6633 0.6780 0.0001 0.4930
RI 1.0 0.8596 0.9614 0.5536 0.5522 0.8159 0.8374 0.5530 0.7666
Spiral ARI 1.0 0.6864 0.9108 -0.0046 -0.0049 0.6614 0.6388 -0.0060 0.4852
AMI 1.0 0.6691 0.9289 -0.0044 -0.0044 0.5993 0.6762 -0.0056 0.4824
FMI 1.0 0.7925 0.9406 0.3302 0.3319 0.7428 0.7625 0.3292 0.6537
Arg- 5 0.25 0.3/4 3 0.14 9 0.46 0.12 -
NMI 0.9630 0.3372 0.7765 0.3091 0.3199 0.6618 0.6911 0.3223 0.5441
RI 0.9916 0.7076 0.9101 0.6929 0.7027 0.8773 0.8706 0.7076 0.8065
Flame ARI 0.9831 0.4153 0.8209 0.3859 0.4053 0.6608 0.7406 0.4151 0.6013
AMI 0.9628 0.3353 0.7754 0.3071 0.3180 0.7542 0.6902 0.3204 0.5544
FMI 0.9922 0.7113 0.9084 0.6969 0.7071 0.8829 0.8786 0.7130 0.8104
Arg- 8 0.29 0.3/5 2 0.28 7 0.06 0.085 -
NMI 1.0 0.4463 0.9272 0.4365 0.4331 0.5502 0.8471 0.3890 0.6287
RI 1.0 0.7338 0.9639 0.7140 0.7206 0.7611 0.9400 0.6937 0.8159
Zelink3 ARI 1.0 0.4061 0.9178 0.3737 0.3821 0.5456 0.8673 0.3288 0.6027
AMI 1.0 0.4427 0.9266 0.4327 0.4294 0.4719 0.8461 0.3850 0.6168
FMI 1.0 0.6075 0.9458 0.5946 0.5956 0.6544 0.9132 0.5651 0.7345
Arg- 6 0.15 0.28/6 3 0.265 10 0.3 0.002 -
NMI 09942  0.9578 0.9150 0.8782 0.9647 0.9364 0.9571 0.9546 0.9448
RI 0.9991 0.9912 0.9821 0.9630 0.9936 0.9826 0.9912 0.9912 0.9868
RI15 ARI 0.9928  0.9285 0.8510 0.7374 0.9464 0.9323 0.9283 0.9280 0.9056
AMI 0.9938  0.9549 0.9086 0.8703 0.9610 0.8663 0.9540 0.9514 0.9325
FMI 0.9932  0.9332 0.8610 0.7637 0.9506 0.8769 0.9330 0.9328 0.9056
Arg- 15 0.11 0.11/8 15 0.061 18 0.5 0.08 -

(2)K-DPC (b)DPC (2)K-DPC (b)DPC

-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2

(c)DBSCAN (d)K-means

(e)Mean-Shift ()NNODPC

(g)KKDPC (h)D-Kmeans (g2)KKDPC (h)D-Kmeans
Fig. 10. Clustering results on the Flame dataset with noise Fig. 11. Clustering results on Spiral dataset with noise
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Fig. 12. Clustering results on R15 dataset with noise

The above analysis demonstrates that the K-DPC algo-
rithm exhibits high robustness against noisy data. When
applied to datasets with artificially added noise, K-DPC
successfully excluded all 20 newly introduced noise points.
The algorithm also effectively removes inherent noise in
the Flame dataset. Furthermore, in noisy datasets, K-DPC
outperforms classical clustering algorithms—including the
traditional DPC, DBSCAN, and several improved meth-
ods—across evaluation metrics: NMI, RI, ARI, AMI, and
FMI.

10 11 12 13 14 15

1 2 3 4 5 6 7 8 9
K
—— aggregation
—— R15

flame
—— ring

pathbased
Zelink3

—— Compound

Fig. 13. Clustering effect

D. Parametric analysis

The K-DPC algorithm requires pre-setting parameter k,
which defines the number of neighbors for each data point.
This parameter is critical for local density calculation, cluster
center identification, and data point assignment, directly
influencing clustering performance. In this section, select
datasets are analyzed experimentally with k& values ranging
from 1 to 15. An upper bound of 15 is set because larger
k values entail higher computational costs while yielding
marginal improvements in clustering results. Figure 5 illus-
trates how varying k values affect K-DPC’s clustering perfor-
mance across the Zelnik3, Flame, R15, Ring, Aggregation,
Compound, and Pathbased datasets.

As shown in Figure 13, the K-DPC algorithm achieves
optimal clustering performance across target datasets when
parameter k is set within the range of 5 to 15. Within
this interval, evaluation metrics for these datasets exhibit
significant stability. The figure reveals a clear upward trend
in metrics for all datasets when (k | 5), which can be
attributed to the fact that larger k& values enable each data
point to integrate more comprehensive k-nearest-neighbor
information. Specifically, incorporating more neighboring
points into local density calculations and point-assignment
processes allows the algorithm to more accurately identify
data point interrelationships and distribution characteristics,
thereby substantially enhancing clustering accuracy.

These experimental results clearly demonstrate that within
a reasonable parameter range, the k-DPC algorithm exhibits
low sensitivity to k. In other words, even as k fluctuates
within a defined interval, the algorithm consistently yields
stable and reliable clustering outcomes, providing strong
validation of its effectiveness and robustness in practical
applications.

V. CONCLUSION

This paper addresses the limitations of the DPC algorithm
by proposing an enhanced K-DPC clustering algorithm.
The novel approach integrates k-nearest neighbor and point
assignment strategies to improve clustering performance.
During the clustering process, the average distance of a
point’s k-nearest neighbors and its N-fold standard deviation
are calculated to effectively detect and eliminate noise. K-
DPC redefines local density by integrating the number of mu-
tual neighbors and the local density of k-nearest neighbors,
enhancing the accuracy of initial cluster center determination.
Based on this, the principle of direct density reachability
among k-nearest neighbors is employed for the preliminary
assignment of points. For unassignable data points, cumula-
tive weights are calculated to complete the assignment pro-
cess. The proposed algorithm mitigates the impact of noise
on clustering results, improves the accuracy of initial cluster
center identification for density-heterogeneous clusters, and
significantly reduces sensitivity to the domino effect.

Several comparative experiments on synthetic, real-world,
and noisy datasets demonstrate that the K-DPC algorithm
outperforms DPC and other methods across multiple metrics.
In noise-free scenarios, K-DPC’s mean values for NMI, RI,
ARI, AMI, and FMI exceed those of DPC by 0.2113, 0.1426,
0.2672, 0.2202, and 0.1523, respectively—reflecting average
improvements of 0.1661, 0.1068, 0.1967, 0.1817, and 0.1338.
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On noisy datasets, performance gaps widen: K-DPC’s mean
metrics outperform DPC by 0.3792 (NMI), 0.1752 (RD),
0.3807 (ARI), 0.3816 (AMI), and 0.2334 (FMI), with average
improvements of 0.3296, 0.1516, 0.3411, 0.3356, and 0.2184.
These results highlight K-DPC’s superior efficiency in han-
dling datasets of diverse sizes and geometries—especially
noisy ones—and its enhanced clustering performance relative
to traditional and state-of-the-art algorithms.

Looking forward, we plan to further optimize the K-DPC
algorithm to address more complex data characteristics and
higher-dimensional spaces. Additionally, we will explore its
potential in real-time data processing and large-scale dataset
scenarios. We also intend to integrate deep learning tech-
niques to enhance the algorithm’s adaptability and clustering
accuracy in unstructured and dynamic environments.
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