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 Abstract—With the increasing penetration of distributed
photovoltaics (PV) in distribution networks, rational control of
PV-integrated distribution networks is crucial for ensuring
their stable and economical operation. This paper proposes a
multi-objective distributed optimal control for PV-integrated
distribution networks. Firstly, three novel indexes are
introduced: an improved electrical distance index, an
intra-region autonomous regulation capability index, and an
intra-region coupling strength index. Based on these indexes,
an improved modularity index is proposed to partition
PV-integrated distribution networks. Secondly, based on the
partitioned distribution network, a multi-objective distributed
optimal control model for distribution networks is formulated,
aiming to minimize voltage violation magnitude, network losses,
and PV inverter losses. An improved Alternating Direction
Method of Multipliers (ADMM) is proposed to enhance solving
efficiency by adjusting the penalty factor. Finally, case studies
are conducted on the modified IEEE33 node system with
distributed PV in MATLAB. Simulation results demonstrate
that the partitioning method proposed in this paper
significantly enhances the modularity index value, thereby
achieving rational partitioning of the distribution network.
Furthermore, the multi-objective distributed optimal control
effectively mitigates voltage violations, reduces network losses
and inverter losses, and improves computational efficiency,
ultimately enhancing grid stability and economic performance.

Index Terms—Multi-objective, Distributed photovoltaics,
Distribution network partition, Distributed optimal control,
Improved ADMM

I. INTRODUCTION
he growing penetration of distributed photovoltaics
(PV) in distribution networks provides abundant control

resources for voltage regulation. However, the integration of
large-scale PV inverters also poses significant challenges to
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the economic operation of distribution networks[1]. In this
context, rational control of PV-integrated distribution
networks is crucial for ensuring their stable and economical
operation. Voltage limit violations can lead to equipment
overload, insulation aging, and even faults, directly
compromising power supply reliability. Therefore,
minimizing voltage violation magnitudes is critical for grid
security[2]. Reducing network losses improves energy
transmission efficiency, while minimizing inverter losses
extends equipment lifespan and lowers maintenance costs,
both of which are vital for economic operation[3].
Traditional centralized control methods struggle to adapt to
the distributed nature and rapid response requirements of PV
systems, and single-objective optimization may degrade
other performance indexes[4]. Thus, developing a
multi-objective distributed optimal control framework to
minimize voltage violation magnitude, network losses and
inverter losses is of significant practical relevance[5].
Current approaches for optimal control of PV-integrated

distribution networks can be categorized into three types:
local optimal control, centralized optimal control, and
distributed optimal control. Local and centralized methods
are suitable for distribution networks with low PV
penetration. However, as large-scale distributed PV systems
are integrated, requiring control of numerous nodes and
handling increasingly complex optimization variables,
distributed optimal control has gained prominence in
high-PV-penetration networks. Reference [6] proposed a
hierarchical distributed control method with
autonomous-collaborative mode switching for microgrids.
By dynamically establishing or disconnecting
communication links between microgrids, this method
enables voltage regulation across microgrids and common
buses while supporting autonomous or collaborative
operation. Reference [7] established a partitioned distributed
voltage optimization model targeting PV active power
curtailment and network loss minimization. Through
reformulation of the augmented Lagrangian function, global
optimization was achieved via the Alternating Direction
Method of Multipliers (ADMM). Reference [8] identified
critical nodes within partitioned distribution networks and
applied a modified particle swarm optimization algorithm to
minimize network losses and voltage fluctuations by
regulating these nodes. Although these studies advanced
voltage control methodologies, they overlooked PV inverter
losses, potentially leading to suboptimal solutions and
increased operational costs. To address these gaps, this paper
proposes a multi-objective distributed optimal control
framework that jointly minimizes voltage violation
magnitudes, network losses, and PV inverter losses. This
approach ensures both secure and economic operation under
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high PV penetration.
The partitioning management strategy for distributed

PV-integrated distribution networks enhances the
coordination of PV resource allocation, optimizes local
energy consumption, and ensures intra-partition and
inter-partition collaboration[9]. Due to the distributed and
decentralized nature of PV systems, selecting appropriate
partitioning indexes is critical during grid planning and
dispatch[10]. Reference [11] introduced an electrical
distance index based on active power-phase angle sensitivity.
By calculating intra-partition and inter-partition electrical
distances, the network is clustered into manageable zones.
Reference [12] proposed an improved modularity index
incorporating network topology, power flow, and voltage
management measures. This approach achieves global
voltage regulation by controlling voltage profiles within
sub-communities. Reference [13] developed a structural
electrical distance index that jointly considers active and
reactive power outputs to delineate voltage regulation zones
for distributed energy resources. While these studies
advanced partitioning indexes, their applicability is limited
to structurally simple grids with low PV penetration.
Large-scale PV integration complicates grid topology and
intensifies optimization challenges. Thus, this paper
proposes a high-PV-penetration-adapted modularity index
that enables coordinated control across partitions,
significantly improving grid optimization efficiency.
This paper focuses on distribution networks with

integrated distributed PV and proposes a multi-objective
distributed optimal control for PV-integrated distribution
networks. The structure of the paper is organized as follows:
Section 2 investigates the partitioning methodology for
PV-integrated distribution networks. The improved
modularity index proposed in this work is solved using the
Louvain algorithm to achieve network partitioning tailored
for high-PV-penetration scenarios. Section 3 presents the
partition-based distributed optimal control framework,
aiming to maximally mitigate voltage violations while
minimizing network losses and inverter losses. To accelerate
convergence, an improved ADMM is proposed to coordinate
optimization across partitions. Section 4 validates the
proposed method through simulations on a modified IEEE33
node system. The results demonstrate that the
multi-objective distributed optimal control not only
effectively alleviates voltage violations but also minimizes
network losses and PV inverter losses during optimization.
Additionally, the framework achieves global optimal control
by fully leveraging the regulation capabilities of
dispatchable resources, ensuring both grid stability and
economic efficiency. Section 5 gives the conclusion.

II. RESEARCH ON FARTITIONING METHODS FOR
PV-INTEGRATED DISTRIBUTION NETWORKS

A. Partitioning Indexes for PV-integrated Distribution
Networks
With the increasing integration of distributed PV into

distribution networks, system control complexity intensifies,
necessitating rational partitioning of the distribution
network to achieve coordinated control.

1) Improved Electrical Distance Index
The voltage/power sensitivity between nodes can be

derived from the inverse of the Jacobian matrix in power
flow calculations. Based on the AC power flow equations,
the nonlinear power flow equations are linearized at the
steady-state solution, yielding the matrix expression:

P Q

PU QU

S S P
S SU Q

q qq     
          

(1)

Where PUS and QUS are the sensitivity coefficients of
active and reactive power injections at node j to the voltage
magnitude at node i, respectively; PS q and QS q are the
sensitivity coefficients of active and reactive power
injections at node j to the voltage phase angle at node i,
respectively.
During steady-state operation, the primary factor

influencing voltage magnitude is reactive power. As shown
in (1), the relationship between node voltage and reactive
power variations in the distribution network can be
expressed as:

QUU S Q   (2)
When defining the electrical distance, considering only

the physical positions of nodes in the distribution network is
insufficient. Specifically, if a node has few adjacent edges
but its neighboring nodes have numerous edges, voltage
violations at adjacent nodes may still propagate to it,
meaning the node remains vulnerable to voltage violations
from others[14]. Therefore, this paper proposes an improved
electrical distance index that comprehensively incorporates
information from both the node and its adjacent nodes:

QU QU QU
ij ij dj

d D
e S S


   (3)

where d represents an adjacent node of node i; D is the set
of adjacent nodes of node i.

2) Intra-region Autonomous Regulation Capability Index
This paper introduces the intra-region autonomous

regulation capability index to balance voltage regulation
resources within each partition. This ensures that PV output
and load demand within each partition are locally balanced,
avoiding long-distance power transmission, reducing
transmission losses, alleviating system regulation burdens,
and ultimately enhancing grid stability. The proposed index
is formulated as:

sup
sup

1 ,

k k

k k k

k k

need
c c avg need

c c cavg
c c

Q Q
Q Q Q

F Q

otherwise

 
 

 



，
(4)

Where kc denotes the k-th partition; ck
F represents the

intra-region autonomous regulation capability index of the
k-th partition; sup

k k

need
c cQ Q、 corresponds to the reactive

power supply capacity and demand value of the k-th
partition, respectively;

k

avg
cQ is the average reactive power

supply value of the k-th partition. The intra-region
autonomous regulation capability index kcF reflects the
regulation difficulty of the distribution network. A smaller

kcF indicates that reactive power fluctuations within the
partition are closer to the average value, implying moderate
dependence on external power supply variations and easier
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load-generation balance. Conversely, a larger kcF signifies
greater regulation difficulty, necessitating additional flexible
regulation resources to ensure power supply-demand
equilibrium.

3) Intra-region Coupling Strength Index
The modularity function measures the structural strength

of a specific partition in a network and is a critical index in
clustering algorithms. The traditional modularity function is
defined as:

 1 ,
2 2

i j
ij

i j

k k
= A i j

m m
r c d

 
 

 
 (5)

Where ijA is the edge weight between nodes i and j;

ik is the sum of edge weights connected to node i; jk is
the sum of edge weights connected to node j;

  / 2iji jm A   is the total sum of all edge weights in

the network;  ,i jd =1 when nodes i and j belong to the
same partition, otherwise  ,i jd =0; c is the resolution
parameter in the modularity function, set to 1c . This
paper employs the average edge weight to represent the
partition weight, which quantifies the coupling strength
between two nodes:

2

QU QU
ij ji

ij

e e
A


 (6)

This paper proposes an intra-region coupling strength
index to quantify the coupling intensity among partitions.
This index balances the number of nodes and PV
integrations within each partition, preventing unreasonable
partitioning. The proposed index is formulated as:

. 1
2

( 1)

ij

ck

n
Q

i jQU
A

=
n n

b 




(7)

Where n is the number of nodes in the partition kc , and
theoretically, these nodes can form up to n(n-1)/2 edges. A
higher intra-region coupling strength index indicates
stronger coupling within the partition.

4) Improved Modularity Index
The sensitivity between nodes in a distribution network is

related to their equivalent reactance parameters, while
impedance characteristics are directly influenced by the
spatial distribution of nodes[15]. Constructing partition
weights based on the voltage-reactive power sensitivity
matrix ensures continuity of power transmission and
electrical coupling strength between partitions[16].
Combining (5) and (6), the partition modularity index is
derived as:

 1 ,
2 2

i j
QU ij

i j

k k
= A i j

m m
r d 

 
 

 (8)

Assuming the distribution network is divided into N
partitions, the improved modularity index is expressed as:

  1 1
k ck

QU
imp QU c+ -F +

N
r r b (9)

The proposed improved modularity index not only
incorporates node location information but also balances
reactive power supply and load demand within each
partition, preventing irrational partitioning caused by

imbalanced load nodes and PV integrations.

B. Partitioning Algorithm for PV-integrated Distribution
Networks
The Louvain algorithm can rapidly and automatically

determine the optimal number of partitions without
predefined assumptions, significantly reducing human
intervention[17]. Its core principle involves iteratively
optimizing the network modularity through local
adjustments of node assignments, ultimately achieving
effective partitioning. The steps for implementing the
Louvain algorithm are as follows:
Step 1: Obtain operational data of the PV-integrated

distribution network at the partitioning time.
Step 2: Initialize each node as an independent partition

and calculate the
0
imp,i

r value using (9).

Step 3: Randomly select two nodes i and j to form a new

partition  ,i j . Calculate the value of
1
imp,ij

r and
1 0

1 imp,ij imp,i
= -r r r . Merge the node  ,i j corresponding

to the maximum 1r into a new partition.
Step 4: Treat the merged partition  ,i j as a new

independent node. Rebuild the network and repeat Step 3 to
continue partitioning.
Step 5: Iterate Steps 3-4 until all nodes are merged. Select

the partition result with the maximum
imp

ijr value as the
optimal solution.
The proposed improved modularity index incorporates

node location information, enabling a dynamic partitioning
mechanism with real-time responsiveness. This mechanism
adaptively handles operational changes such as PV
grid-connection state transitions and load fluctuations. For
distribution networks, changes in topology or operational
modes directly affect partitioning results. Retaining outdated
partitions under such changes degrades control effectiveness.
To ensure stability, partition updates are triggered only when
topology-altering operational shifts occur.

III. MULTI-OBJECTIVE DISTRIBUTED OPTIMAL CONTROL
FOR PV-INTEGRATED DISTRIBUTION NETWORKS

A. Multi-objective Distributed Optimal Control Model for
PV-integrated Distribution Networks
Adopting optimization-based control methods to actively

manage distributed PV systems and other grid voltage
regulation devices can effectively mitigate voltage limit
violations while enhancing economic benefits such as
reduced network losses and inverter losses.
When PV systems perform reactive power regulation

through inverters, a portion of electrical energy is consumed
and converted into heat. This heat generation translates to
reactive power losses. As the number of grid-connected
distributed PV systems increases, excessive reactive power
usage may escalate these losses. Furthermore, as highlighted
in [18], the reactive power injection from proliferating
distributed PV systems leads to non-negligible inverter
losses. To accurately characterize inverter loss behavior, the
study models inverter losses as a quadratic function of
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inverter power output, approximating the power loss in
inverters as 2

GQ .
Taking kc as an example, this paper establishes a

distributed optimal control model for the distribution
network, with the optimization objectives of minimizing
voltage violation magnitudes, network losses, and PV
inverter losses. The model is formulated as follows:

1 2min f f fa b  (10)

2 2
1

, :
ij

k

ij G
j c i i j

f r l Q
  

  (11)

2 1
k

i
i c

f U


  (12)

Where f is the objective function of the autonomous
optimization model for partition kc ; ijr is the resistance

value between nodes i and j; ijl is the current flowing from
node i into branch ij; :i i j represents the upstream
measurement node of node j; iU is the voltage magnitude
at node i; 2

GQ is the inverter loss; a b、 is the weighting
factor for the objective functions. The weighting factors are
determined based on the priorities assigned to each objective
function by system operators and their operational
experience. To ensure safe, stable, and efficient operation of
the distribution network, power flows must be reasonably
constrained and controlled. The constraints are as follows:

 
: :

ij ij ij j jl
i i j l j l

P r l P P
 

    (13)

 
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ij ij ij j jl
i i j l j l

Q x l Q Q
 

    (14)

   2 22j i ij ij ij ij ij ij ijv v r P x Q r x l     (15)
2 2

2 ij ij
ij ij

i

P Q
l I

v


  (16)
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Q Q Q Q

 
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(17)

j j jV V V  (18)
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2 2 2
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2 2
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0
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PV n PV n
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(19)

, , ,SVC j SVC j SVC jQ Q Q  (20)

2

2
2

ij

ij ij i

ij i

P
Q l v

l v
 


(21)

Where ijP and ijQ represent the active power and
reactive power flowing from node i to branch ij, respectively;

jP and jQ are the net active load and reactive load injected
into node j; iv and jv are the squares of the voltage

magnitudes at nodes i and j, respectively; ijx is the

reactance of branch ij; ,L jP and ,L jQ are the active power

and reactive power of the load at node j; ,G jP and ,G jQ

denote the actual active power output and reactive power
output of the PV system at node j; ,SVC jQ is the reactive
power output of the Static Var Compensator (SVC); jV

and jV are the lower and upper safety limits of the node

voltage; fk is the minimum power factor, set to 0.95;

,SV C jQ and ,SV C jQ are the lower and upper limits of the
reactive power output of SVC.

B. Multi-objective Distributed Optimal Control Based on
the ADMM
The ADMM offers significant advantages in solving

modern optimization problems arising from big data and
artificial intelligence[19]. Even when component functions
are nonsmooth, the subproblems in ADMM can often be
efficiently solved through coordinated iterations, enabling
rapid convergence to the global optimal solution with
closed-form solutions in many cases. For the distributed
reactive power optimization control model as shown in the
following equation:

 

 
 

1
min

0
. .

0

N

a a
a

a a

a a

f x

h x
s t

g x




 


(22)

Where  a af x is the objective function of sub-partition a;
 a ah x is the equality constraint of sub-partition a;  a ag x

is the inequality constraint of sub-partition a; ax is the
subproblem solution for node i in sub-partition a. Region b
represents the region adjacent to region a, and ,a ijX and

,b ijX are the coupling state variables between regions a and
b.
The ADMM enables distributed optimal control of

partitioned distribution networks. This algorithm performs
distributed optimization of reactive power regulation
resources across partitions to ensure global optimization.
The distributed optimization mechanism between partitions
is illustrated in Fig. 1. In this process: Adjacent partitions
perform independent optimization calculations in parallel.
Each partition adjusts its control variables based on local
resources and constraints. Partitions exchange boundary data
with neighboring partitions. Boundary variables are updated
globally based on the exchanged data. Each partition
initiates a new round of local optimization using updated
boundary variables. The iterations terminate when the
deviation between boundary variables across adjacent
partitions falls below a predefined threshold.
Boundary conditions include not only the local

optimization results of each partition but also key shared
information between adjacent partitions. Define the
boundary conditions for adjacent partitions 1k -c and kc as

 
1

* *, ,
kc i ij ijB v P Q

 and  *, ,

kc i ij ijB v P Q , respectively. A state

variable  , ,i i ij ij= x y zy is defined to ensure consistency
between the boundary conditions of the two partitions, i.e.,

1
,

k kc i i cB = By y


 .
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Fig. 1. Schematic diagram of distributed optimal control across partitions

*
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*

* * *
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l lmP lm

t
c c i i ij ij ij ijv P Q

l l v lm lm lm lm Q

L f x v y P z Q

v x P y Q z

         

        

g m g m g m

g m g m g m
(23)

Detailed Procedure:
(1) Construct the augmented Lagrangian function. Based

on the objective function in (10), the augmented Lagrangian
function is formulated as (23). In (23), t is the iteration times;
g is the penalty factor, which balances the influence of the
objective function and constraints while accelerating

algorithm convergence, 0g ; *

t

iv
m is the voltage at the

virtual balancing node *i of partition kc ;
t

ijP
m and

t

ijQ
m

are the active power and reactive power transmitted through

line ij between partitions;
t

lvm is the voltage at boundary

node l; *

*

P lm

m and *

t

lmQ
m are the Lagrangian multipliers

for the virtual active and reactive loads at boundary node l; x
represents the global value of node voltage; y and z are the
global values of active and reactive power transmitted
through inter-partition lines.
(2) Distributed parallel optimization. Each partition

performs independent local optimization using (23) as the
objective. Define the optimal solution for node a in partition

kc as  , , , ,, , ,
k k k k kc c a c a c a c aX P Q v i . Set the boundary

variables  *, ,up i ij ijB v P Q for all upstream partitions and

 * *, ,down l lm lmB v P Q for downstream partitions.

 1 1 1, , arg min
c up down kk

t t t
cX B B = L   (24)

(3) Boundary data exchange and global variable update.
Adjacent partitions exchange boundary data and update
global variable values based on the exchanged information.
(25) and (26) update the upstream and downstream
boundary variables, respectively, ensuring consistency and
coordination between neighboring partitions.

  
  
  

* 11 1

* 11 1

* 11 1

/ 2

/ 2

/ 2

tt t
i i i

tt t
ij ij ij

tt t
ij ij ij

x v v

y P P  

z Q Q

 

 

 

  

  

  

(25)

  
  
  

* 11 1

* 11 1

* 11 1

/ 2

/ 2

/ 2

tt t
l l l

tt t
lm lm lm

tt t
lm lm lm

x v v

y P P  

z Q Q

 

 

 

  

  

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(26)

(4) Lagrangian Multiplier Update. Each partition locally
updates the Lagrangian multipliers for boundary variables
using the received boundary data. (27) and (28) update the
Lagrangian multipliers for upstream and downstream
boundary variables, respectively.

  
  
  

* *
* 11 1

11 1

11 1

i i

ij ij

ij ij

tt t t
i iv v

tt t t
ij ijP P

tt t t
ij ijQ Q

x v

y P

z Q

m m g

m m g

m m g

 

 

 

   
   

   


(27)

 
  
  

* *

* *

1 1

* 11 1

* 11 1

l

lm lm

lm lm

t t t
v l l

tt t t
lm lmP P

tt t t
lm lmQ Q

v x

P y

Q z

m m g

m m g

m m g

 

 

 

   

   

   

(28)

(5) Residual Calculation. Each partition computes the
primal residual 1

k

t
cr
 and dual residual 1

k

t
cs  of

inter-partition boundary data.
1 1 1 1 1

k

t t+ t t+ t
c up ij down lmr B -X B -X    (29)

1 1 1
k

t t+ t t+ t
c ij ij lm lms X -X X -X   (30)

Where    1 1 1 1 1 1 1 1t t t t t t t t
ij i ij ij lm l lm lmX x y z X x y z        、 、 、 、 、 is

the global value of the partition kc .
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The distributed optimal control flowchart for partition kc
is shown in Fig. 2.

Fig. 2. Distributed optimal control flowchart for partition kc

The selection of the penalty factor  in the penalty
function has a significant impact on the convergence of the
ADMM. Using fixed constants that are either too small or
too large can drastically reduce the efficiency of ADMM.
Therefore, the value of the penalty factor  should vary
with iterations[20]. This paper proposes an adaptive strategy
to adjust the penalty factor, where the adjustment is closely
related to the relative magnitudes of the primal residual and
dual residual. Under this strategy, the quadratic penalty
factor in the augmented Lagrangian function is dynamically
updated during iterations to more effectively control the
convergence of residuals and accelerate overall algorithm
convergence. The specific implementation is as follows:
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IV. CASE ANALYSIS

To verify the effectiveness of the proposed method, the
standard IEEE33 node system was modified and simulated
in MATLAB. The system's base voltage is 12.66 kV, base
capacity is 10 MW, power factor is 0.95, and the allowable
voltage violations magnitude range for nodes is [0.95, 1.05]
p.u. In the modified IEEE33 node system, 8 distributed PV
units and 3 SVC were configured. The installation locations
and capacity index of distributed PV and SVC at each node
are detailed in Table Ⅰ.

TABLE Ⅰ
ACCESS LOCATION AND CAPACITY OF DISTRIBUTED PV AND SVC

Controllable Resources Capacity/kVA Location

Distributed PV
200 4, 7, 27, 32

300 10, 17, 20, 24

SVC 100 5, 10, 29

A. Case Analysis on Partitioning of Distribution Networks
with Photovoltaic Integration
To accurately evaluate the superiority of the proposed

improved modularity index in determining optimal
partitioning, the Louvain algorithm was applied to perform
partitioning calculations based on both the electrical
distance index and the proposed improved modularity index.
The modularity index values under both indexes are shown
in Table Ⅱ.

TABLE Ⅱ
MODURITY INDEX VALUES UNDER DIFFERENT INDEXS

The stochastic nature of PV installation leads to resource
allocation in the network that does not strictly align with
structural electrical connectivity. Partitioning based solely
on electrical distance may yield suboptimal results. As
shown by the modularity function indexes in Table Ⅱ , for
the modified IEEE33 node system, the improved modularity
index achieves an 8.18% increase compared to using only
the electrical distance index, while reducing the number of
partitions from 5 to 3. This demonstrates a more concise
network division while maintaining modularity advantages,
confirming substantial improvements in partition quality and
enhancing overall network performance.
The partitioning results of the modified IEEE33 node

system using the electrical distance index and the improved
modularity index are shown in Fig. 3. In Fig. 3(a), where
only the electrical distance index is applied for distribution
network partitioning, partition C4 contains a single node as
an isolated partition. By adopting the improved modularity
index, such issues are mitigated, preventing partitions with
minimal nodes or lacking reactive power resources, thereby
eliminating over-centralization or isolated nodes during
optimization control.
Furthermore, the improved modularity index achieves

more balanced partition sizes and resource distribution. The
node count disparity between partitions is significantly
reduced, avoiding control complexities caused by
excessively large or small partitions. In Fig. 3(a), partitions
C1 and C4 exhibit a node count disparity of 11, with
partition C4 lacking power quality improvement devices,
resulting in reduced flexibility and sustainability. In contrast,
Fig. 3(b) demonstrates a maximum node count disparity of 4
under the improved modularity index, ensuring more
balanced resource-node configurations across partitions.
This enhances grid stability, optimizes control strategies,
improves computational efficiency, and strengthens the
foundation for subsequent grid dispatching and operational
management.

Method Modularity
Index value

Number of
Partitions

Only electrical
distance index 0.648 5

Improved
modularity index 0.701 3
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(a) only the electrical distance index

(b) improved modularity index
Fig. 3. IEEE33 node system partition results

The results demonstrate that the improved modularity
index not only effectively accounts for electrical distance
relationships between clusters but also balances the
structural and functional characteristics of the system,
achieving more equitable partitioning. This balanced
partitioning approach enhances the stability of the
distribution network and optimizes its operational efficiency.
These findings further validate the practical feasibility of the
proposed PV-integrated distribution network partitioning
methodology in real-world applications.

B. Case Analysis on Multi-objective Distributed Optimal
Control for Photovoltaic-integrated Distribution Networks
To evaluate the effectiveness of the proposed distributed

optimization control in mitigating voltage limit violations,
reducing network loss, and decreasing inverter losses, the
distribution network partitioned using the improved
modularity index was optimized and compared with
centralized optimization control. This study defines voltage
sags caused by remote feeders and large load startups as the
primary sources of voltage limit violations. A three-phase
short-circuit fault in a remote distribution feeder was
simulated, propagating voltage limit violations through the
studied PV-integrated distribution network. The voltage
violation was simulated at Bus 0 in the network.
Based on the IEEE33 node system partitioned with the

improved modularity index, the voltage amplitude curves
under centralized and distributed optimization control
strategies during a three-phase short-circuit fault are
compared in Fig. 4.
When no optimization control is applied, the three-phase

short-circuit fault causes voltage sags of varying degrees in
all three zones, with the minimum node voltage amplitude
dropping to 0.79 p.u. Under centralized optimization control,
the voltage amplitudes across all three zones are globally
optimized and increased to 0.91 p.u. or higher. With
distributed optimization control, the node voltage
amplitudes in each zone stabilize above 0.93 p.u., with the
overall mean value rising to 0.963 p.u. The standard
deviation decreases from 0.063 p.u. to 0.023 p.u., indicating
a 61.5% improvement in voltage stability. This demonstrates

the accuracy and effectiveness of the distributed
optimization scheduling results. Additionally, the voltage
amplitude curves under distributed optimization closely
match those of centralized optimization, verifying that the
proposed distributed control achieves equivalent global
optimization effects.

Fig 4. Nodes voltage magnitudes in the IEEE33 node system

When the distributed optimization control strategy
converges, the reactive power of distributed PV and SVC in
the distribution network is shown in Fig. 5. The coefficient
of variation (CV), a standardized indicator for data
dispersion defined as the ratio of standard deviation to mean
value, measures system equilibrium. The CV for centralized
optimization is 0.71, while for distributed optimization it is
0.84. This indicates that centralized control achieves better
global equilibrium, but distributed control compensates for
this deficiency through localized flexibility. Centralized
optimization exhibits excessive reactive power
compensation at nodes 7 and 10, potentially inducing
unnecessary reactive power flows. In contrast, distributed
optimization adjusts reactive power compensation more
flexibly and precisely based on actual nodal demands.

Fig. 5. Reactive power compensation in the IEEE33 node system

A numerical comparison of distributed optimization
control and centralized optimization control results is shown
in Table Ⅲ.

TABLE Ⅲ
REACTIVE POWER COMPENSATION AND NETWORK LOSS UNDER TWO

CONTROL STRATEGIES IN THE IEEE33 NODE SYSTEM

Control Method Reactive Power /kVar Network Loss and
Inverter Loss/kW

Centralized Optimization 406 37

Distributed Optimization 350 18
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The distributed optimal control results in a 56 kVar
reduction in the total reactive power output of PV systems
compared to the centralized optimal control. Additionally, it
reduces combined losses in the network and inverters by 19
kW, representing a 51.4% decrease in these losses relative to
centralized control. Although both control methods fully
utilize system-wide reactive power resources, centralized
optimization based on global decision-making may lead to
excessive reactive power transmission in certain zones,
thereby increasing network loss and inverter loss. These
analyses demonstrate that the proposed distributed control
achieves global optimization with minimal boundary
information exchange. This strategy aligns with the
operational characteristics of active distribution networks
containing distributed PV, effectively enhancing voltage
stability and optimizing grid safety and economic efficiency.
During the iterative process of distributed optimization

control, each zone continuously optimizes the reactive
power output of its distributed PV systems and SVC.
Through information exchange and coordination among
clusters, the reactive power allocation gradually converges
to a global optimal state. To validate the advantages of the
proposed improved ADMM in convergence performance, its
residual convergence is compared with traditional ADMM,
as shown in Fig. 6 and 7.

Fig. 6. Boundary primal residuals during distributed optimization control in
the IEEE33 node system

Fig. 7. Boundary dual residuals during distributed optimization control in
the IEEE33 node system

The residual convergence curves in Fig. 6 and 7 reveal
that traditional ADMM requires 102 iterations to meet the
convergence threshold, whereas the improved ADMM
achieves the convergence limit in only 45 iterations,
significantly reducing computation time.
These results confirm that the improved ADMM

outperforms traditional methods in both convergence speed
and stability, with a smoother and more efficient residual
reduction process.

V. CONCLUSION
With the increasing penetration of distributed PV systems

in distribution networks, rational control of PV-integrated
distribution networks is crucial for ensuring their safe, stable,
and economical operation. This paper proposes a
multi-objective distributed optimization control framework
for PV-integrated distribution networks. Case studies and
simulation analyses yield the following conclusions:
1) An enhanced electrical distance index, incorporating

information from any given node and its neighboring nodes,
is introduced. To promote reactive power output and load
demand balance within partitioned regions, an intra-region
autonomous regulation capability index is formulated.
Furthermore, an intra-region coupling strength index is
developed to address suboptimal partitioning resulting from
the uneven distribution of load nodes and PV access points.
These three indices form the basis of a novel, improved
modularity index. Validation confirms that this composite
index effectively prevents excessive node concentration or
isolation during partitioning, ensures equitable resource
distribution, and exhibits both theoretical soundness and
practical effectiveness.
2) A distributed optimization control model is established

post-partitioning, with objectives including minimizing
network loss index, voltage violations magnitude, and PV
inverter loss index. Simulation results show that the
proposed distributed control achieves voltage violation
mitigation comparable to centralized optimization methods
while reducing computational burden and ensuring grid
stability. Furthermore, it reduces network loss index and
inverter loss index compared to centralized control and
requires less reactive power compensation, thereby
improving economic efficiency.
3) To accelerate convergence and enhance optimization

performance, an improved ADMM algorithm is proposed.
Validation confirms that this method effectively addresses
coordinated control challenges in partitioned PV-integrated
distribution networks, significantly reduces iteration counts,
and improves computational efficiency and solution speed.
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